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What 1s assimilation ?

- Numerical  weather  prediction.  Principles  and
performances

- Definition of initial conditions
Bayesian Estimation
One first step towards assimilation : ‘Optimal Interpolation’

The temporal dimension : Kalman Filter and Variational
Assimilation
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ECMWF

ENS

ENS Meteogram
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High Resolution Forecast and ENS Distribution Monday 8 January 2024 00 UTC
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Control (Cluster 3) | Operations (Cluster 3) Varitylng Analysis

ECMWF ENSEMBLE FORECASTS
Monday 25 January 1993 12z ECMWF Forecast t+168 VT: Monday 1 February 1993 122
500 hPa geopotential
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Fig. 1: Members of day 7 forecast of 500 hPa geopotential height for the ensemble originated from
25 January 1993.
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Figure 6 Hurricane Katrrina mean-sea-level-pressure (MSLP) analysis for 12 UTC of 29 August 2005 and
t+84h high-resolution and EPS forecasts started at 00 UTC of 26 August:

Istrow: I* panel: MSLP analysis for 12 UTC of 29 Aug

2™ panel: MSLP t+84h T;511L60 forecast started at 00 UTC of 26 Aug

3 panel: MSLP 1+84h EPS-control T;255L40 forecast started at 00 UTC of 26 Aug
Other rows: 50 EPS-perturbed T;255140 forecast started at 00 UTC of 26 Aug.

The contour interval is 5 hPa, with shading patters for MSLP values lower than 990 hPa.

ECMWEFE, Technical Report 499, 2006



Pourquoi les météorologistes ont-ils tant de peine a prédire le temps
avec quelque certitude ? Pourquoi les chutes de pluie, les tempétes
elles-mémes nous semblent-elles arriver au hasard, de sorte que bien
des gens trouvent tout naturel de prier pour avoir la pluie ou le beau
temps, alors qu’ils jugeraient ridicule de demander une éclipse par
une priere ? Nous voyons que les grandes perturbations se produisent
généralement dans les régions ou ['atmosphere est en équilibre
instable. Les météorologistes voient bien que cet équilibre est instable,
qu 'un cyclone va naitre quelque part ; mais ou, ils sont hors d’état de
le dire ; un dixieme de degré en plus ou en moins en un point
quelconque, le cyclone éclate ici et non pas la, et il étend ses ravages
sur des contrées qu’il aurait épargnées. Si on avait connu ce dixieme
de degré, on aurait pu le savoir d’avance, mais les observations
n’étaient ni assez serrées, ni assez precises, et c’est pour cela que tout
semble dii a [’intervention du hasard.

H. Poincare€, Science et Methode, Paris, 1908



Why have meteorologists such difficulty in predicting the weather with any
certainty? Why is it that showers and even storms seem to come by chance,
so that many people think it quite natural to pray for rain or fine weather,
though they would consider it ridiculous to ask for an eclipse by prayer?
We see that great disturbances are generally produced in regions where
the atmosphere is in unstable equilibrium. The meteorologists see very
well that the equilibrium is unstable, that a cyclone will be formed
somewhere, but exactly where they are not in a position to say, a tenth of a
degree more or less at any given point, and the cyclone will burst here and
not there, and extend its ravages over districts it would otherwise have
spared. If they had been aware of this tenth of a degree they could have
known it beforehand, but the observations were neither sufficiently
comprehensive nor sufficiently precise, and that is the reason why it all
seems due to the intervention of chance.

H. Poincaré€, Science et Methode, Paris, 1908

(English transl. by F. Maitland, Science and Method,

T. Nelson and Sons, London, 1914) 1
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ECMWEF data coverage (all observations) - SYNOP-SHIP-METAR
2024010521 to 2024010603
Total number of obs = 267722
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> SHIP (1580) B Abbreviated SHIP (258) ® Automatic METAR (38916) ¢ BUFR SHIP SYNOP (3991)

A BUFR LAND SYNOP (177328)

150°W 120°W 90°W 60°W 30°W 0°E 30°E 60°E 90°E 120°E 150°E

80°N 80°N

60°N

60°N

40°N 40°N

20°N

0°N 0°N

20°S 20°8

40°S

60°S

60°S

80°S |~ 80°S

150°W 120°W 90°W 60°W 30°W 0°E 30°E 60°E 90°E 120°E 150°E



ECMWEF data coverage (all observations) - RADIOSONDE
2024010521 to 2024010603
Total number of obs = 1146
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® NOAA-15 (16915)

METOP-C (23788)

ECMWEF data coverage (all observations) - AMSUA
2024010521 to 2024010603
Total number of obs = 83564
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ECMWF data coverage (all observations) - AMV WV
2024010521 to 2024010603
Total number of obs = 989690
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ECMWF data coverage (all observations) - AIRCRAFT
2024010521 to 2024010603
Total number of obs = 722562
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ECMWF data coverage (all observations) - GPSRO
2024010521 to 2024010603
Total number of obs = 77478
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As o1 2023

We receive 800 million observations daily,
and 60 million quality-controlled observations
are available daily for use in the Integrated
Forecasting System (IFS); the vast majority of
these are satellite measurements, but ECMWF
also benefits from all available observations
from non-satellite sources, including surface-
based and aircraft reports.



Synoptic observations (ground observations, radiosonde observations),
performed simultaneously, by international agreement, in all meteorological
stations around the world (00:00, 06:00, 12:00, 18:00 UTC), and are in practice
concentrated over continents.

Asynoptic observations (satellites, aircraft), performed more or less
continuously in time.

Direct observations (temperature, pressure, horizontal components of the

wind, moisture), which are local and bear on the variables used for describing
the flow 1n numerical models.

Indirect observations (radiometric observations, ...), which bear on some more
or less complex combination (most often, a one-dimensional spatial integral)
of variables used for for describing the flow

y = H(x)

H : observation operator (for instance, radiative transfer equation)



ECMWF data coverage (all observations) - SEA LEVEL ANOMALY

20240105 00
Total number of obs = 4914
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Physical laws governing the flow

Conservation of mass
Dop/Dt + pdivU = 0

Conservation of energy
De/Dt - (p/p?) Dp/Dt = Q

Conservation of momentum
DU/Dt + (1/p) gradp-g +2 QA U= F

Equation of state
fp, p,e)= 0 (for a perfect gas p/p=rT,e=C,T)

Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, ...)

Dg/Dt + q divU =S

These physical laws must be expressed in practice in discretized (and necessarily
imperfect) form, both in space and time = numerical model

25



Parlance of the trade :

» Adiabatic and inviscid, and therefore thermodynamically
reversible, processes (everything except O, F' and S) make
up ‘dynamics’

» Processes described by terms O, F and S make up ‘physics’



All presently existing numerical models are built on
simplified forms of the general physical laws. Global
numerical models, wused either for large-scale
meteorological prediction or for climate simulation, are at
present built on the so-called primitive equations. Those
equations rely on several approximations, the most
important of which being the hydrostatic approximation,
which expresses balance, in the vertical direction, of the
gravity and pressure gradlent forces. This forbids exphclt
description of thermal convection, which must be
parameterized in some appropriate way.

More and more limited-area models have been developed
over time. They require appropriate definition of lateral
boundary conditions (not a simple problem). Most of them
are non-hydrostatic, and therefore allow description of
convection.

27



There exist at present two forms of horizontal spatial
discretization

- Gridpoint discretization

- (Semi-)spectral discretization (mostly for global models,
and most often only in the horizontal direction)

Finite element discretization, which is very common in many forms of
numerical modelling, is rarely used for modelling of the atmosphere. It
is more frequently used for oceanic modelling, where it allows to take
account of the complicated geometry of coast-lines.

28



Schematic of a gridpoint atmospheric model




In gridpoint models, meteorological fields are defined by
values at the nodes of the grid. Spatial and temporal
derivatives are expressed by finite differences.

In spectral models, fields are defined by the coefficients of
their expansion along a prescribed set of basic functions. In
the case of global meteorological models, those basic
functions are the spherical harmonics (eigenfunctions of
the laplacian at the surface of the sphere).

30



Modeles (semi-)spectraux

T(u=sin(latitude), A=longitude) = ETn’"Yn’” (u,A)

O<sn<oo
-nsmsn

ou les Y"(u,A) sont les harmoniques sphériques

Y (u,A) < P" () exp(imA)

P"(u) est 1a fonction de Legendre de deuxiéme espece

ﬁ dn+m

P"(w) o« (1-p*)? ——(u’ -1)"
du

n et m sont respectivement le degré et 1'ordre de ’harmonique Y, (u,A)

n=20,1,... -n<m=<n






Linear operations, and in particular differentiation with
respect to spatial variables, are performed in spectral
space, while nonlinear operations and ‘physical’
computations (advection by the motion, diabatic heating
and cooling, ...) are performed in gridpoint physical space.
This requires constant transformations from one space to
the other, which are made possible at an acceptable cost
through the systematic use of Fast Fourier Transforms.

For that reason, those models are called semi-spectral.

33



Numerical schemes have been gradually developed and
validated for the ‘dynamics’ component of models, which
are by and large considered now to work satisfactorily
(although regular improvements are still being made).

The situation 1s different as concerns ‘physics’, where many
problems remain (as concerns for instance subgrid scales
parameterization, the water cycle and the associated
exchanges of energy, or the exchanges between the
atmosphere and the underlying medium). ‘Physics’ as a
whole remains the weaker point of models, and i1s still the
object of active research.
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5. SCHEMA DES INTERACTIONS PHYSIQUES DANS LE MODELE
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European Centre for Medium-range Weather Forecasts
(ECMWE, Reading, GB, Bologna, Italy, Bonn, Germany)

(Centre Européen pour les Prévisions Météorologiques & Moyen Terme,
CEPMMT)

June 2023 High-resolution (HRES) model

Triangular semi-spectral truncation TCO1279 / 01280
(horizontal resolution = 9 kilometres)

Hydrostatic primitive equations. 137 vertical levels (0 - 80 km)
Finite-element vertical discretisation (hybrid coordinate)
Dimension of corresponding state vector > 10°

Integration timestep (semi-Lagrangian semi-implicit scheme):
450 seconds

Integrated four times a day (from 00, 06, 12 and 18 UTC) to 10-
day range %



850 hPa wind speed (ms**-1)

2021

Base time: Sat 20 Mar 2021 00 UTC, Valid time: Thu 25 Mar 2021 00 UTC, - T+120 h, Area : Europe
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850 hPa wind speed (ms**-1)

Mean sea level pressure (hPa)

2021

Base time: Sat 20 Mar 2021 00 UTC, Valid time: Sat 20 Mar 2021 00 UTC, - T+0 h, Area : Europe




850 hPa wind speed (ms**-1)

Mean sea level pressure (hPa)

Base time: Wed 16 Mar 2022 00 UTC Valid time: Wed 23 Mar 2022 00 UTC (+168h) Area : Europe




Base time: Wed 16 Mar 2022 00 UTC Valid time: Wed 16 Mar 2022 00 UTC (+0h) Area : Europe
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Results on site of ECMWF www.ecmwf.int
In particular

T. Haiden et al, Evaluation of ECMWF forecasts,
including the 2023 upgrade, Technical Memorandum 911,
September 2023, ECMWF, Reading, UK.

Available at the address :

https://www.ecmwf.int/en/elibrary/81389-evaluation-
ecmwi{-forecasts-including-2023-upgrade
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500hPa geopotential —70% — 5%
Lead time of 12m MA ACC reaching thresholds
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Figure 18: WMO-exchanged scores for verification against radiosondes: 500 hPa height (top), 850 hPa
temperature (middle), and 850 hPa wind (bottom) RMS error over Europe and North Africa (annual mean August
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Figure 16: Forecast performance in the tropics. Curves show the monthly average RMS vector wind errors at
200 hPa (top) and 850 hPa (bottom) for one-day (blue) and five-day (red) forecasts, verified against analysis. 12-
month moving average scores are also shown (in bold).



g 0 2 o B . e b) 2¢-hour Emor 5. Hem
ECMWF ol
F i
500 hPa g“i— g”;—\
geopotential ng_ gn-.
SE- Wk

1980 19EE 1990 WS N0 MNas A0

1980 W& 1990 195 D0 MN05 000

Yaor Yaar

€) ¥44-hour Enor M. Hem d}'ll-l-lwirus.l-hn
100 10

L 100 |-
BO |- L
E t E
- L w 8-
60 - i

L & -
Q-....l....l....l....l....l....I.. FS] I T T P T P I

1980 1985 1990 1995 0 MNO0S N0
Yaor

Fic. 3. Evolution of forecast errors from 1981 to 2012 for N.Hem (a and c) and S.Hem (b
and d). Operational forecasts (blue) and ERA Interim (green). Note that before 1986 the
operational analysis is used to verify the operational forecasts, after 1986 ERA Interim is

used for the verification (with an overlap of 6 months present).

Magnusson and Kallén, 2013, Mon. Wea. Rev., 141, 3142-3153
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Remaining Problems

Mostly 1 the ‘physics’ of models (O and F' terms in basic
equations)

- Water cycle (evaporation, condensation, influence on radiation
absorbed or emitted by the atmosphere)

- Exchanges with ocean or continental surface (heat, water,
momentum, ...)
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Alternative Approach to Numerical Weather Prediction

Machine Learning (aka Artificial Intelligence)
Set of empirical data
(xiﬂyi) ’ 1= laN

with no a prori explicitly known relationship between the inputs
x;‘s and the outputs y;‘s.

Look for an explicit relationship of the form

y = f(x)

at least over a practically useful domain of variation of x.



Machine Learning (2)

Inputs x;‘s @ ) Outputs y;‘s

Replace black box with (possibly approximate) function y = f(x)

Neural networks define the function f as a composition of basic
‘simple’ functions. Sigmoid functions, e.g. the hyperbolic
tangent function tanh(x), are very commonly used.




Machine Learning (3)

Neural networks

tanh(x) = (e>-1) / (X +1) T

1.0f

0.5r

0.0

-0.5¢

-1.0

—-1.5¢

Affine change of coordinates. Four degrees of freedom : two for
the coordinates of the central point, and one for the range of
variation 1n either direction.



Machine Learning (4)
Neural networks

The mitial empirical dataset (x;, y,) 1s typically divided into two
sets

- A training set over which the composition of basic functions
1s defined. This usually mvolves several layers of ‘neurons’,
the neurons 1n each layer being compositions of neurons in
previous layers. The optimal combination 1s obtained by
minimizing the misfit between the original and computed
outputs, often on the basis of a least-squares criterion.

- Avalidating set used to estimate the quality of the adjustment
obtained from the training set.



Machine Learning (5)
Neural networks

This approach, with many variants, has proved to be extremely
efficient, and 1s now used for innumerable applications in many
different domains.

It has been applied to numerical weather prediction. A number
of recently developed softwares are

GraphCast
Pangu-Weather
FourCastNet
FuXi



Machine Learning (5). Neural networks

These software pieces have been trained on the ECMWF
Reanalysis v5 (ERAYS).

ERAS, which covers the period from January 1940 to present,
provides hourly estimates of a large number of atmospheric,
land and oceanic climate variables. The data cover the Earth on
a 30km grid and resolve the atmosphere using 137 levels from
the surface up to a height of 80km. ERAS5 includes information
about uncertainties for all variables. It 1s produced using 4D-Var
data assimilation over 12-hour assimilation windows.

These neural networks trained on ERAS produce forecasts of
quality similar to, or better than, the ECMWF operational
forecasts at a much lower numerical cost. Their results are
accessible online on the Website of ECMWF.



Machine Learning (6). Neural networks

FuXi ({KZ£) has been trained on 39 years of ERAS. It has a

spatial resolution of 0.25° (28 km, against 9 km for ECMWF

HRES) and produces forecasts for a number of meteorological
variables

o

Lead Time (days)

Fig. B.2: Skillful forecast lead times (ACC >0.6) of ECMWF HRES, Graph-
cast, and FuXi for 4 surface variables (M SL, T2M, U10, and V10) and 4
upper-air variables (Z500, 7500, U500, and V'500) at 500 hPa pressure level.
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Machine Learning (7).

- Machine Learning forecasts are more accurate in terms of

RMS error and correlation coefficients, but are also spatially
much smoother.

- Machine learning can be implemented for estimating errors in
deterministic forecasts

- But, at this stage, machine learning still depends totally on the
availability of a training set produced by well-established and
thoroughly validated means. How will these be updated ?



Machine Learning (8).

- Machine Learning can be expected to have a significant impact
on the way weather prediction is going to be performed, as well
as on the quality of the corresponding forecasts.

- But what will precisely be that impact ? It is simply too soon
to tell.



- What 1s assimilation ?

- Definition of initial conditions



Purpose of assimilation : reconstruct as accurately as possible the state of the
atmospheric or oceanic flow, using all available appropriate information. The latter

essentially consists of

* The observations proper, which vary in nature, resolution and accuracy, and

are distributed more or less regularly in space and time.

* The physical laws governing the evolution of the flow, available in practice in

the form of a discretized, and necessarily approximate, numerical model.

= ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although
they basically are necessary consequences of the physical laws which govern the flow, these
properties can usefully be explicitly introduced in the assimilation process.



Both observations and ‘model’ are affected with some uncertainty =

uncertainty on the estimate.

For some reason, uncertainty is conveniently described by probability
distributions (don’t know too well why, but it works; see, e.g. Jaynes,
2007, Probability Theory: The Logic of Science, Cambridge University

Press).

Assimilation is a problem 1n bayesian estimation.

Determine the conditional probability distribution for the state of the
system, knowing everything we know (see Tarantola, A., 2005, Inverse
Problem Theory and Methods for Model Parameter Estimation, STAM).
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Assimilation 1s one of many ‘inverse problems’ encountered
in many fields of science and technology

* solid Earth geophysics

 plasma physics
* ‘nondestructive’ probing

* navigation (spacecraft, aircraft, ....)

Solution most often (if not always) based on Bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.



Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n = 10%-10° parameters to be
estimated, p ~ 107-10® observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast to
be ready 1n time.

- Non-trivial, actually chaotic, underlying dynamics



Proportion of computing resources devoted to assimilation of observations
in the whole process of Numerical Weather Prediction has gradually
increased over time.

Definition of initial conditions originally required a simple interpolation
from observation stations to model gridpoints, with negligible cost. As of
now, assimilation over 24 hours of observations requires about the same
amount of resources as a 10-day forecast, including probabilistic forecast.



z1=x+ ¢ density function p,(<) oc expl - (£?)/2s/]

Z,=x+ & density function p,(¢) oc exp[ - (£?)/2s,]

¢, and ¢, mutually independent

Px=¢lz,2) ?



x=¢ < (=2z-¢ and =2,-¢&
P(x= &z, z5) « pi(z1-6) pa(22-6)
oc exp[ - (z1-&)*2s,] exp[ - (z2-£)*/2s,]
= exp[ - A4/2 ]

with A = (z,-&/s, + (z,-E¥s,
= (& - x%)?/p* + terms independent of &

where 1/p®=1/s; + 1/s, , x*=p(z,/s| + z,/5,)
P(x = &|z), z5) oc exp[ - (& - x9)*/2p] = V][xe, pe]

Conditional probability distribution of x, given z; and z, : M [x4, p“]



Conditional probability distribution of x, given z; and z, : M [x4, p“]

l/pa — l/Sl + 1/S2

p*<(sy, s,) independent of z; and z,

x4 = p(zy/s; + z,/s,) 1s weighted average of z; and z,, with respective
weights 1/s; and 1/s,. Larger weight 1s given to more accurate piece of

data.
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Fig. 1.1: Prior pdf p(z) (dashed line), posterior pdf p(z|y®) (solid line), and Gaussian
likelihood of observation p(y°|r) (dotted line), plotted against x for various values of
y?. (Adapted from Lorenc and Hammon 1988.)



Estimate
x4 :pa (ZI/SI + Z2/S2)
with error p¢ such that

l/pa — 1/S1 + 1/52

can also be obtained, independently of any Gaussian hypothesis, as simply

corresponding to the linear combination of z; and z, that minimizes the
error £ [(x?—x)?]

Best Linear Unbiased Estimator (BLUE)
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