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Last course (May 5)	

	
 	
 	


	
 - Assimilation dans l'espace instable	


	
 -Filtres particulaires	


	
 -Assimilation Variationnelle d’Ensemble	
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This course (May 12)	

	
 	
 	


	
 - A few Basics about Dynamical Systems. 
Lyapunov exponents	


	
 - A few variants of Filters and Smoothers, 
among many	


	
 - Artificial Intelligence and Data Assimilation	


	
 - Conclusions and Perspectives 	
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 Dynamical system	


	
 State  vector  x  = (x1,  x2,  …,  xn)T.  Evolves  in  time  according 
to equation	


	
 	
 	
 	
 dx/dt = F(x)	
 	
 	
 (1) 	


	
 or, componentwise	


	
 	
 	
 	
 dxi/dt = Fi(x),    i = 1, …, n	


	
 Purely deterministic (no stochastic component)	


	
 	
 	
 	
 	
 	




	
 	

	
 	
 	
 	
 dx/dt = F(x)	
 	
 	
 (1) 	


	
 Initial condition x(t0) = x0  defines unique solution (or orbit)	


	
 	
 	
 	
 x(t) = R(t, t0) (x0)         	

	
 	
 	
 	
 	


	
 R(t, t0) is the resolvent of Eq. (1) between times t0 and t.	


	
 System can be discretized in time	


	
 	
 	
 	
 xk+1 = Mk (xk)        	




	
 	

	
 Typical questions about dynamical systems	


	
 - Stationary points (F(x) = 0) and associated stability ?	


	
 - Stability of orbits ?	


	
 -  Long  term  behaviour  of  orbits  (convergence  to  fixed 
points, periodicity, convergence to limit cycle, divergence to 
infinity , non-periodic oscillations, …) ?	


	
 - Uncertainty in initial conditions. How does it evolve ? 	


	
 	


	
 	
 	
 	
 	




	
 	
 	
 	
 dx/dt = F(x)	
 	
 	
 (1) 	
 	
 	


	
 Solution x(t). Perturbation δx(t). Evolves according to	


	
 	
 dδx/dt = F[x(t) + δx] - F[x(t)] ≈ F’(t) δx	


	
 where  F’(t)  is  Jacobian  (matrix  of  partial  derivatives)  of 
operator F at point x(t)	


	
 	
 	
 	
 dδx/dt = F’(t) δx  	
 	
 (TLM)	


	
 is  tangent  linear  system  of  system  (1)  along  solution  x(t). 
Describes evolution of perturbation δx on x(t) to first order wrt 
initial value of perturbation.	


	
 δx(t) = F[x(t)] is solution of (TLM)  	


	
 	




	
 	
 	
 	
 dδx/dt = F’(t) δx  	
 	
 (TLM)	

	
 	

	
 Adjoint equation	


	
 	
 	
 	
 dλ/dt = - [F’(t)]T λ  	
 	
 (ADJ)	


	
 	

	
 	




	
 For system discretized in time	


          	
 	
 	
 xk+1 = Mk (xk)	

	
 	
 	
 	
 	

	
 	
 	
 	
 δxk+1 = Mk’ δxk	
 	
 (TLM)	

	
 	
 	

	
 	
 Adjoint	

	
 	
 	
 	
 λk = [Mk’]T λk +1	
 	
 (ADJ) 

 	

	
 	
 	
 	
 	

	
 	
 	
 	
         	




Lorenz (1963)	


 dx/dt = σ(y-x)	

	
 dy/dt = ρx - y - xz	

	
 dz/dt = -βz + xy	


	
 with parameter values σ = 10, ρ = 28, β = 8/3  ⇒  chaos	
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All orbits end up trapped in the 
same neighbourhood, within which 
they have accumulation points, 
which consist themselves of full 
orbits 







	
 Probability  Density  Function  (PDF)  p(x,  t)  for  state  vector. 
Evolves in time according to equation	


	
 	
 	
 	
 Dp/Dt + p divF = 0	

	
 	
 	
 	
 	

	
 which expresses  conservation of  probability  in  the  flow F.  It 

is  fundamentally  the  same  equation  as  the  ‘continuity’ 
equation,  which expresses conservation of mass in physical 
motion.  It  is  called  in  the  present  context  the  Liouville 
equation.	




 dx/dt = σ(y-x)	

	
 dy/dt = ρx - y - xz	

	
 dz/dt = -βz + xy	


	
 with parameter values σ = 10, ρ = 28, β = 8/3  (⇒  chaos)	


	
 	
 divF = ∂ (dx/dt) /∂x + ∂ (dy/dt) /∂y + ∂ (dz/dt) /∂z 	

	
 	
          = - (σ +1 +β) = - 13.666… < 0	

	
 	

	
 Volume element  V(t) = V(0) exp [ -13.67 t] decreases 

exponentially with time            	




Loss of predictability in dissipative chaos 
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Pires et al., Tellus, 1996 ; Lorenz system (1963) 



	
 	

	
 Linear constant coefficient system with dimension n	


	
 	
 	
 	
 dx/dt = Ax	
 	
 	
 	


	
 Eigenvectors ej,  j = 1, …, n	


	
 Eigenvalues µj = λj + iνj,  λ1 > … > λn	


	
 	
 	
 x(t0) = Σj  xj(t0) ej	


	
 	
 	
 x(t0+τ)   = Σj exp(µj τ) xj(t0) ej    	

                                      = exp(µ1τ) x1(t0) 	

	
 	
 	
 	
 	
 x [e1 + Σj>1 exp((µj -µ1)τ) xj(t0) ej] 	

	
 	
 	
 	


	
 	

	
 	
 	
 	
 	
 	




	
 	

	
 	
 	


	
 	
          x(t0+τ)   =  exp(µ1τ) x1(t0) [e1 + o(1)]	


	
 	
    ⎟⎜x(t0+τ)⎟⎜=  exp(λ1τ) ⎟x1(t0)⎟ ⎟⎜e1⎟⎜	


           lim t→∞ [(1/t) ln⎟⎜x(t)⎟⎜] = λ1	

	
 	
 	


	
 	
 If x1(t0) = 0, x2(t0) ≠ 0, the limit is λ2, and so on …             

 	
  

	
 	
 	
 	


	
 	

	
 	
 	
 	
 	
 	




	
 	

	
 There  exist  a  sequence  of  real  numbers  (real  parts  of 

eigenvalues of matrix A)	


 	
 	
                           λ1 > … > λm              m ≤ n          	


	
 and sequence of (sub)spaces of Rn
	


	
 	
         Em+1 = ∅  ⊂  Em ⊂ … ⊂ Ej ⊂ … ⊂ E1 = Rn	


	
 such that  lim t→∞ [(1/t) ln⎟⎜x(t)⎟⎜] = λj  when x(t0) ∈ Ej / Ej+1     

	
 	
 	
 	


	
 	

	
 	
 	
 	
 	
 	




	
 The  same  is  fundamentally  true  for  dynamical  systems  with  attractors 
(solutions constantly return to the vicinity of same points →  ergodicity)	


	
 	
 	
 	
 dx/dt = F(x)	
 	
 	
  	
 	
 	

	
 Solution x(t). Associated TLM	

	
 	
 	
 	
 dδx/dt = F’(t) δx  	
 	
 (TLM)	


 	
 There exist a sequence of real numbers (Lyapunov exponents)	


 	
 	
 	
        λ1 > … > λm                     m ≤ n          	


	
 and sequence of (sub)spaces of Rn
	


	
 	
         Em+1 = ∅  ⊂  Em ⊂ … ⊂ Ej ⊂ … ⊂ E1 = Rn	


	
 such that  lim t→∞ [(1/t) ln⎟⎜δx(t)⎟⎜] = λj  when δx(t0) ∈ Ej / Ej+1     



 Lorenz 1963 	


	
 dx/dt = σ(y-x)	

	
 dy/dt = ρx - y - xz	

	
 dz/dt = -βz + xy	


	
 with parameter values σ = 10, ρ = 28, β = 8/3  (⇒  chaos)	


	
 Lyapunov exponents	


	
 	
 	
 0.9056, 0, −14.5723 (sum = -13.6667)  	


	
 	
 [divF = - (σ +1 +β) = - 41/3 = - 13.6666.. < 0]	




 Lyapunov exponents	


	
 	
 	
 0.9056,  0, −14.5723	

	
 	

	
 Lyapunov  exponents  measure  rate  of  growth  of 

perturbations, averaged over the whole attractor	


	
 Presence  of  at  least  one  positive  Lyapunov  exponent  is 
signature of chaos.	


	
 In  an  ergodic  system,  one  exponent  is  equal  to  0.  It 
corresponds to perturbations in the direction of the motion, 
which  will  be  neither  amplified  nor  damped  over  long 
periods.	


	
 	




Experiments performed on the Lorenz (1996) model 

  

  

with periodic conditions in j, and value F = 8, which gives rise to chaos. 

Three values of I have been used, namely I = 40, 60, 80, which correspond  
 to respectively N+ = 13, 19 and 26 positive Lyapunov exponents. 

In all three cases, the largest Lyapunov exponent corresponds to a doubling time  of about 2 days 
 (with 1 ‘day’ = 1/5 model time unit). 

Identical twin experiments (perfect model) 
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  Lyapunov exponents	


 	
 	
 	
        λ1 > … > λm                     m ≤ n          	


	
 associated (sub)spaces of Rn
	


	
 	
         Em+1 = ∅  ⊂  Em ⊂ … ⊂ Ej ⊂ … ⊂ E1 = Rn	


	
 	
 lim t→∞ [(1/t) ln⎟⎜δx(t)⎟⎜] = λj  when δx(t0) ∈ Ej / Ej+1     

 	
 Modulus ⎟⎜δx(t)⎟⎜depends on choice of norm, but asymptotic 
exponential  rate  of  growth  or  decay  does  not.  Lyapunov 
exponents  do not  depend on position on orbit,  and are  the 
same  for  all  orbits  with  the  same  attractor.  Subspaces  Ej  
depend on position on orbit, but evolve with the motion.   

	
 	
 	
 	




	
 Lyapunov vectors	


	
 At  a  given  point  along  an  orbit,  forward  Lyapunov  vectors  are  vectors 
which will concentrate most rapidly on the Lyapunov rate of growth or 
decay. 	


	
 Similarly  bacward  Lyapunov  vectors  are  vectors  that  have  concentrated 
most  rapidly  in  the  past  on  the  Lyapunov rate  of  growth  or  decay.  In 
assimilation, they tend to dominate the background error. 	


	
 These  vectors  depend  on  the  choice  of  a  norm,  are  orthogonal  with 
respect to the chosen norm, and do not evolve with the motion.	


	
 One  also  defines  covariant  Lyapunov  vectors,  which  are  exactly 
amplified or damped according to  the Lyapunov exponents, and evolve 
with the motion. They do not depend on the choice of a norm, and are not 
orthogonal wrt to a time-independent norm.	


 	
 	
 	
 	

	
 	
 	
 	




	
 	

	
 The  notions  of  Lyapunov  exponents  and  vectors  have  turned  out  to  be 

very useful for the study of the dynamics of the atmosphere and the ocean,  
They are relatively easy to determine (identifying them does not require 
long  numerical  integrations,  which  means  that  the  atmosphere  and  the 
ocean have in  a  sense ‘good ergodicity’).  They more or  less  explicitly 
underlie the approach of Assimilation in the Unstable Subspace 	
 	
 	
 	


	
 	
 	
 	


	
 	

	
 	
 	
 	
 	
 	




No explicit  background term (i.  e.,  with  error  covariance  matrix)  in  objective  function  : 
information from past lies in the background to be updated, and in the N perturbations 
which define the subspace in which updating is to be made.	


Best performance for N slightly above number  N+ of positive Lyapunov exponents.	
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Trevisan et al., 2010 
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Iterative Ensemble Kalman Smoother (IEnKS, Bocquet and Sakov, 2014)	


Minimization  performed  at  time  t0,  in  an  appropriately  chosen  reduced 
subspace,  assimilating  observations  performed  between  times  tS  and  tL, 
with t0  ≤  tS  ≤  tL	


   t0  tS	
 	
 	
 tL 

  ı ı ı ı ı ı	


	
 	
 	
 	
 	
 	
 	
    	


	
       control	
 	
 	
 observations	


If  the  dimension  of  the  reduced  subspace  is  small  enough,  gradient  of 
objective function can be computed by finite differences, and approximate 
Hessian can be determined. Once the minimization has been achieved, a 
new  ensemble  of  perturbations  can  be  obtained  by  transport  of  the 
approximate inverse Hessian.	




30 Carrassi et al., 2018 



Unknown x to be determined. Belongs to state space S, with dimension n	

Data, belonging to data space D, with dimension m, available in the form	


	
 	
 	
          z = Γx + ζ	


where Γ is a known (mxn)-matrix, rankΓ = n and ζ is ‘error’	


Best Linear Unbiased Estimate (BLUE)	


xa ≡ (Γ T S-1Γ)-1 Γ T S-1 [z - µ] 	
 	


	
 with µ = E(ζ) and S = E[(ζ- E(ζ) (ζ- E(ζ)T]. 	


	
 	

	
 E(xa-x) = 0	
 	
 E[(xa-x) (xa-x)T] ≡ Pa = (Γ T S-1Γ)-1	


Determinacy condition : rankΓ = n. Data contain information, directly or indirectly, on every 
component of state vector x. Requires m ≥ n.	


BLUE is invariant in any change of origin, or in any invertible linear transformation, in either 
data or state space. In particular, it is independent of the choice of a scalar product or 
norm in either of those spaces. BLUE minimizes the quadratic estimation error on any 
generalized component of x. 	
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If error ζ is gaussian, ζ ∼ N [µ, S], BLUE achieves bayesian estimation in the sense that	


 	
 	
 	
 	
 P(x | z) = N [xa, Pa]	


Any assumed probability distribution P(ζ) defines a conditional probability distribution P(x | 
z)  for  x.  In  case  the  distribution  P(ζ)  is  known only  through  its  expectation  µ  and 
covariance matrix S,  the gaussian distribution N [µ,  S] leads for x to the conditional 
probability distribution P(x | z) with the largest entropy. The gaussian choice is in that 
sense the ‘least-committing’ choice.          	


BLUE is the simplest of non-simplicist algorithms.	
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The  BLUE  can  be  obtained  by  minimization  of  the  following  scalar 
objective function, defined on state space X  	


ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]	


And in case of nonlinearity ?	


 z = Γ(x) + ζ	


Variational approach can be heuristically implemented	


ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γ(ξ) - (z-µ)]T S-1  [Γ(ξ) - (z-µ)]	


It works !	
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If data are of the form (after possibly an appropriate transformation)	

 	

	
 	
 	
 xb  =  x  + ζb	
 	

	
 	
 	
 y  =  H(x) + ε	


Transformation 	


	
 	
 	
 xb  =  x  + ζb	
 	

	
 	
 	
 y - H(xb) =  H(x) - H(xb) + ε  ≈ H’(x - xb) + ε    

where H’ is jacobian of H, makes the estimation problem linear in the deviation x – xb 
(tangent linear approximation)	


All algorithms that have been presented in the course, with the exception of 
particle filters, are empirical heuristic extensions of the BLUE approach to 
approximate nonlinear and non-gaussian situations.   	
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Artificial Intelligence 	

	
 	
 	
 (aka Machine Learning or Deep Learning)	


Numerical  modelling of  the atmospheric  and oceanic flow, as  presented in the 
course,  fundamentally built  on known physical laws (conservation of mass, 
momentum and energy).	


Why not directly use observations (for instance, in the case of a weather forecast, 
why not  look for  analogues in  the past,  and make the forecast  from those 
analogues) ?	


E. N. Lorenz (1960s). Sample of past observations will never be large enough for 
competing with physically-based models.	


But :	

	
 - there is no incompatibility between the two approaches	


	
 -  there  remain  many  processes  in  numerical  models  which  we  do  not  know 
how to describe on the basis of well-established physical laws (interactions 
between atmosphere and underlying medium, such as e.g. vegetation, all kinds 
of subgrid scale processes, …)	


	
 -  amount  of  data  of  all  kinds,  as  well  as  computing  power,  are  increasing 
very rapidly.        	
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Artificial Intelligence (aka Machine Learning) (continuation)	


Powerful numerical tools have been developed for the exploitation of very large 
sets of data (big data)	


	
 Neural  networks.  Define  an  explicit  numerical  link  between  an  input  set  and 
an  output  set.  Define  function  F  such  that,  to  some  useful  degree  of 
approximation 	


	
 	
 	
 	
 y = F(x)	


	
 where x and y belong to the input and output set respectively.	


	
 The function F is typically built as a composition of sigmoid functions     	
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Artificial Intelligence (aka Machine Learning) (continuation 2)	


	
 Neural  networks  have  turned  out  to  be  extremely  efficient  in 
many  applications.  In  the  context  of  assimilation  of 
observations, they have been used for defining for instance the 
observation  operators  (H)  corresponding  to  satellite 
observations.  But  they  have  been  used  more  recently,  in 
evaluation  studies  and on idealized  situations,  but  with  some 
success, for determining ‘dynamical laws’.  	
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Assimilation, which originated from the need of defining initial conditions for numerical weather forecasts, has 
gradually extended to many diverse applications	


•  Oceanography	

•  Palaoclimatology	

•  Atmospheric chemistry (both troposphere and stratosphere)	

•  Oceanic biogeochemistry	

•  Ground hydrology	

•  Terrestrial biosphere and vegetation cover	

•  Glaciology	

•  Magnetism (both planetary and stellar)	

•  Plate tectonics	

•  Planetary atmospheres (Mars, …)	

•  Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)	

•  Identification of source of tracers	

•  Parameter identification	

•  A priori evaluation of anticipated new instruments	

•  Definition of observing systems (Observing Systems Simulation Experiments)	

•  Validation of models	

•  Sensitivity studies (adjoints)	

•  Mathematical studies, independently of direct real life applications	

•  …	


It has now become a major tool of numerical environmental science, and a subject of mathematical study in its 
own right. 



A few of the (many) remaining problems : 

 Observability (what to observe in order to know what we 
want to know ? Data are noisy, system is chaotic !)  

 More accurate identification and quantification of errors 
affecting data particularly the assimilating model (will 
always require independent hypotheses) 

 Assimilation of images 

 … 

39 





La Fin du Cours …  
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