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Last course (May 6)

- Weak-constraint Variational Assimilation.
Dual Algorithm for Variational Assimilation
- Complements on Variational Assimilation.

- Mahalanobis Norm
- How to write (and validate) an adjoint code
- Value of objective function at minimum. #? test

- Compared qualities of Sequential and Variational
Assimilation

- Assimilation and  (In)stability.  Quasi-Static
Variational Assimilation
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This course

- Assimilation dans I'espace instable

- Filtres particulaires

- Assimilation Variationnelle d’Ensemble



Unstable Manifold k \

Present

\

Stable Manifold




Gurumoorthy et al. (2017a, 2017b) have shown that in the linear perfect
model case, the error covariance matrix of the Kalman filter converges to
the neutral-unstable subspace of the system (space spanned by the non-

negative Lyapunov exponents of the system)



Since, after an assimilation has been performed over a period of time,
uncertainty 1s likely to be concentrated in modes that have been unstable, it
might be useful for the next assimilation, and at least in terms of cost

efficiency, to concentrate corrections on the background in those modes.

Actually, presence of residual noise in stable modes can be damageable for

analysis and subsequent forecast.

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for
the case of 3D-Var)



Four-dimensional variational assimilation in the unstable subspace
(4DVar-AUS)

Trevisan et al., 2010, Four-dimensional variational assimilation in the unstable
subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136,
487-496.



Experiments performed on the Lorenz (1996) model

d

W‘l‘j = (Tj+1 —2j-2)Tj—1 —x; + F
4

with 7 =1,....1.

with periodic conditions in j, and value F' = 8, which gives rise to chaos.

Three values of / have been used, namely 7 =40, 60, 80, which correspond

to respectively N"= 13, 19 and 26 positive Lyapunov exponents.

In all three cases, the largest Lyapunov exponent corresponds to a doubling time of about 2 days
(with 1 ‘day’ = 1/5 model time unit).

Identical twin experiments (perfect model)



System produces wavelike chaotic motions, with properties similar to those of
midlatitude atmospheric waves

- generally westward phase velocity
- typical predictability time : 5 ‘days’

- in addition, quadratic terms conserve ‘energy’

HMWWM.WMNW mqngbmuqm‘esandﬂwmmmhmrmwm
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4D-Var-AUS

Algorithmic implementation

Define N perturbations to the current state, and evolve them according to the tangent linear
model, with periodic reorthonormalization in order to avoid collapse onto the dominant

Lyapunov vector (same algorithm as for computation of Lyapunov exponents).

Cycle successive 4D-Var*s, restricting at each cycle the modification to be made on the current
state to the space spanned by the N perturbations emanating from the previous cycle (if N is

the dimension of state space, that is identical with standard 4D-Var).
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Observing system’ defined as in Fertig et al. (Tellus, 2007):

At each observation time, one observation every four grid points
(observation points shifted by one grid point at each observation time).

Observation frequency : 1.5 hour

Random gaussian observation errors with expectation 0 and standard
deviation oy = 0.2 (‘climatological’ standard deviation 5.1).

Sequences of variational assimilations have been cycled over windows

with length 7 =1, ... , 5 days. Results are averaged over 5000 successive
windows.
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Figure 1. Time average RMS analysis error at ¢ = 7 as a function of the subspace dimension /N for three model configurations: /=40, 60,
80. Different curves in the same panel refer to different assimilation windows from 1 to 5 days. The observation error standard deviation 1s

o, = 0.2.

No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Best performance for N slightly above number N* of positive Lyapunov exponents.
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Figure 2. Time average RMS analysis error at £ = 7 as a function of the length of the assimilation window for three model configurations:
I=40, 60, 80. Different curves in the same panel refer to a different subspace dimension /N of 4DVar-AUS and to standard 4DVar. o, = 0.2.

Different curves are almost identical on all three panels. Relative improvement obtained by decreasing
subspace dimension N to its optimal value is largest for smaller window length .
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refer to the error component in the stable subspace eis, ..., €40.
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Experiments have been performed in which an explicit background term was present, the

associated error covariance matrix having been obtained as the average of a sequence of full
4D-Var’s.

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-AUS. But

they remain qualitatively similar, with best performance for 4D-Var-AUS with N slightly
above N*.

15



Minimum of objective function cannot be made smaller by reducing control space. Numerical
tests show that minimum of objective function is smaller (by a few percent) for full 4D-Var
than for 4D-Var-AUS. Full 4D-Var is closer to the noisy observations, but farther away from
the truth. And tests also show that full 4D-Var performs best when observations are perfect

(no noise).

Results show that, if all degrees of freedom that are available to the model are used, the
minimization process introduces components along the stable modes of the system, in which
no error is present, in order to ensure a closer fit to the observations. This degrades the
closeness of the fit to reality. The optimal choice is to restrict the assimilation to the unstable

modes.

These results apply because no explicit background is available at the initial time of the
assimilation window (only the unstable subspace is known). A proper background (obtained
for instance from a properly implemented Kalman Filter, or from an Ensemble Variational
Assimilation) would not only say that the uncertainty is restricted to the unstable space, but
how it is distributed in that subspace. The ‘restriction’ to the unstable subspace would be

automatically made.
16



Can have major practical algorithmic implications.

Questions.

- Degree of generality of results ?

- Impact of model errors ?

17
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Conclusions

Error concentrates in unstable modes at the end of assimilation window.
It must therefore be sufficient, at the beginning of new assimilation
cycle, to introduce increments only in the subspace spanned by those
unstable modes.

In the perfect model case, assimilation 1s most efficient when
increments are introduced 1n a space with dimension slightly above the
number of non-negative Lyapunov exponents.

In the case of imperfect model (and of strong constraint assimilation),
preliminary results lead to similar conclusions, with larger optimal
subspace dimension, and less well marked optimality. Further work
necessary.

In agreement with theoretical and experimental results obtained for
Kalman Filter assimilation (Trevisan and Palatella, McLaughlin).
19



Exact bayesian estimation ?

Particle filters

Predicted ensemble at time ¢ : {x?, [ =1, ..., L}, each element with its own
weight (probability) P(x?))

Observation vector at same time : y = H(x) + ¢

Bayes’ formula

P(x"ly) = P(ylx)) P(x") / P(y)

Defines updating of weights

20



Bayes’ formula
P(x"|y) ~ P(ylx")) P(x")

If error £1s independent of all previous data
P(ylxt) = Ple=y - H(x")]

Defines updating of weights; particles are not modified. Asymptotically
converges to bayesian pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.

21



Behavior of max w*

> N, =103 N, = 10,30, 100; 103 realizations

. n-10 | average squared error of
8 200 | posterior mean = 5.5

. =25

.= 127

C. Snyder,
http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/Snyder.pdf 22



Problem originates in the ‘curse of dimensionality’. Large dimension
pdf’s are very diffuse, so that very few particles (if any) are present
in areas where conditional probability (‘/ikelihood’) P(y|x) 1s large.

23



Curse of dimensionality

Standard one-dimensional gaussian random
variable X

P[|X| <o]~0.84
In dimension n = 100, 0.841990=3.10-9

24



y>-probability distribution of order p
7(p) ~ Z,[ MO, D]

Expectation m = p, variance o= 2p
o/m = N(2/p)
for large p, distribution is extremely peaked

Recall that, in gaussian variational assimilation, 2£(7,,,,,), where
.. is minimum of objective function, follows a y*-
probability distribution of order p



Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of
filter requires the size of ensembles to increase exponentially with
space dimension.
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Alternative possibilities (review in van Leeuwen, 2017, Annales de la faculté des sciences de
Toulouse Mathématiques, 26 (4), 1051-1085)

Resampling. Define new ensemble.

Simplest way. Draw new ensemble according to probability distribution defined by the updated
weights. Give same weight to all particles. Particles are not modified, but particles with
low weights are likely to be eliminated, while particles with large weights are likely to be
drawn repeatedly. For multiple particles, add noise, either from the start, or in the form of
‘model noise’ in ensuing temporal integration.

Random character of the sampling introduces noise. Alternatives exist, such as residual
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights w; are multiplied by
ensemble dimension L. Then p copies of each particle / are taken, where p is the integer
part of Lw, Remaining particles, if needed, are taken randomly from the resulting
distribution.

However, resampling is not sufficient to avoid degeneracy of filters.

27



Markov chain Monte Carlo ( MCMC) Methods
Sequence of random vectors {x", n=0, ...}
Assume P(x"| x™1, ..., x0) = P(x"| x™1)

Markovianity. Verified in particular if x* = F(x™!, ), where F is
deterministic, and 77 1s random with a priori known probability
distribution.

Sequence of observations {y", n=20, ...}
Assume P(y"| x*, x™1, ..., xV) = P(y" | x")

Verified in particular if y" = G(x", &), where G 1s deterministic, and & 1s

random with a priori known probability distribution. -



We want to estimate P(x" | )", ..., y0) = P(x"| y*:7)

P(xn | yO : n) — P(xn | yn ’ yO : n—l) — P(yn | x" ’ yO : n—l) P(xn | yO : n—l) /P(yn | yO : n—l)
— P(yn | xn) P(xn | yO : n—l) /P(yn)

P(xn | yO : n-l) — j P(xn | xn—l) P(xn—l |y0 : n—l) dxn—l
Chapman-Kolmogorov equation
Particular case

x"=M,x"'+n, M, lincar, n, Gaussian with a priori known pdf

y'=H, x"+ g, H, linear, ¢, Gaussian with a priori known pdf

— Kalman filter

29



Idea :

Use a proposal density that 1s closer to the new
observations than the density defined by the
predicted particles (for instance the density defined
by EnKF, after the latter has used the new
observations).

30



We are now to discuss a very interesting property of particle filters that
has received little attention in the geophysical community. We start from
Bayes:

Oy Oin ( " "rn)p(‘t’“ lxn 1 Cl n-—1 r— 1
(" " ") = s (5.1)
p(y™)
To simplify the analysis, and since we concentrate on a filter here, let us first
integrate out the past, to get:

C T A n'rn T T ﬂ,— ?1 ”
p(z |yo )__P(y| )/ p(z™ |z 1 £ II?JI 1 (5.2)

r(y™)

This expression does not change when we multiply and divide by a so-
called proposal transition density q{z" |z, y"), so

p(;t:'nly{):n)

p(y"x™) [ p@" ") el g1y qne
R /Q(.r"”‘lzr”‘l,y”)Q(x 2"y )p(a" Ty den T (5.3)

van Leeuwen, 2017, Annales de la faculté des sciences de Toulouse

Mathematiques, 26 (4), 1051-1085 31



As long as the support of g(z"|z" 1, y") is equal to or larger than that of
p(z™|z" 1) we can always do this. This last condition makes sure we don’t
divide by zero. Let us now assume that we have an equal-weight ensemble
of particles from the previous analysis at time 7 — 1, so
N
plx® P = Zl 7\;6 n-1. (5.4)
Using this in the equation above gives:

n——l)

{' T

( r’ix“_l,yn), (5'5)

Y

N
071.) . Z 1 p(y |"rn> p(InlJf
’ i=1 N ( n) Q(;I:Fl |'L-;'_ '.!yn)
As a last step, we run the particles from time n — 1 to n, i.e. we sample
from the transition density. However, instead of drawing from p(z™z? 1)

so running the original model, we sample from g(z"|r] ™ L y™), so from a
modified model. Let us write this modified model as

x-n. — g(mn—lvyn-) _x'__ ‘5}”?- {5,6)

so that we can write for the trangition density, assuming 5™ is Gaussian
distributed with covariance Q:

g(2” 2"t y") = N{g(z"1,y"), Q). (5.

van Leeuwen, 2017, ibid. 32
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Drawing from this density leads to:

¥ rn—1
O:n.) 1 p(y I‘L ?) p n |JT ) 6(“1}'”' . '.'17?-?'
. l P\{T (Jn) Q [7 : }‘E ’ . yn)

so the posterior pdf at time n can be written as:

N
p(-m;},lLP:'t?-l) — Z’LUZ(ST? (59)

=1

p(x"ly (5.8)

with weights w; given by:

L p(y"lef) _plaf|e ™)
N ply") qGflal™hyn)

We recognise the first factor in this expression as the likelihood, and the
second as a factor related to using the proposal transition density instead
of the original transition density to propagate from time n — 1 to n, so it is
related to the use of the proposed model instead of the original model. Note
that because the factor 1/N and p(y™) are the same for each particle and we
are only interested in relative weights, we will drop them from now on, so

wy —

(5.10)

gr—1
nt oy D J.,z, ? )

(5.11)

van Leeuwen, 2017, ibid. 13



Several variants of proposal densities have been
defined and studied : perform an EnKF up to
observation time, and then use the obtained
ensemble as proposal density, nudge the model
integration between times n-1 and n towards the
observations at time n, perform a 4D-Var on each
particle, optimal proposal density, ...

34
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The Equivalent-Weights Particle Filter (Ades and van
Leeuwen, OJRMS, 2013).

Make the proposal density depend on the whole
ensemble at time #n-1, and not only on x/~!, use
density of the form g(x" | x"';;, y"), where 1,L
denotes all ensemble indices, rather than of the
more restrictive form ¢(x* | x/*!, y*). This gives
many degrees of freedom which can be exploited
for obtaining at time » an ensemble with almost
equal weights.

36



Example Vorticity equation model with
random error 7.

D(C+f) _
Dt

n

State-vector dimension = 65,000
Decorrelation time: 25 timesteps

One complete noisy model field
observed every 50 timesteps

24 particles
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Figure 5.3. Snap shot of the vorticity field of the truth (right) and the
particle filter mean (left) at time 25. Note the highly chaotic state of
the fields, and the close to perfect tracking. (12 observations)
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Figure 5.4. Snap shot of the absolute value of the mean-truth misfit
and the standard deviation in the ensemble. The ensemble underesti-
mates the spread at several locations, but averaged over the field it is

slightly higher, 0.074 versus 0.056. 39



Bayesianity : experts say all these filters are bayesian

(in the limit of infinite ensemble size)

Possible difficulties : numerical 1mplementation,

numerical cost

Particle filters are actively studied (van Leeuwen,
Morzfeld, ...)
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- Ensemble Variational Assimilation (EnsVAR).
(work with M. Jardak, 2018)



Ensemble Variational Assimilation

Data of the form

z=Ix+ ¢ ¢~ MO, S]
Conditional probability distribution 1s

P(x | z) = N[x, P4
with

xt= (TS TSz
Pa = (FT S—l]‘)—l

42



Variational form
P(x|z) cexp[-(z-TET S (z- T2 ] ocexp[-(E-x)T (P! (E-x9)/2 ]

Conditional expectation x* minimizes following scalar objective function, defined
on state space X

e X > A =U)[UE-)I' S [IE-2]

Pa=[27/6&]!

43



Ready recipe for determining Monte-Carlo sample of
conditional pdf P(x | z) :

- Perturb data vector z according to its own error probability
distribution

z >z =z+0, S~ MN[0, S]
and compute
xa=rSytrrstz

x @ is distributed according to A/[x¢, P4]

44



Ensemble Variational Assimilation (EnsVAR) implements that
algorithm, the expectations x @ being computed by standard
variational assimilation.

Used at ECMWF and M¢teéo-France (under the name Ensemble
of Data Assimilations, EDA) for defining initial conditions
of ensemble prediction, and also for defining background
error covariance matrix in 4D-Var, but not for assimilation
per se.
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Present purpose

Evaluate EnsVar as a probabilistic estimator when implemented in nonlinear
and/or non-Gaussian cases, i. e., through minimization of

e X > A9 = A2) (O -zT ST -z]]

where / 'may be nonlinear, and errors affecting data z may be non-Gaussian.

46



- Objectively compare with other existing ensemble assimilation algorithms :
Ensemble Kalman Filter (EnKF), Particle Filters (PF)

- Simulations performed on two small-dimensional chaotic systems, the
Lorenz’96 model and the Kuramoto-Sivashinsky equation

47



The Lorenz96 model

@ Forward model

d,_
% — (2r41 — Tho)Th1 —ak + F for k=1,--- N

e Set-up parameters :

© the index k is cyclic so that zx—N = TN = Tk.
©Q F' = 8, external driving force.
© —x., a damping term.
Q N = 40, the system size.
©@ Nens = 30, number of ensemble members.

1
o A
Q At = 0.05 = 6hours, the time step.
© frequency of observations : every 12 hours.
Q@ number of realizations : 9000 realizations.

~ 2.5days, Apmar the largest Lyapunov exponent.

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




System produces wavelike chaotic motions, with properties similar to those of
midlatitude atmospheric waves

- generally westward phase velocity
- typical predictability time : 5 ‘days’

- in addition, quadratic terms conserve ‘energy’

HMWWM.WMNW mqngbmuqm‘esandﬂwmmmhmrmwm
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Experimental procedure (1)

0. Define a reference solution x,; by integration of the numerical model

1. Produce ‘observations’ at successive times 7, of the form

Vi=Hpx)/ + &,

where /1, is (usually, but not necessarily) the unit operator, and &, is a random (usually, but not
necessarily, Gaussian) ‘observation error’.

50



Experimental procedure (2)
2. For given observations y,, repeat /V,,, times the following process
- ‘Perturb’ the observations y; as follows
Vi™> =Wt o
where 0, 1s an independent realization of the probability distribution which has produced &,.
- Assimilate the ‘perturbed’ observations z, by variational assimilation

This produces V., (=30) model solutions over the assimilation window, considered as making up a
tentative sample of the conditional probability distribution for the state of the observed system
over the assimilation window.

The process 1-2 is then repeated over N, successive assimilation windows. Validation is
performed on the set of V,,.,;(=9000) ensemble assimilations thus obtained.
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How to objectively evaluate the performance of an ensemble (or more generally
probabilistic) estimation system ?

- There 1s no general objective criterion for Bayesianity

- We use instead the weaker property of reliability, i. e. statistical consistency between
predicted probabilities and observed frequencies of occurrence (it rains with frequency
40% 1n the circonstances where I have predicted 40% probability for rain).

Denote Y the predicted probability distribution, and X the verifying reality. Consider the
probability distribution for the couples (X, Y) (that probability distribution can be
obtained empirically). Reliability is the property that

P(X|Y)=Y for any Y

Reliability can be objectively validated, provided a large enough sample of realizations
of the estimation system is available.

Bayesianity implies reliability, the converse not being true.
53



In addition, we evaluate resolution (also called sharpness), which bears no
direct relation to bayesianity, and 1s the capability of the estimation system to a
priori distinguish between different situations. It 1s best defined as the degree
of statistical dependence between X and Y (J. Brocker). Total absence of
resolution is independence between X and Y, viz.

P(X | Y)=P(X) forany Y

Resolution, beyond reliability, measures the degree of usefulness of the
ensembles.
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Objective function
A = (112)[IE-z]" ST[IE-7]
jmin Eﬂxa) - (1/2) [an - z]T S_l [an - z]
= (1/2) d" [E(dd")]' d

where d 1s innovation
— E(7,.,) = p/2 (p = dimy = dimd)

If p is large, a few realizations are sufficient for determining £(%,,;,)

Remark. If in addition errors are gaussian, the quantity 2E(7, ) follows a y?-probability
distribution of order p. For that reason the criterion E(7,;,) = p/2 is often called the
2? criterion. Also Var(7,;,) = p/2 in the gaussian case.
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EnsVar : the non-linear Lorenz96 model (10 days ~ 2 TU
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EnsVar : consistency

Nonlinear Lorenz’96. 10 days. Histogram of 7.,
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Quasi-Static Variational Assimilation (QSVA)

0 Data Assimilation over [0 T] with T=N .dt =M. dt T
4D-Var over [0 1] starting from the observations

0 T
e

4D-Var over [0 21] starting from the minimizer found above
)
0 27

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T

0. Talagrand & M. Jardak Optimization for Bayesian Estimation
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QSVA

EnsVar : the non-linear Lorenz96 model 18 days with
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- Results are independent of the Gaussian character of the
observation errors (trials have been made with various

probability distributions)

- Ensembles produced by EnsVar are very close to Gaussian,

even 1n strongly nonlinear cases.
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- Comparison Ensemble Kalman Filter (EnKF) and Particle
Filters (PF)

Both of these algorithms being sequential, comparison 1s fair only at end

of assimilation window
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PF trajectories and respective reference solutions
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ensergble optimal trajectories and their respective reference solutions
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ense1rgble optimal trajectories and their respective reference solutions
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ense1rgble optimal trajectories and their respective reference solutions
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DA procedure S ‘
Assimilation | Forecasting
method

EnsVAR 0.2193510 | 1.49403506
EnKF 0.2449690 | 1.67176110
PF 0.7579790 | 2.62461295

RMS errors at the end of 5-day assimilations and 5-day forecasts
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From course 6

Weak constraint variational assimilation

Allows for errors in the assimilating model

Data
- Background estimate at time 0

X" = xo + &' E(6 ") =Py’
- Observations at times k=0, ..., K
Vi =Hpx + & E(g&") = RS
- Model
X1 = Myxi + 1 E(meme’) = Ok k=0, ...,K-1

Errors assumed to be unbiased and uncorrelated in time, H; and M, linear
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In the present case, objective function of the form
(S0> 7715 s Mie1)
(o> 715 -5 T1)
= (12) Lo, ki - Hisid" R [vic - Hidl
+(1/2) Zico.. k1746 O 1k

subject to

Skr1 = M(SQ+ e, k=0,..,K-1

‘Observations’ consist of

- sequence {y,} , k=0,..., K (with unit observation operator )
- observations O for 7, , £=0, ..., K-1
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It turns out that QSVA 1s no more necessary. The model
error term 1n the objective function has a regularizing
effect which makes the function much smoother.
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Figure 11. Values of (half) the minima of the objective function
for all realizations of the weak-constraint assimilations over 18-day
windows.
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Kuramoto-Sivashinsky equation

<9_u+84 O u u@ 0, ¢ €
ot ozt 8:8 9z

with periodicity in x, L =327

0, L]
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Linear case
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Summary _

@ Under non-linearity and non-Gaussianity the EnsVar is a reliable and

consistent ensemble estimator (provided the QSVA is used for long
DA windows) .

@ EnsVar is at least as good an estimator as EnKF and PF.

@ Similar results have been obtained for the Kuramuto-Sivashinsky
model.

Ensembles obtained are Gaussian, even if errors in data are not

Produces Monte-Carlo sample of (probably not) bayesian pdf

O ), = = = Qv
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EnsVar : Pros and cons

e Easy to implement when having a 4D-Var code
@ Highly parallelizable

@ No problems with algorithm stability (i.e. no ensemble collapse, no
need for localization and inflation, no need for weight resampling)

e Propagates information in both ways and takes into account
temporally correlated errors

@ Costly (Nens 4D-Var assimilations).
@ Empirical.

@ Cycling of the process (work in progress).

O ¥ = = =
0. Talagrand & M. Jardak Optimization for Bayesian Estimation
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