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Programme of the course 

1. Numerical modelling of the atmospheric flow. The primitive equations. 
Discretization methods. Numerical Weather Prediction. Present performance. 

2. The meteorological observation system. The problem of  'assimilation’. 
Bayesian estimation. Random variables and random functions. Meteorological 
examples. 

3. ‘Optimal Interpolation'. Basic properties. Meteorological applications. The 
theory of  Best Linear Unbiased Estimator. 

4.  Advanced assimilation methods. 
 - Kalman Filter. Ensemble Kalman Filter. Present performance and perspectives.         
 - Variational Assimilation. Adjoint Equations. Present performance and 

perspectives. 
5.  Advanced assimilation methods (continuation). 
 - Bayesian Filters. Theory, present performance and perspectives. 
6.   Assimilation and Artificial Intelligence 





Earth Radiative Budget, yearly average 



Trenberth et al., BAMS, 2009 



Stephens et al., Nature Geoscience, 2012 

 Annual mean energy budget of atmosphere for period 2000–2010. Unit W.m-2 



Hadley cell 

Ferrell cell 



	
 	
 	
 	
 	
 Particle moves on sphere with radius R 	

	
 	
 	
 	
 	
 under the action of a force lying 	

	
 	
 	
 	
 	
 in meridian plane of the particle 	


	
 	

	
 	
 	
 	
            → Angular momentum wrt axis of rotation conserved.	


	
 	
 	
 	
 	
 (u + Ω R cosϕ) R cosϕ = Cst	


On Earth, Ω ≈ 2π 10-5 s-1, R ≈ 6.4 106 m.	

If u = 0 at equator, u = 329 ms-1 at latitude ϕ = 45°. If u = 0 at 45°, u = -232 ms-1 at 

equator. 	


Hadley, G., 1735, Concerning the cause of the general trade winds, Philosophical Transactions of 
the Royal Society  





Read et al., 2015  





26/04/1984, 00/00 TU 



Zonal wind; annual longitudinal average (m.s-1)  
http://paoc.mit.edu/labweb/notes/chap5.pdf,  
Atmosphere, Ocean and Climate Dynamics, by J. Marshall and R. A. Plumb, 
International Geophysics, Elsevier) 



Peixoto and Oort, 1992, The Physics of Climate, Springer-Verlag  









ECMWF, Technical Report 499, 2006  





 Pourquoi  les  météorologistes  ont-ils  tant  de  peine  à  prédire  le  temps 
avec quelque certitude  ? Pourquoi les chutes de pluie,  les tempêtes 
elles-mêmes nous semblent-elles arriver au hasard, de sorte que bien 
des gens trouvent tout naturel de prier pour avoir la pluie ou le beau 
temps, alors qu’ils jugeraient ridicule de demander une éclipse par 
une prière ? Nous voyons que les grandes perturbations se produisent 
généralement  dans  les  régions  où  l’atmosphère  est  en  équilibre 
instable. Les météorologistes voient bien que cet équilibre est instable, 
qu’un cyclone va naître quelque part ; mais où, ils sont hors d’état de 
le  dire   ;  un  dixième  de  degré  en  plus  ou  en  moins  en  un  point 
quelconque, le cyclone éclate ici et non pas là, et il étend ses ravages 
sur des contrées qu’il aurait épargnées. Si on avait connu ce dixième 
de  degré,  on  aurait  pu  le  savoir  d’avance,  mais  les  observations 
n’étaient ni assez serrées, ni assez précises, et c’est pour cela que tout 
semble dû à l’intervention du hasard.	


	
 	
 	
 	
 H. Poincaré, Science et Méthode, Paris, 1908	
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Why have meteorologists such difficulty in predicting the weather with any 
certainty? Why is it that showers and even storms seem to come by chance, 
so that many people think it quite natural to pray for rain or fine weather, 
though they would consider it ridiculous to ask for an eclipse by prayer? 
We see that great disturbances are generally produced in regions where 
the  atmosphere is  in  unstable  equilibrium.  The meteorologists  see  very 
well  that  the  equilibrium  is  unstable,  that  a  cyclone  will  be  formed 
somewhere, but exactly where they are not in a position to say; a tenth of a 
degree more or less at any given point, and the cyclone will burst here and 
not there, and extend its ravages over districts it would otherwise have 
spared. If they had been aware of this tenth of a degree they could have 
known  it  beforehand,  but  the  observations  were  neither  sufficiently 
comprehensive nor sufficiently precise, and that is the reason why it all 
seems due to the intervention of chance.	


	
 	
 	
 	
 H. Poincaré, Science et Méthode, Paris, 1908	

                                              (English transl. by F. Maitland, Science and Method, 	

                                                            T. Nelson and Sons, London, 1914)	




The case of the ocean	


Same basic physics.	


Absorption  of  solar  energy  limited  to  upper  layers  ocean 
heated from above). Circulation largely due to surface friction 
by wind. 	


But	


-  Closed oceanic basins	


-  Importance  of  density,  which strongly  depends  on salinity 
(thermohaline circulation) 	


Latitudinal  temperature  gradient,  rotation,  poleward  energy 
transport 	




Surface oceanic circulation 



Conveyor belt 
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Physical laws governing the flow	

  Conservation of mass	

	
 Dρ/Dt + ρ divU  =  0	
 	


  Conservation of energy	

	
 De/Dt - (p/ρ2) Dρ/Dt =  Q	


  Conservation of momentum	

	
 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	


  Equation of state	

	
  f(p, ρ, e) =  0	
 	
 	
 (p/ρ = rT, e = CvT)	


  Conservation of mass of secondary components (water, chemical species, …)	

	
 Dq/Dt + q divU  = S	


These physical laws must be expressed in practice in discretized (and necessarily	

imperfect) form, both in space and time	
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 Da/Dt  =  ∂a/∂t  +  U.grada 	

  

Particular	

(Lagrangian)	

derivative 	


Eulerian	

derivative 	


Advection	

(due to motion)	




The case of the ocean	


  Same basic equations	


But	


  Different equation of state	


  Major  secondary  component  is  now  salt  (convective 
instability associated with variation of density of the fluid) 	
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Physical laws must in practice be discretized in both space and time	

⇒ numerical models, which are necessarily imperfect.	


Models  that  are  used for  large scale  weather  prediction and for  climatological 
simulation  cover  the  whole  volume  of  the  atmosphere.  These  models  are 
based, at least so far, on the hydrostatic hypothesis	


	
 in the vertical direction :	


	
 ∂p/∂z + ρg =  0	


	
 Eliminates  momentum  equation  for  vertical  direction.  In  addition,  flow  is 
incompressible in coordinates (x, y, p) ⇒ number of equations decreased by 
two units.	


	
 	

	
 Hydrostatic approximation valid, to accuracy ≈ 10-4, for horizontal scales 	

	
 > 20-30 km	


	
 More costly nonhydrostatic models are used for small scale meteorology.	




	
 Using pressure p as  independent vertical coordinate	


	
 - Flow is incompressible	


	
 - Pressure gradient term (1/ρ) gradz p becomes gradpΦ,	

	
 where Φ ≡ gz is geopotential   	
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Spatial Discretization	


There exist at present two forms of spatial discretization	


-  Gridpoint discretization	


-  (Semi-)spectral  discretization  (mostly  for  global  models, 
and most often only in the horizontal direction)	


Finite  element  discretization,  which is  very  common in  many forms of 
numerical modelling, is rarely used for modelling of the atmosphere, 
except for discretization in the vertical direction. It is more frequently 
used for oceanic modelling, where it allows to take into account the 
complicated geometry of coast-lines.	
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In gridpoint models, meteorological fields are defined by values 
at  the  nodes  of  a  grid  covering the  physical  domain under 
consideration.  Spatial  derivatives  are  expressed  by  finite 
differences.	


	
 	
 	

	
 	
 +i-1, j+1 	
    +i, j+1     +i+1, j+1      +	


	
  	
 +i-1, j 	
      +i, j	
        +i+1, j      +	


	
 	
 +i-1, j-1 	
      +i, j-1       +i+1, j-1     +	


   y	

	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	

	
              x	


€ 

€ 

∂Φ
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
i, j

≈
Φ i+1, j − Φ i−1, j

2Δx

Δx	




A schematic of an Atmospheric General Circulation Model (L. 
Fairhead /LMD-CNRS) 



Grilles de modèles de Météo-France (La Météorologie) 
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Gridpoint  discretization.  Much  care  is  to  be  taken  in  the 
definition of the discretizing schemes, to ensure for instance 
underlying conservation laws (mass, energy, momentum, …), 
both locally and globally 	
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In spectral models,  fields are defined by the coefficients of 
their expansion along a prescribed set of basic functions. 
This is similar to what is often done in a periodic domain 
in Rn, by taking imaginary exponential functions (sines and 
cosines) as basis functions	


	
    F(x, y) = Σk, m F (k, m) exp [2iπ (kx/Lx + my/Ly)]   	


  where the function F has periods Lx and Ly in the directions 
x and y respectively.	


In the discretized case, the integer indices k and l are limited 
to a set of finite values	


	
 	
 k = -K, …, 0, …, K     ;     m = -M, …, 0, …, M         	

	
 	
       	

	
 Advantage : spatial differentiation is obvious and exact  	




In the case of global meteorological models, which cover the whole atmosphere, 
the basis functions are the spherical harmonics	


	
 	
 T(µ=sin(latitude), λ=longitude) =  	


	
 où les	
           sont les harmoniques sphériques	


	
          est la fonction de Legendre de deuxième espèce	


	
 	


	
  n et m sont respectivement le degré et l'ordre de l’harmonique	
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Spherical harmonics are eigenfuncyions of laplacian on the 
surface of the sphere  

‘Triangular’ truncation TN (n ≤ N, -n ≤ m ≤ n) is independent of 
choice of polar axis. Corresponding representation is perfectly 
homogeneous on the surface of the sphere 

€ 

ΔYn
m = −n(n +1)Yn

m



Linear  computations,  such  as  spatial  differentiation,  are 
performed  in  spectral  space.  Nonlinear  computations  are 
performed in physical space, on a grid that is appropriate for 
avoiding  aliasing  (often  a  latitude-longitude  grid,  called 
‘gaussian’).  The  required  changes  of  representation  can  be 
performed at a non-prohibitive cost in the longitudinal direction 
through the use of Fast Fourier Transforms. There also exist  a 
fast version of Legendre transforms relative to the variable µ.  	


Owing to those repeated transformations between physical and 
spectral spaces, the corresponding models are often called semi-
spectral.	




	
 In  addition  to  hydrostatic  approximation,  the  following  approximations  are 
(almost) systematically made in global modeling :	


 - Atmospheric fluid is contained in a spherical shell with negligible 
thickness. This does not forbid the existence within the shell of a vertical 
coordinate which, in view of the hydrostatic equation, can be chosen as the 
pressure p. 

 - The horizontal component of the Coriolis acceleration due to the vertical 
motion is neglected (this approximation, sometimes called the traditional 
approximation, is actually a consequence of the previous one). 

 - Tidal forces are neglected. 

	
 These approximations lead to the so-called (and ill-named) primitive equations 	


	
 	




	
 Pressure  p,  although  convenient  for  writing  down  the 
equations,  is  in  fact  rather  inconvenient  because  lower 
boundary is not fixed in (x, y, p)-space.	


	
 So-called  σ-coordinate.  σ  ≡ p/pS,  where  pS  is  pressure  at 
ground level.	


	
 ‘Hybrid’ coordinate.    	
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Physical laws governing the flow	

  Conservation of mass	

	
 Dρ/Dt + ρ divU  =  0	
 	


  Conservation of energy	

	
 De/Dt - (p/ρ2) Dρ/Dt =  Q	


  Conservation of momentum	

	
 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	


  Equation of state	

	
  f(p, ρ, e) =  0	
 	
 	
 (p/ρ = rT, e = CvT)	


  Conservation of mass of secondary components (water in  the atmosphere, salt 
in the ocean, chemical species, …)	


	
 Dq/Dt + q divU  = S	


These physical laws must be expressed in practice in discretized (and necessarily	

imperfect) form, both in space and time	




43 

Parlance of the trade :	


One ordinarily  distinguishes  two different  parts  in  models. 
The  ‘dynamics’  deals  with  the  physically  reversible 
processes (pressure forces, Coriolis force, advection, …), 
while  the  ‘physics’  deals  with  physically  irreversible 
processes, in particular the diabatic heating term Q in the 
energy equation, and also the parameterization of subgrid 
scales effects.	


Numerical  schemes  have  been  gradually  developed  and 
validated for the ‘dynamics’ component of models, which 
are  by  and  large  considered  now  to  work  satisfactorily 
(although  regular  improvements  are  still  being  made; 
project  DYNAMICO,  Dynamical  Core  on  Icosahedral 
Grid, Th. Dubos, IPSL). 	
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The situation is different as concerns ‘physics’, where many 
problems  remain  (relative  for  instance  to  subgrid  scales 
parameterization,  the  water  cycle  and  the  associated 
exchanges of energy, or the exchanges that take place in 
the  boundary  layer  between  the  atmosphere  and  the 
underlying  medium).  ‘Physics’ as  a  whole  remains  the 
weaker point  of  models,  and is  still  the object  of  active 
research.  	






	
 Temporal Discretization	


	
 Equation	


	
 	
 	
 dx / dt  =  F(x)	


	
 (x state vector of the model).	


	
 Timestep Δt.	


	
 Computed solution at time nΔt denoted xn 	
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 Forward (Euler) scheme	

	
 	
 (xn+1 - xn)/Δt  = F(xn)	

	
 	
 xn+1 = xn + Δt F(xn) 	

	
 	
 	

 Implemented on equation	

	
 	
 dx / dt  =  iαx 	
 ,	
 α real	
 	
 	
 (1)     	

	
 Exact solution  x(t) = x(0) exp (iαt)	

	
 Modulus |x(t)| conserved in time  

	
 Discretized solution according to forward scheme	

	
 xn+1 = (1 +  iαΔt) xn	


	
 Modulus |xn+1| = √(1 +  α2Δt2) |xn|  
	
 increases exponentially with time.	

	
 Forward scheme is unconditionally unstable for Eq. (1)         	
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 Leapfrog scheme	

	
 	
 	

	
 	
 (xn+1 – xn-1)/2Δt  = F(xn)	

	
 	
 xn+1 = xn-1 + 2Δt F(xn) 	

	
 	
 	

 Stable  for  equation  (1)  above  (i.e.  modulus  remains  constant 

in time) provided	


	
 	
 	
 αΔt < 1	

	
 	

	
 Courant-Friedrichs-Lewy (CFL) condition	
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 In  a  multidimensional  system,  the  largest  α  will  be  the 
highest  frequency  that  is  present  in  the  system.  In  a 
discretized  system  of  travelling  waves,  the  highest 
frequency  will  correspond  to  the  fastest  wave  that  the 
discretization can explicitly resolve. It will be proportional 
to c/Δx, where c is the phase velocity of the fastest waves 
in the system, and Δx the mesh-size of the discretization  	


	
 	
 	
 	
 α = (1/β) c/Δx	


	
 where  β  is  an  O(1)  numerical  coefficient  depending  on 
the particular discretization scheme  under consideration.      	
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 CFL condition then becomes	


	
 	
 	
 Δt / Δx  < β / c 	


	
 Significance  :  numerical  propagation  of  signal  must  be  at 
least as fast as physical propagation.	


	
 CFL  condition  generally  applies  to  explicit  schemes  of 
temporal discretization  	
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 In  hydrostatic  atmosphere,  fastest  propagating  wave  : 
gravity wave with largest  scale  height,  c = √(rT)  ≈  300 
m.s-1.	


	
 	

	
 	
 	
 Δx = 30 km	
  ⇒  Δt = 100 s     	


 The use  of  semi-implicit  schemes allows to  get  rid  of  the 
CFL condition, and to use longer timesteps.    
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Cours à venir	


 Mardi 21 mars  
Mardi 28 mars  
Mardi 4 avril  
Mardi 11 avril  
Mardi 2 mai  
Mardi 9 mai  
Mardi 23 mai 

 Mardi 30 mai 
 	



