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-  Numerical  Weather  Prediction.  Present 

performance (mostly ECMWF)	


-  The meteorological observation system	


-   The problem of ‘Assimilation’	


-   Inverse Problems.  Bayesian Estimation	
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Physical laws governing the flow	

  Conservation of mass	

	
 Dρ/Dt + ρ divU  =  0	
 	


  Conservation of energy	

	
 De/Dt - (p/ρ2) Dρ/Dt =  Q	


  Conservation of momentum	

	
 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	


  Equation of state	

	
  f(p, ρ, e) =  0	
 	
 	
 (p/ρ = rT, e = CvT)	


  Conservation of mass of secondary components (water in  the atmosphere, salt 
in the ocean, chemical species, …)	


	
 Dq/Dt + q divU  = S	


These physical laws must be expressed in practice in discretized (and necessarily	

imperfect) form, both in space and time	




	
 Large-scale  Numerical  Weather  Prediction  is  based  on 
the primitive equations, themselves based on a number of 
simplifications,  and  particularly  the  hydrostatic 
approximation	


	
 	

	
 Climatic  simulations  are  also  built  on  primitive 

equations, and contain a much more detailed description of 
the oceanic circulation. 	


	
 More costly nonhydrostatic models are used for small 
scale meteorology, and are being developed for global 
modeling.	


	
  

 	


	
 	




 	

-  European  Centre  for  Medium-Range  Weather 

Forecasts (ECMWF)	


-  Centre européen pour les prévisions météorologiques 
à moyen terme (CEPMMT)	


-  Europäisches  Zentrum  für  mittelfristige 
Wettervorhersage (EZMW)	


	
 As of 2023, 23 member states, 12 co-operating states   	
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	 ECMWF established  in  1975.  Has  produced  daily 

forecasts since 1980	


	
 Headquarters  in  Reading  (UK),  Data  Centre  in 
Bologna (Italy)	


	
 ECMWF  hosts  part  EU’s  Earth  Observation 
Copernicus  programme.  Moved  to  Bonn 
(Germany)  	
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Centre Européen pour les Prévisions Météorologiques à 
Moyen Terme (CEPMMT, Reading, GB) 

(European Centre for Medium-range Weather Forecasts, ECMWF) 

Depuis mars 2016 : 

Troncature triangulaire TCO1279 / O1280 (résolution 
horizontale ≈ 9 kilomètres) 

137 niveaux dans la direction verticale (0 - 80 km) 

Discrétisation en éléments finis dans la direction verticale 
(coordonnée hybride)  

Dimension du vecteur d’état correspondant > 109  

Pas de discrétisation temporelle (schéma semi-Lagrangien semi-
implicite):  450 secondes 

Intégré 2 fois par jour (00 et 12 UTC) à une échéance de 10 
jours 7 
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Results on site of ECMWF	


	
 In particular	


•  09/2022. T.  Haiden  et  al.,  2021,  Evaluation of ECMWF 
forecasts, including the 2021 upgrade,  Technical 
Memorandum 902, ECMWF, Reading, UK.	


Available at the address :	

https://www.ecmwf.int/en/elibrary/81235-evaluation-ecmwf-

forecasts-including-2021-upgrade	
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15 Lead time ACC reaching thresholds Spatial correlation between anomalies from 
climatology of forecast and verifying analysis 



16 Spatial correlation between anomalies from 
climatology of forecast and verifying analysis 

Lead time ACC reaching thresholds 
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2020 
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Spatial correlation between anomalies from 
climatology of forecast and verifying analysis Lead time ACC reaching thresholds 
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Spatial correlation between anomalies from 
climatology of forecast and verifying analysis Lead time ACC reaching thresholds 



23 
Spatial correlation between anomalies from 
climatology of forecast and verifying analysis Lead time ACC reaching thresholds 
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Night time: blue 
curves 
Day time: red 
curves 

Europe 
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Remaining problems 

-  Water cycle (evaporation, condensation, influence on absorbed 
or emitted radiation) 

-  Exchanges with ocean or continental surface (heat, water, 
momentum, …) 
-  … 
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 Satellite  ADM-Aeolus was launched on August 22 2018. It 

carries a Lidar-Doppler instrument, called Aladin 
(Atmospheric LAser Doppler Instrument), that makes side 
measurements of wind in the volume of the atmosphere. 
These new observations have been shown to have a positive 
impact on the quality of the previsions, especially in the 
tropics and in the Southern Hemisphere.	
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ECMWF 
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  Synoptic  observations  (ground  observations,  radiosonde  observations), 
performed simultaneously,  by international  agreement,  in all  meteorological 
stations around the world (00:00, 06:00, 12:00, 18:00 UTC)	


  Asynoptic  observations  (satellites,  aircraft),  performed  more  or  less 
continuously in time.	


  Direct observations (temperature, pressure, horizontal components of the wind, 
moisture), which are local and bear on the variables used for describing the 
flow in numerical models.	


  Indirect observations (radiometric observations, …), which bear on some more 
or less complex combination (most often, a one-dimensional spatial integral) 
of variables used for for describing the flow 	


y = H(x)   	


	
  H : observation operator (for instance, radiative transfer equation)	
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E. Rémy, Doctoral Dissertation, 1999 46 



 Purpose of assimilation : reconstruct as accurately as possible the state of the 
atmospheric or oceanic flow, using all available appropriate information. The latter 
essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, and 
are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in practice in 
the form of a discretized, and necessarily approximate, numerical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although 
they basically are necessary consequences of the physical laws which govern the flow, these 
properties can usefully be explicitly introduced in the assimilation process. 
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Both observations and ‘model’ are affected with some uncertainty ⇒ 
uncertainty on the estimate. 

 For some reason, uncertainty is conveniently described by probability 
distributions (don’t know too well why, but it works; see, e.g. Jaynes, 
2007, Probability Theory: The Logic of Science, Cambridge University 
Press). 

 Assimilation is a problem in bayesian estimation. 

 Determine the conditional probability distribution for the state of the 
system, knowing everything we know (see Tarantola, A., 2005, Inverse 
Problem Theory and Methods for Model Parameter Estimation, SIAM). 
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 Assimilation  is  one  of  many  ‘inverse  problems’ encountered 
in many fields of science and technology	


•  solid Earth geophysics	


•  plasma physics	


•  ‘nondestructive’ probing	


•  navigation (spacecraft, aircraft, ….)	


•  …	


	
 Solution  most  often  (if  not  always)  based  on  Bayesian,  or 
probabilistic,  estimation.  ‘Equations’ are  fundamentally  the 
same. 
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Difficulties specific to assimilation of meteorological observations :	


	
 -  Very  large  numerical  dimensions  (n  ≈  106-109  parameters  to  be 
estimated,  p  ≈  4-5.107  observations  per  24-hour  period).  Difficulty 
aggravated in Numerical Weather Prediction by the need for the forecast to 
be ready in time.	


	
 - Non-trivial, actually chaotic, underlying dynamics	
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51 Courtesy J.-N. Thépaut 
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Bayesian Estimation   

 Determine  conditional  probability  distribution  of  the  state  of  the 
system, given the probability distribution of the uncertainty on the data	


  z1 = x + ζ1	
  ζ1 = N [0, s1] 	


	
 	
 	
 	
  density function 	
p1(ζ) ∝ exp[ - (ζ2)/2s1]	


  z2 = x + ζ2	
  ζ2 = N [0, s2] 	


	
 	
 	
 	
  density function 	
p2(ζ) ∝ exp[ - (ζ2)/2s2]	


•  ζ1 and ζ2 mutually independent	


What is the conditional probability P(x = ξ | z1, z2) that x be equal to some 
value ξ ?	




  z1 = x + ζ1	
 density function 	
 p1(ζ) ∝ exp[ - (ζ2)/2s1]	

  z2 = x + ζ2	
  density function 	
p2(ζ) ∝ exp[ - (ζ2)/2s2] 	


	
 	
 	
 ζ1 and ζ2 mutually independent	


x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ	


•  P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)	


	
 	
 	
         ∝  exp[ - (ξ -xa)2/2pa]  

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1
 + z2/s2)	


Conditional probability distribution of x, given z1 and z2 :N [xa, pa]	

pa < (s1, s2) independent of z1 and z2 	
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 Conditional  expectation  xa  minimizes  following  scalar  objective 
function, defined on ξ-space	


	
 	
  ξ →   J(ξ) ≡  (1/2) [(z1 - ξ)2 / s1 + (z2 - ξ)2 / s2 ] 

	
  In addition	


	
 	
  pa = 1/ J’’(xa)  

 Conditional probability distribution in Gaussian case 

   P(x = ξ | z1, z2) ∝ exp[ - (ξ -xa)2/2pa]  

	
 	
 	
 	
 	
 J(ξ) + Cst  
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 Estimate	


	
 	
 	
 xa = pa (z1/s1
 + z2/s2)	


	
 with error pa such that	


	
 	
 	
  1/pa = 1/s1 + 1/s2  	


 can also be obtained, independently of any Gaussian hypothesis, as 
simply corresponding to the linear combination of z1 and z2 that minimizes 
the error Ε [(xa-x) 2]  

   Best Linear Unbiased Estimator (BLUE)  
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  z1 = x + ζ1	
 	

  z2 = x + ζ2	
 	


	
 	
 Same as before, but ζ1 and ζ2 are now distributed according to exponential law 
with parameter a, i. e.  	


	
 	
 	
 p (ζ) ∝ exp[-|ζ |/a]   ;    Var(ζ) = 2a2	


Conditional probability density function is now uniform over interval [z1, z2], 	

exponential with parameter a/2 outside that interval	


	
 E(x | z1, z2)  = (z1+z2)/2	


	
 Var(x | z1, z2) = a2 (2δ3/3 + δ2 + δ +1/2) / (1 + 2δ), with δ =⏐z1-z2⏐/(2a)	

	
 Increases from a2/2 to ∞ as δ increases from 0 to ∞. Can be larger than variance 2a2	


	
 of original errors (probability 0.08)	


	
 	


57 



Bayesian estimation   

State vector x, belonging to state space S (dimS = n), to be estimated.	


Data vector z, belonging to data space D (dimD = m), available.	


	
  z = F(x, ζ)     (1) 

where  ζ  is  a  random  element  representing  the  uncertainty  on  the  data  (or,  more 
precisely, on the link between the data and the unknown state vector).	


For example	


	
 z = Γx + ζ	
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 Bayesian estimation (continued)	


	
 Probability that x = ξ for given ξ ?	


  x = ξ    ⇒   z = F(ξ, ζ) 

	
 	
 P(x = ξ | z) = P[z = F(ξ, ζ)] / ∫ξ’ P[z = F(ξ’, ζ)] 

	
 Unambiguously defined iff, for any ζ, there is at most one x such that (1) is verified.	


	
 ⇔    data  contain  information,  either  directly  or  indirectly,  on  any  component  of 
x. Determinacy condition. Implies m ≥ n. 	
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 Bayesian  estimation  is  actually  impossible  in  its  general  theoretical 
form in meteorological or oceanographical practice because	


•  It is impossible to explicitly describe a probability distribution in a space 
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈ 
106-9 of  present  Numerical  Weather  Prediction  models  (the  curse  of 
dimensionality).	


•  Probability distribution of errors on data very poorly known (model errors 
in particular).	
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One has to restrict oneself to a much more modest goal. Two	

approaches exist at present	


  Obtain  some  ‘central’  estimate  of  the  conditional  probability 
distribution  (expectation,  mode,  …),  plus  some  estimate  of  the  
corresponding  spread  (standard  deviations  and  a  number  of 
correlations). 

  Produce an ensemble of estimates which are meant to sample the 
conditional probability distribution (dimension N ≈ O(10-100)).	
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-  Reminder  on  elementary  probability  theory. 

Random  vectors  and  covariance  matrices, 
random functions and covariance functions	


-  Optimal  Interpolation.  Principle,  simple 
examples, basic properties.	


-  Best Linear Unbiased Estimate (BLUE)  	


	
  
62 



Cours à venir	


 Mardi 21 mars  
Mardi 28 mars  
Mardi 4 avril  
Mardi 11 avril  
Mardi 2 mai  
Mardi 9 mai  
Mardi 23 mai 

 Mardi 30 mai 
 	



