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Figure 11: Ensemble spread reliability of different global models for 500 hPa geopotential for the penod August
2021 -Tuly 2022 m the northern (top) and southem (bottom) hemisphere extra-tropics for day 1 (left) and dav 6
{nght), verified agamst analysis. Circles show error for different values of spread, stars show average error-spread
relationship.



- Reminder on elementary probability theory.
Random vectors and covariance matrices,
random functions and covariance functions

- Optimal Interpolation. Principle, simple
examples, basic properties.

- Best Linear Unbiased Estimate (BLUE)



Scalar random variable x

Observed outcome of ‘realizations’ of a process that is repeated a large number of
times. And also, a priori uncertainty on that result.

For any interval [a, b], the probability P(a < x < b) is known (whether inequalities
are strict or not may matter).

Probability density function (pdf). Function p(&) such that, for any interval [a, b]

b

Pla<x <b]= [ p(&)d& [ p(&as=1

a

(p(5) may contain diracs)

Expectation. Mean of a large number of realizations of x

E(x) = [ &p(&)dE

(may not exist) 4



Scalar random variable x (continued)

Variance

Var(x) = E{[x - E(X)]*} = E(x*) — [E(X)]?

Standard deviation
o(x) = VVar(x)

Centred variable x’ =x — E(x)



Couple of random variables x = (x,, x,)"

For any intervals [a,, b,], [a,, b,], probability P(a, < x, < b, and a, < x, < b,) is known

Extends to any measurable domain 77 C R’

P[(x,,x,)ED] = [ p(§.8,)dEE,

D

where p(&,, &) is probability density function

Expectation
E(x;+ x,) = E(x) + E(x,)



Couple of random variables x = (x,, x,)*

Covariance
Cov(x, x,) = E(x;” x5°)
Corr(x,, x,) = Cov(x,, x,) / (0(x)) 0(x)) = cos @

Covariance is a scalar product, and defines Euclidean geometry (on space of finite-
variance random variables on a given trial space)

Modulus = standard deviation o, angle = cos™! (Corr), orthogonality = decorrelation
If x, and x, uncorrelated,
Var(x, + x,) = Var(x,) + Var(x,) (Pythagorean theorem)

E(x; x,) = E(x)) E(x,)



Couple of random variables x = (x,, x,)T (continued)

Independence

x, and x, independent : knowledge about either one of the variables brings no
knowledge about the other one.

For any intervals [a,, b,], [a,, b,]
P(a,<x;<byand a,<x,<b,) =P(a,<x,<b;)Pla,<x,<b,)

Equivalently, pdf’s verify
P&, &) =pi(&) P&

Independence implies decorrelation. Converse is not true
(consider S = sin a, C = cos a, where « 1s uniformly distributed over [0, 25t])



Random vector x = (xl, Koy wees xn)T = (xl-) (e. g. pressure, temperature,
abundance of given chemical compound at n grid-points of a numerical model)

= Expectation E(x) = [E(x;)] ; centred vector x’ =x- E(x)
= (Covariance matrix

E(x,x,T) = [E(xi,xj’)]
dimension nxn

Non-random vector A= (4),_, _,

G=2 Ax/ G2=2.-)L-)ij,-’xj’

ij?’ti

E(G) =3 , A, LE(x)) = ATE@'x ) A 20

Covariance matrix E(x’x’T) is symmetric non negative (strictly definite positive
except if linear relationship holds between the x;”‘s with probability 1).



Change
x = y= Px

yyt=Px'(Px)'=PxxTP!

E(y’y’h) =P E(x’x’") P!

In change x — y, eigenvalues of covariance matrix remain
> 0, but can be modified (conserved if P' = Pl
orthogonal matrix).

Eigenvalues can actually take any positive values.

In particular, covariance matrix can be made equal to the
unit matrix, for instance 1n the basis of principal
components.

10



= Two random vectors

X=(X;, Xy, .0, X!
L = (Zla Zza “"Zp)T

E(x'z’") = E(x;z;)
dimension nxp

Change

x >u= Ax Z = v= Bz

Ewv'h=AExz" B!
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Covariance matrices will be denoted

= E(x’x’")

XX

C,, = EX’y")
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Random function @(§) (field of pressure, temperature, abundance of
given chemical compound, ... ; & is now spatial and/or temporal
coordinate) (aka stochastic process if function of time)

Expectation E[P(&)] ; D’(5) = D& - E[D(E)]
Variance  Var[®(§)] = E{[ D’ (§)]*}

Covariance function

(51, 5)— Cy§,5) = E[D(§) P(&5)]

Correlation function

Cor(§) &) = E[P(§) P(5)]/ {Var[D(E))] Var[ (&)}

13



Isolines for the auto-correlations of the 500 mb
geopotential between the station in Hannover and
surrounding stations. :
From Bertoni and Lund (1963)

After N. Gustafsson

#

. Isolines of the cross-correlation between the 500 mb

geopotential in station 01 384 (R) and the surface
pressure in surrounding stations.

14



o~

Figure 4.2.4.3: Isolines for the auto-correlation of the 500 mb
u-wind component (dashed line) and the auto-
correlation of the 500 mb v-wind component (full
line). The "star" indicates the position of the re-

ference station. (From Buel (1972).

After N. Gustafsson



Figure 5.1.1.4.1 Auto-correlation of errors in 12h numerical fore-
casts of surface pressure in a reference station
(Stockholm) and other stations. :

After N. Gustafsson
16



Covariance function can be
homogeneous Cp(§,5)=H( - &)

or isotropic Cs(&,5)=K(&-&)])
(on the sphere, no difference)

N points &, &, ..., & in state space
N non-random coefficients A, A, ..., Ay

G=31P(E)

E(G) =3, A, Co(E, E) =0

17



E(G?) =3, M4 CyE, &) 20

ij’"

covariance functions are of positive type (or definite
positive). Conversely, a function of positive type can be
shown to be the covariance function of a random function.

Example

On a circle, function C(&,, &) = cos(§-&,) 1s covariance
function of random function @(&) = 2 cos(& + @), where o
1s uniformly distributed over [0, 2x].

18



More generally, random function on 2s-circle of the form

D(5) = Zk:-K, .k P exp (ik§)

with ¢, = p,exp (i6,), p,real, k=0, ¢_, = p,exp (-i0)

All p, and 6, random, the 6,’s being uniformly distributed
over [0, 27|, mutually independent, and independent of the

¢
P 8-

@D(&) 1s the superposition of a spatially uniform random p,
(we assume E(p,)=0) and of K sine waves with random
and mutually independent (uniformy distributed) phases.



D (&) D (&) = [Z, p.exp(if,) exp(iks))]
X [, p,- exp(-i0,.) exp(-ik’5,)]

— Zkk’ Pr P eXp[l( Hk_ Hk’)] eXP[i (kgl o k,§2)]

On taking expectation, E[exp[i(6,-0,-)] = 0 if k # k” and there
remains

E[D(§) D(5)]=CH§,5) = EkE(pkz) explik(§,— &)1

Cp(§, &) = E(poz) +22 E(pkz) cos [k(§,— &))]



Bochner-Khintchin theorem. Homogeneous function C

(&, &) = H(& - &) over R" of positive type < Fourier
Transform of H 1s real = 0.

In R", squared exponential

C(&p gz) = exp|- (51‘ SQ)TB_I (&1‘ gz)] B>0

1s of positive type

21



Gaussian variables

Unidimensional

Nm,a) ~Q2ma)yexp [- (112a) (&-m)*]

Dimension n

Nm,A] ~
[((2n)" detA] V2 exp [- (1/2) (&5-m)'A-1(§-m)]
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Gaussian variables

Gaussian couple z = (xT, y7) T with distribution [0, C]

pdf ~ exp [- (1/2) 2'C-'z] C - C. C,
ny ny
c.” 0
x and yuncorrelated C,,=0,C,, =0 c'=| " ;
0 ny

T-15 — T -1 T -1
z7Cz=xC,'x +y C, 'y

23



Gaussian variables
T-1, — T -1 T -1
2Cz=x"C'x +y C, 'y

exp [- (1/2) Z'C-'z] =
exp [- (1/2) xTCt x Texp [- (1/2) y'C,, ' y]

p) = p(x) p(y)

For globally Gaussian variables, decorrelation implies independence

24



- ‘Optimal Interpolation’. Basic theory and
basic properties. A simple example.

25



Optimal Interpolation

Random field @&(&), with known probability distribution
Observations y; atpoints §,j=1,...,p

Value x = @(&) at point § ?

26



Optimal Interpolation (continued 1)

Random field @(&)

Observation network &, &, ..., &,

For one particular realization of the field, observations

y=®E)+¢ ,j=1,....p , making up vector y = (y;)

Estimate x = @(§) at given point &, in the form

x*=a+Z% By =a+ply, where = ()

a and the f5’s being determined so as to minimize the expected quadratic
estimation error E[(x-x%)?]

27



Optimal Interpolation (continued 2)

E[(x-x%)?] minimum = E(x-x?) =0 Estimate x¢ is unbiased.
X4= o+ ZJ. [a’j y;
E(x) = a+2; b E(y)
xt-E(x) = 2 61y, EOp)]
Computations are to be made on centred variables

x’¢ = x* - E(x) is the linear combination of the y,’ =y, - E(y; that
minimizes the distance to x’ = x - E(x). It 1s the orthogonal projection,
in the sense of covariance, of x” onto the space spanned by the y,”s.
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Optimal Interpolation (continued 3)

x” - x’“uncorrelated with y;’

E[(x = x') y’] =0
xX4= 2 Py

= X [EQ y) =EXY))

in matrix foom  C, f=C|,

29



Optimal Interpolation (continued 4)

Solution
x4 =Ex)+EX’y ") [Eyy DI [y- EQy)]
=Ex)+C,[C,I"[y- EQy)]

i.e, B=C,I[C,I"
a=E®) - BE(y)

Estimate i1s unbiased E(x-x%) =0
Minimized quadratic estimation error

E[(x-x?)*] = E(x?) - E[(x’*)?])
= Cxx - ny [C'yy]_1 ny

Estimation made in terms of deviations x’and y’ from expectations E(x)
and E(y). 30



Optimal Interpolation (continued 5)
x?=E(x) + Exy’™") [EQy D] [y - E(y)]
Yi= @(gj) T &

EGy) = E{[®(E) + & 1P (E) + &1}

If observation errors ¢ are mutually uncorrelated, have common
variance r, and are uncorrelated with field @, then

E(y;y.) = Cy(§; &)+ 1oy,
and

E(x’y;) = Cy(§ &)
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Optimal Interpolation (continued 6)
Unique observation (p=1)  y, = &(§)) + ¢

Value x = &(&) at some point & to be estimated
(all values assumed to be centred)

ny p = ny
C,,=E(y?) =Cy&.&5)+r C,x =CHE &)

ch (gagl) y
C,(EE)+r""

X" =" (8) =

32



Optimal Interpolation (continued 7)

ch (gagl)

x“ =P(§) = C@(§,§)+I’yl

XV

el
I
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Figure 5.1.1.4.1 Auto-correlation of errors in 12h numerical fore-
casts of surface pressure in a reference station
(Stockholm) and other stations. :

After N. Gustafsson
34



Optimal Interpolation (continued 8)

Two mutually close observations (p=2) yi=dE) +e ,j=1.2

[

{E . S S

Homogeneous covariance function C4(x;, X)) = L1~ X»)

Linear system for weights f5;’s

NO)+r 128) \(B) (I(d+9)
res) rOy+r\g,) \Id-9)

35



Optimal Interpolation (continued 9)

Two mutually close observations (p=2) yi=dE) +e ,j=1.2

26
| oL
45 & &
d
 I(d+0)+ I(d -0)
At b= s T(20) 27
For small 9,
()
Arb=royern2

Sum equals weight that would be given to a unique observation located at

position d, with error r/2 36
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Optimal Interpolation (continued 10)

X =E@x)+C,[C,I" [y - Ey)]

Vector

u= ()= [ny]_l Ly - E(y)]
1s independent of variable to be estimated

x4 = E(x) + 2 w; E(Xy;’)

41



Optimal Interpolation (continued 11)

x¢=Ex) +2; w; E(x’y;’)
(8 = E[D(5)] + 2 U; E[D(8) yi'l
Under hypotheses made above, E[@’(§) y,'] = C (&, §)

PUE) = E[P(E)] + Z; u; Cy( &, &)

Correction made on background expectation 1s a linear
combination of the p functions C4(&, &)

Cg(§, &), considered as a function of estimation position &, is the
representer associated with observation y;.
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Optimal Interpolation (continued 12)

Univariate interpolation. Each physical field (e. g. temperature)
determined from observations of that field only.

Multivariate interpolation. Observations of different physical fields

are used simultaneously. Requires specification of cross-covariances
between various fields.

Cross-covariances between mass and velocity fields can simply be
modelled on the basis of geostrophic balance.

Cross-covariances between humidity and temperature (and other)
fields still a problem.

43
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After N. Gustafsson

o~

Figure 4.2.4.23: Iooiinos for the auto-corfelati&n of the 500 mb

u-wind component (dashed line) and the auto-
correlation of the 500 mb v-wind component (full
line) . The "star" indicates the position of the re-
ference station. (From Buel (1972).
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FIG. 14. Sea level pressure and wind forecast corresponding to the central area of Fig. 11, with plotted surface observations Fic. 15. As in Fig. 14 for the analysis in the data-assimilation cycle.
of sea level pressure and wind (each barb = 5 m s™).

After A. Lorenc, MWR, 1981
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Optimal Interpolation (continued 13)

Observation vector y
Estimation of a scalar x
x*=Ex)+C,[C, ] [y- E(y)]

p* = E[(x-x*)?] = E(x’?) - E[(x’*)*])
= Cxx - ny [(jyy]_1 ny

Estimation of a vector x

x¢=E(x)+C,[C,,]" [y - Ep)]

P? = E[(x-x9) (x-x*)T] = E(x’x’T) - E(x’@ x’aT)
= Cxx - ny [ny]_l ny

47



Optimal Interpolation (continued 14)

xt=E(x) + C,y [Cy,] " [y - E(y)]
Pi=C, -C,IC,I'C,,

If probability distribution for couple (x, y) 1s Gaussian (with,
in particular, covariance matrix

Cxx ny

C=
ny ny

then Optimal Interpolation achieves Bayesian estimation, in
the sense that

P(xly) = N[x?, P]

48



Optimal Interpolation (continued 15)

Optimal Interpolation 1s a particular (and
relatively simple) case of a more general
approach called kriging, originally developed for
the estimation of the content of an ore field.

49



Best Linear Unbiased Estimate

State vector x, belonging to state space S (dim.$'= n), to be estimated.
Available data in the form of

" A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n

xt =x+&

= An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx+ ¢
H is known linear observation operator.

Assume probability distribution is known for the couple (&, €).
Assume E(&P) =0, E(e) =0, E(&¢) = 0 (not restrictive)

Set E(&PEPT) = PP (also often denoted B), E(e€") = R
50



Best Linear Unbiased Estimate (continuation 1)

xt = x+& (1)
y = Hx+¢ )

A probability distribution being known for the couple (&, €), eqs (1-2)
define probability distribution for the couple (x, y), with

Ex)=xt, x’=x-Ex)=-¢&
Ey)=Hx", y'=y-E(y)=y-Hx=¢-HE (H is linear)

d =y - Hx? is called the innovation vector.

51



Best Linear Unbiased Estimate (continuation 2)
Apply formule for Optimal Interpolation for estimating x

xt=Ex) +C,,[C,]"[y- E(y)]
Pi=C,.-C,IC,]"'C,

Ex)=xt, x’=x-Ex)=-¢&
E(yy=Hx", y'=y-EQy)=y-Hx"=¢-HZ

C,,=Exy™) = E[-8(e-HE)"| =- E(&€") + E(&’T")H" = PPH"
0 pP?

El(¢- HD) (e- HD)'] = E(¢€") + HE(Z’EHH'
R PP

C,y=E’y™

C,,= R+ HP'H"

52



Best Linear Unbiased Estimate (continuation 3)
x¢=xt+PPHT[HP"H" + R]"' (y - Hx?)
P*=P°- PPHT[HPH™ + R]' HP?
x“ is the Best Linear Unbiased Estimate (BLUE) of x from x and y.
Equivalent set of formule

x*=x"+P*H'R" (y - Hx?)
(P! = [P"] + H'R'H

Vector d = y — Hx" is innovation vector
Matrix K = PPH' [HP’H™ + R]'' = P*H" R is gain matrix.

If couple (&, €) is Gaussian, BLUE achieves bayesian estimation, in the sense that
P(x | x,y) = N[xe, P].

53
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FIG. 14. Sea level pressure and wind forecast corresponding to the central area of Fig. 11, with plotted surface observations Fic. 15. As in Fig. 14 for the analysis in the data-assimilation cycle.
of sea level pressure and wind (each barb = 5 m s™).

After A. Lorenc, MWR, 1981
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Next step

How to iIntroduce temporal dynamics In
assimilation ?

Kalman Filter. Variational Assimilation
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Cours a venir

Mardi 2]
Mardi 28
Mardi 4 '
Mardi 11 avril
Mardi 2 mai
Mardi 9 mai
Mard1 23 mai

Mardi 30 mai



