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Last course (May 2)
- Assimilation variationnelle. Principe

- Méthode adjointe. Principe.

- Assimilation variationnelle. Résultats

- La Méthode incrémentale

- Compléments sur l’Estimation Statistique 
(BLUE)
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This course

- Weak-constraint Variational Assimilation.
Dual Algorithm for Variational Assimilation

- Complements on Variational Assimilation.
- Mahalanobis Norm
- How to write (and validate) an adjoint code
- Value of objective function at minimum. c2 test

- Compared qualities of Sequential and
Variational Assimilation

- Assimilation and (In)stability. Quasi-Static
Variational Assimilation
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- Weak-constraint Variational Assimilation.
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How to take model error into account in
variational assimilation ?
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Weak constraint variational assimilation
Allows for errors in the assimilating model

Data over time interval k = 0, …, K

- Background estimate at time 0

x0
b =  x0 + z0

b E(z0
bz0

bT) = P0
b

- Observations at times k = 0, …, K

yk = Hkxk + ek E(ekek’
T) = Rkdkk’

- Model

xk+1 = Mkxk + hk E(hkhk’
T) = Qkdkk’ k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear
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These data are of the general form

z = Gx + z

the unknown x being now the temporal sequence of states x º (x0
T, x1

T , …,
xKT)T, and the data vector z consisting of the initial background x0

b, the
observations yk (k = 0, …, K), and the model errors Mkxk - xk+1 + hk = 0
(k = 0, …, K-1)

Minimize corresponding scalar objective function

x ® J(x)  º (1/2) [Gx - z)]T S-1 [Gx - z]



Objective function

(x0, x1, ..., xK)®

J(x0, x1, ..., xK ) º

(1/2) (x0
b - x0)T [P0

b]-1 (x0
b - x0)

+ (1/2) Sk=0,…, K [yk - Hkxk]T Rk
-1 [yk - Hkxk]

+ (1/2) Sk=0,…,K-1[xk+1 - Mkxk]T Qk
-1 [xk+1 - Mkxk]

Can include nonlinear Mk and/or Hk.

Becomes singular in the strong constraint limit Qk ® 0
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Dual Algorithm for Variational Assimilation (aka Physical Space
Analysis System, PSAS, pronounced ‘pizzazz’; see in particular book
and papers by Bennett)

xa = xb + Pb HT [HPbHT + R]-1 (y - Hxb)

xa = xb + Pb HTL-1 d = xb + Pb HT m

where L º HPbHT + R, d º y - Hxb and m º L-1 d maximises

µ ® K(µ) = - (1/2) µT L µ + dTµ

Maximisation is performed in (dual of) observation space.
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Dual Algorithm for Variational Assimilation (continuation 2)

Extends to time dimension, and to weak-constraint case, by defining state vector as

x º (x0
T, x1

T , …, xK
T)T

or, equivalently, but more conveniently, as

x º (x0
T, h0

T , …,hK-1
T)T

where, as before

hk = xk+1 - Mkxk , k = 0, …, K-1

The background for x0 is x0
b, the background for hk is 0. Complete background is

xb = (x0
bT, 0T , …, 0T)T

It is associated with error covariance matrix

Pb = diag(P0
b, Q0 , …, QK-1)
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Dual Algorithm for Variational Assimilation (continuation 3)

Define global observation vector as

y º (y0
T, y1

T , …, yKT)T

and global innovation vector as

d º (d0
T, d1

T , …, dKT)T

where dk º yk – Hk xkb, with xk+1
b º Mkxkb , k = 0, …, K-1
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Dual Algorithm for Variational Assimilation (continuation 4)

For any state vector x = (x0
T, u0

T , …,uK-1
T)T, the observation operator H

x ® Hx = (u0
T, …, uK

T)T 

is defined by the sequence of operations

u0 = H0x0

then for k = 0, …, K-1

xk+1 = Mkxk + uk
uk+1 = Hk+1 xk+1

The observation error covariance matrix is equal to

R = diag(R0, …, RK)
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Dual Algorithm for Variational Assimilation (continuation 5)

Maximization of dual objective function

µ ® K(µ) = - (1/2) µT L µ + dTµ

requires explicit repeated computations of its gradient

ÑµK = - Lµ + d = - (HPbHT + R)µ + d

Starting from µ = (µ0T, …, µKT)T belonging to (dual) of observation space, this requires 5 successive steps

- Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above,
viz.,

Set cK = 0

Then, for k = K-1, …, 0

nk = ck+1  + Hk+1
T µk+1

ck = Mk
T nk

Finally l0 = c0 + H0
T µ0

The output of this step, which includes a backward integration of the adjoint model, is the vector
(l0

T, n0
T , …, nK-1

T)T
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Dual Algorithm for Variational Assimilation (continuation 6)

- Step 2. Multiplication by Pb. This reduces to

x0 = P0
b l0

uk = Qknk , k = 0, …, K-1

- Step 3. Multiplication by H. Apply the process defined above on the vector (x0
T, u0

T , 
…, uK-1

T)T, thereby producing vector (u0
T, …, uK

T)T.

- Step 4. Add vector Rµ, i. e. compute 

jk = uk + Rkµk ,  k = 0, …, K

- Step 5. Change sign of vector j = (j0T, …, jKT)T, and add vector d = y - Hxb. It is 
through the addition of d that the observation d enters the algorithm.
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One iteration of dual algorithm : one backward integration of adjoint 
model, followed by one forward integration of (linear) direct model



Dual Algorithm for Variational Assimilation (continuation 7)

Temporal correlations can be introduced.

Dual algorithm remains regular in the limit of vanishing model error. Can be used
for both strong- and weak-constraint assimilation.

No significant increase of computing cost in comparison with standard strong
constraint variational assimilation. The cost depends mainly on the number of
model integrations (Courtier, Louvel)
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S. Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999

Assimilation of altimetric observations performed by satellites
Topex/Poseidon and ERS-1.

Assimilation performed with primitive equation ocean Miami Isopycnic
Coordinate Ocean Model (MICOM)
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Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999
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Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999
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Dual Algorithm for Variational Assimilation (continuation)

Requires

§ Explicit background (not much of a problem)

§ Exact linearity (much more of a problem). Definition of iterative nonlinear
procedures is being studied (Auroux, …)
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Auroux, Doctoral Dissertation, Université de Nice-Sophia Antipolis, Nice, 2003
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Dual Algorithm for Variational Assimilation is now used, in
the weak-constraint form, at Centre Européen de Recherche
et de Formation Avancée en Calcul Scientifique
(CERFACS) in Toulouse (A. Weaver, S. Gürol) for
assimilation of oceanographical observations.

Weak-constraint assimilation used (in primal form) at
ECMWF for assimilation of stratospheric observations.
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Data

z = Gx + z

Analysis minimizes scalar objective function

x ® J(x)  º (1/2) [Gx - z)]T S-1 [Gx - z]

where S = E(zzT) is covariance matrix of data error z



24

Consider quantity D = z1T S-1 z2 = z1T [E(zzT)]-1 z2
where z1 and z2 are any two vectors in data space

Change of coordinates z º Tw

z = Tc Þ S = E(zzT) = E[Tc(Tc)T] = T E(ccT)TT

D = w1T TT [T E(ccT)TT]-1Tw2

D = w1T [E(ccT)]-1 w2
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Expression D = z1T S-1 z2

defines proper scalar product, and associated norm, on data
space

CalledMahalanobis norm



Prasanta Chandra Mahalanobis (1893 -1972)
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Gaussian variables

Unidimensional

N [m, a] ~ (2p a)-1/2 exp [- (1/2a) (x-m)2]

Dimension n

N [m, A] ~ [(2p)n detA]-1/2 exp [- (1/2) (x-m)TA-1(x-m)]
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Mahalanobis norm
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Minimum of objective function

J(x)  º (1/2) [Gx - z]T S-1 [Gx - z]

Jmin º J(xa)  = (1/2) [Gxa - z]T S-1 [Gxa - z]

= (1/2) dT [E(ddT)]-1 d

where d is innovation (d = y – Hxb = e – Hzb , or more generally what is obtained
by eliminating the unknown x from the data z). Innovation is only objective
case-to-case measure of the errors affecting the data

Jmin = (1/2) dT [E(ddT)]-1 d = (1/2) Tr{dT [E(ddT)]-1 d}
= (1/2) Tr{[E(ddT)]-1 ddT}
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Minimum of objective function (continuation 1)

Jmin = (1/2) Tr{[E(ddT)]-1 ddT}

E(Jmin) = (1/2) Tr{[E(ddT)]-1 E(ddT)} = (1/2) Tr Ip =  p/2

E(Jmin)  =  p/2 (p = dimy = dimd)

If p is large, a few realizations are sufficient for determining E(Jmin)

Remark. If in addition errors are gaussian, the quantity 2E(Jmin) follows a c2-probability
distribution of order p. For that reason the criterion E(Jmin) = p/2 is often called the
c2 criterion. Also Var(Jmin) = p/2 in the gaussian case.
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Linearized Lorenz’96. 5 days. Histogram of Jmin
E(Jmin) = p/2 (=200) ; s(Jmin) = √(p/2) (≈14.14)  

Observed values 199.39 and 14.27
Credit M. Jardak 
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Minimum of objective function (continuation 2)

Jmin = (1/2) Tr{[E(ddT)]-1 ddT}

ER(Jmin) = (1/2) Tr{[E(ddT)]-1 ER(ddT)} =  p/2

If E(Jmin) > p/2 (< p/2), E(ddT), as resulting from the a priori specification of data errors, is 
too small (too large).

assumed    real



How to write the adjoint of a code ?

Operation a = b x c

Input b, c Output a but also b, c

For clarity, we write

a = b x c
b’ = b
c’ = c

¶J/¶a, ¶J/¶b’, ¶J/¶c’ available. We want to determine ¶J/¶b, ¶J/¶c

Chain rule

¶J/¶b = (¶J/¶a)(¶a/¶b) + (¶J/¶b’)(¶b’/¶b) + (¶J/¶c’)(¶c’/¶b)
c 1 0

¶J/¶b = (¶J/¶a) c + ¶J/¶b’

Similarly

¶J/¶c = (¶J/¶a) b + ¶J/¶c’
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How to write the adjoint of a code ? (continuation 1)

Operation a = b x c

Differentiate da = b x dc + c x db

¶J/¶b = (¶J/¶a) c + ¶J/¶b’

bad = bad + c x aad

cad = cad + b x aad

aad = 0

Start adjoint computations by setting all adjoint variables to 0 (except
whatever is necessary to start the whole computation, e.g., Jad = 1)
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How to write the adjoint of a code ? (continuation 4)

Adjoint compilers

TAPENADE (Laurent Hascoet, Institut national de recherche en informatique
et en automatique)

FastOpt AD-Tool (Ralf Giering and Thomas Kaminski)

- ….
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M. Jardak 37



Conclusion on Sequential Assimilation

Pros
‘Natural’, and well adapted to many practical situations (transition to

forecast is immediate)
Provides, at least relatively easily, explicit estimate of estimation

error

Cons
Carries information only forward in time (of no importance if one

is interested only in doing forecast)
In a strictly sequential assimilation (i.e., any individual piece of

information is discarded once it has been used), optimality is possible
only if errors are uncorrelated in time.

Ensemble Kalman Filter requires empirical inflation and
localisation



Conclusion on Variational Assimilation

Pros
Carries information both forward and backward in time (important for

reassimilation of past data).
Can easily take into account temporal statistical dependence (Järvinen et al.)
Does not require explicit computation of temporal evolution of estimation error
Very well adapted to some specific problems (e. g., identification of tracer

sources)

Cons
Transition to forecast not immediate (necessary to come back in time)
Does not readily provide estimate of estimation error
Requires development and maintenance of adjoint codes. But the latter can have

other uses (sensitivity studies).

• Dual approach seems most promising. But little used.

• Can be implemented in ensemble form (see course 7).



Buehner et al. (Mon. Wea. Rev., 2010)

For the same numerical cost, and in meteorologically realistic
situations, Ensemble Kalman Filter and Variational Assimilation
produce results of similar quality.
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- Assimilation and (In)stability

- Quasi-Static Variational Assimilation

- Particle Filters
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If there is uncertainty on the state of the system, and dynamics of
the system is perfectly known, uncertainty on the state along
stable modes decreases over time, while uncertainty along
unstable modes increases.

Stable (unstable) modes : perturbations to the basic state that
decrease (increase) over time.





Consequence : Consider 4D-Var assimilation, or any form of smoother,
which carries information both forward and backward in time, performed
over time interval [t0, t1] over uniformly distributed noisy data. If
assimilating model is perfect, estimation error is concentrated in stable
modes at time t0, and in unstable modes at time t1. Error is smallest
somewhere within interval [t0, t1].

Similar result holds true for Kalman filter (or more generally any form of
sequential assimilation), in which estimation error is concentrated in
unstable modes at any time.



Gurumoorthy et al. (2017a, 2017b) have shown that in the linear perfect
model case, the error covariance matrix of the Kalman filter converges to
the neutral-unstable subspace of the system (space spanned by the non-
negative Lyapunov exponents of the system)
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Linearized Lorenz’96. 5 days

Jardak and Talagrand



Trevisan et al., 2010, Q. J. R. Meteorol. Soc. 47





Lorenz (1963)

dx/dt = s(y-x)
dy/dt = rx - y - xz
dz/dt = -bz + xy

with parameter values s = 10, r = 28, b = 8/3  Þ chaos







Twin (strong constraint) experiment. Observations yk =
Hkxk + ek at successive times k, and objective function of
form

J(x0) = (1/2) Sk[yk - Hkxk]T Rk-1 [yk - Hkxk]

xk denotes here the complete state vector, and Hk is the unit
operator (all three components of xk are observed)

No ‘background’ term from the past, but observation y0 at
time k = 0.



Pires et al., Tellus, 1996 ; Lorenz system (1963)



Minima in the variations of objective function correspond to solutions that have bifurcated
from the observed solution, and to different folds in state space.



Quasi-Static Variational Assimilation (QSVA). Increase
progressively length of the assimilation window, starting each
new assimilation from the result of the previous one. This
should ensure, at least if observations are in a sense
sufficiently dense in time, that current estimation of the
system always lies in the attractive basin of the absolute
minimum of objective function (Pires et al., Swanson et al.,
Luong, Järvinen et al.)

.
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Pires et al., Tellus, 1996 ; Lorenz system (1963)





Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390



Edward N. Lorenz (1917 – 2008)

Studied mathematics. Interest in theory of dynamical

systems.

1963. Observation of sensitivity to initial

conditions on small dimension deterministic system

(deterministic chaos)

Notion of available potential energy

Introduced a number of small dimension chaotic systems, with properties somewhat

similar to properties of atmospheric flow
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Cours à venir

Mardi 21 mars 
Mardi 28 mars 
Mardi 4 avril 
Mardi 11 avril 
Mardi 2 mai 
Mardi 9 mai 
Mardi 23 mai
Mardi 30 mai


