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  Brief history of assimilation : ideas and methods 

  Two powerful classes of algorithms : Variational 
Assimilation (4D-Var), (Ensemble) Kalman Filter 

  Links between assimilation and stability – instability 
of the flow (but not really up to date !) 

 Complements 

 - Observability 
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 Assimilation of observations, as it is known in meteorology and oceanography, 
originated from the need of defining initial conditions (ICs) for numerical weather 
prediction. Difficulties gradually arose 

  Need for defining ICs with appropriate spatial scales ⇒ ‘structure functions‘ (now 
incorporated in background error covariance matrices) 

  Need for defining ICs in approximate geostrophic balance ⇒ ‘initialization’ (now also 
incorporated in background error covariance matrices and/or specific penalty terms) 

  … 
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  Need for defining ICs with appropriate spatial scales ⇒ ‘structure 
functions‘ (now incorporated in background error covariance matrices) 

  Need for defining ICs in approximate geostrophic balance ⇒ ‘initialization’ (now 
also incorporated in background error covariance matrices and/or specific 
penalty terms) 

  Realization that forecast was very sensitive to ICs ⇒ stressed still more need for 
accurate ICs 

  Use of satellite observations, which are 

 - distributed continuously in time ⇒ need for using a dynamical model of the 
flow before even the forecast is started (word assimilation was coined in 
1967-68)    

 - indirect ⇒ need for some form of ‘inversion’ 



	
 Relative  cost  of  the  various  components  of  the  operational  forecast  suite 
at ECMWF (september 2015, J.-N. Thépaut) :	


	
 4DVAR: 9.5% 
 HRES FC: 4.5% 
 EDA: 30% 
 ENS: 22% 
 ENS: hindcasts 14% 

 Other: 20% of which BC AN: 3.5% BC FC: 4% BC ENS: 9.5% 

	
 EDA  (Ensemble  Data  Assimilation)  provides  both  the  variances  of 
background errors for the 4D-Var, and initial perturbations (in addition of 
singular vectors) for the EPS.	


	
 Ratio 1 day of assimilation / 1 day of forecast ≈ 15	
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One early attempt at assimilation	


Charney, Halem and Jastrow, JAS, 1969	


Twin experiment with 2-level primitive equation model,
7° x 9° lat-long grid	


Question  :  is  it  possible  to  reconstruct  the  entire  flow 
from history of temperature field ? 	
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Charney et al., JAS,1969 	
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Charney et al., JAS,1969 	
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Question. Role of geostrophic adjustment ?	
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Evolution equation	


 xk+1 = Mk(xk) + ηk  

  Mk is (known) model, ηk is (unknown) model error	


Observations at successive times	


	
 yk = Hk(xk) + εk    k = 0, …, K 
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For a period, assimilation was performed in operational applications through 
various forms of Optimal Interpolation (OI).  At observation time,  state 
predicted by assimilating model was updated with new observations, using 
structure  functions  for  propagation  of  influence  of  the  observations  in 
space as well as to other physical fields. 	


	
 	




Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 
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Two  classes  of  algorithms  have  come  to  dominate  meteorological  and 
oceanographical assimilation, at least in practical applications : Ensemble 
Kalman Filter and Four-Dimensional Variational Assimilation.	
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Kalman Filter (R. H. Jones, JAS, 1965, Petersen, Tellus, 1968, Ghil et al.) evolves in time an 
estimate of the state of the system and updates that estimate with new observations as they 
become available. Associated uncertainty is evolved in parallel, originally in the form of a 
covariance matrix	


	
 Analysis step	
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  Forecast step 

  xb
k+1 =  Mk xa

k	


	
  Pb
k+1 = Mk Pa

k Mk
T + Qk 	


In geophysical applications, uncertainty is represented by a number (O(10-100))  of 
points in state space ⇒ Ensemble Kalman Filter (EnKF, Evensen et al.)  	
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Variational  Assimilation  (Thompson,  Tellus,  1961,  Penenko  and  Obraztsov,  Soviet  Meteorol. 
Hydrol., 1976, Le Dimet and T., …) globally adjusts a model to observations distributed over 
a given time interval. Achieved through minimisation of a scalar objective function of the 
form	


	
 ξ0 ∈ S  ⇒  	


	
  J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]  
  
 subject to ξk+1 = Mk(ξk) ,	
 k = 0, …, K-1	


	
 which  measures  the  integrated  misfit  between  a  model  solution  and  the  observations. 
Model error can be taken into account through Weak Constraint Variational Assimilation.      	


 	
 Minimization made possible through the adjoint of dynamical model xk+1 = Mk(xk) (as well as 
of observation operator yk = Hk(xk))	


‘4D-Var’  	
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Both algorithms are empirical  extensions to weakly nonlinear and non-Gaussian situations of 
algorithms  which  produce  the  same  results  in  linear  situations.  And  achieve  bayesian 
estimation in linear and additive gaussian situations.	


Their success in meteorological and oceanographical situation lies in the fact that they are able to 
take into account the temporal evolution of the uncertainty on the state of the flow, and in 
particular of the growth in that uncertainty caused by the ‘instabilities of the day’.       	


Kalman  Filter  does  explicitly  compute  the  evolution  of  the  uncertainty,  either  through  the 
evolution of the covariance matrix of the estimation error (standard linear filter) or through 
the  evolution  of  the  ensemble  elements  (EnKF).  Variational  Assimilation  ‘knows’ of  the 
instabilities of the day through the dynamical model. If an adjoint code is used, it is through 
that  adjoint  that  the  information  on  the  instabilities  is  carried  backwards  to  the  control 
variable at initial time.	


Particle Filters (P. J. van Leeuwen and colleagues) are independent of any gaussian or linear 
hypothesis. 	




Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Same as before, but at the end of a 24-hr 4D-Var 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 
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If there is uncertainty on the state of the system, and dynamics of the 
system is perfectly known, uncertainty on the state along stable 
modes decreases over time, while uncertainty along unstable 
modes increases (Pires, Vautard and T.,, Tellus, 1996). 

  

 Stable (unstable) modes : perturbations to the basic state that 
decrease (increase) over time. 
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 Consequence : 4D-Var assimilation, which carries information 
both forward and backward in time, performed over time interval [t0, 
t1] over uniformly distributed noisy data. If assimilating model is 
perfect, estimation error is concentrated in stable modes at time t0, 
and in unstable modes at time t1. Error is smallest somewhere 
within interval [t0, t1]. 

 Similar result holds true for Kalman filter (or more generally any 
form of sequential assimilation), in which estimation error is 
concentrated in unstable modes at any time. 
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Lorenz (1963)	


 dx/dt = σ(y-x)	

	
 dy/dt = ρx - y - xz	

	
 dz/dt = -βz + xy	


	
 with parameter values σ = 10, ρ = 28, β = 8/3  ⇒  chaos	




27 Pires et al., Tellus, 1996 ; Lorenz system (1963) 
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Pires et al., Tellus, 1996 ; Lorenz system (1963) 



Swanson, Vautard and Pires,  
1998, Tellus, 50A, 369-390 



Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390 

(Trevisan and Palatella, 2011, NPG) 



32 Swanson, Palmer and Vautard, 2000, JAS  
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Since, after an assimilation has been performed over a period of time, uncertainty is 
likely to be concentrated in modes that have been unstable, it might be useful, at 
least in terms of cost efficiency, to concentrate assimilation in modes that have been 
unstable in the recent past, where uncertainty is likely to be largest. 

Also, presence of residual noise in stable modes can be damageable for analysis and 
subsequent forecast. 

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for the case of 
3D-Var) 
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Four-dimensional  variational  assimilation  in  the  unstable  subspace 
(4DVar-AUS)	


Trevisan, D’Isidoro and T., 2010, Four-dimensional variational assimilation in 
the unstable subspace and the optimal subspace dimension, Q. J. R. Meteorol. 
Soc.. 
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4D-Var-AUS 

Algorithmic implementation 

Define N perturbations to the current state, and evolve them according to the tangent 
linear model, with periodic reorthonormalization in order to avoid collapse onto the 
dominant Lyapunov vector (same algorithm as for computation of Lyapunov 
exponents). 

Cycle successive 4D-Var‘s, restricting at each cycle the modification to be made on the 
current state to the space spanned by the N perturbations emanating from the 
previous cycle (if N is the dimension of state space, that is identical with standard 
4D-Var). 
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Experiments performed on the Lorenz (1996) model 

  

  

with value F = 8, which gives rise to chaos. 

Three values of I have been used, namely I = 40, 60, 80, which correspond to 
respectively N+ = 13, 19 and 26 positive Lyapunov exponents. 

In all three cases, the largest Lyapunov exponent corresponds to a doubling time 
of about 2 days (with 1 ‘day’ = 1/5 model time unit). 

Identical twin experiments (perfect model) 
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No explicit  background term (i.  e.,  with  error  covariance  matrix)  in  objective  function  : 
information from past lies in the background to be updated, and in the N perturbations 
which define the subspace in which updating is to be made.	


Best performance for N slightly above number  N+ of positive Lyapunov exponents.	
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Experiments have been performed in which an explicit background term was present, 
the associated error covariance matrix having been obtained as the average of a 
sequence of full 4D-Var’s. 

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-
AUS. But they remain qualitatively similar, with best performance for 4D-Var-AUS 
with N slightly above N+.   
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Minimum of objective function cannot be made smaller by reducing control space. 
Numerical tests show that minimum of objective function is smaller (by a few 
percent) for full 4D-Var than for 4D-Var-AUS. Full 4D-Var is closer to the noisy 
observations, but farther away from the truth. And tests also show that full 4D-Var 
performs best when observations are perfect (no noise). 

Results show that, if all degrees of freedom that are available to the model are used, the 
minimization process introduces components along the stable modes of the system, 
in which no error is present, in order to ensure a closer fit to the observations. This 
degrades the closeness of the fit to reality. The optimal choice is to restrict the 
assimilation to the unstable modes. 

Now, consider for instance a Kalman Filter, which carries in time an explicit estimate of 
the uncertainty on the current state of the system. If it is properly implemented (i.e., if 
it produces a reliable estimate of the uncertainty), it will know that the uncertainty is 
concentrated in the unstable subspace, and will not need (except maybe for 
economy of computation) to explicitly restrict the analysis to that subspace.    
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Trevisan and Palatella (NPG, 2011). In the Extended Kalman Filter, and in the case of a 
perfect model, uncertainty on the state of the system concentrates on the subspace 
spanned by the backwards Lyapunov vectors associated with non-negative 
exponents. Restricting the assimilation to that subspace is asymptotically equivalent 
to the full Filter. 

  

 Bocquet and Carrassi (Tellus, 2017)    

 Presentation by J. M. López yesterday, and other presentations in this session 
(Uboldi, Palatella, Bocquet et al., Grudzien, …) 
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Time averaged rms analysis error at the end  of the assimilation window (with length τ) as a function of increment  
subspace dimension (I = 60, N+=19), for different amplitudes of white model noise. 

(W. Ohayon and O. Pannekoucke, 2011). 

τ = 1 day τ = 2 days 

Impact of model errors  
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-  Impact of model errors (other talks) ? 

-  All the above has been done in the context of the tangent linear 
approximation, and of the associated machinery of Lyapunov 
exponents and vectors. That is sucessful because those exponents 
and vectors tend rapidly to their asymptotic values (i.e., the systems 
under consideration have ‘good’ ergodicity). 

-  What happens when the tangent linear approximation is not valid 
(thresholds, bounded variables) ? Gaussian anamorphosis ? 
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Swanson, 
Palmer and 
Vautard, 2000, 
JAS  
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A few of the (many) remaining problems	


- Observability 	


What can we know from which observations ?	


Which space-time distributions of observations completely define 
the state of the system ?	


Does the knowledge of the history of the mass field defines the 
velocity field (or vice-versa) ? Geostrophic adjustment.	


But  :  system  has  (infinitely)  many  scales,  is  chaotic,  and 
observations are noisy ! 	




Linear case	


Data available in the form	


	
 	
 	
          z = Γx + ζ	


where x is unknown, Γ is a known matrix (and ζ is ‘error’)	


Observability ⇔Γ is one-to-one ⇔ rankΓ =  dimx ⇔ data vector can be decomposed into 
’background’ plus additional ’observations’  	


Fukumori et al. (1993):  oceanic circulation is observable from surface height.	


Infinite dimension : Linear first-order EDPs : characteristics	

In general, solver may be unbounded (diffusion)	


But, in all cases, observability depends only on space-time distribution of observations.	


No more true in  nonlinear case : observability depends on observed values (advection).	




Observability can be studied numerically.	


ERA-20C  (ECMWF):  Ensemble  variational 
reassimilation  of  surface  observations  (surface 
pressure  and  10m-wind)  over  the  period 
1900-2010	
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Credit Poli and Simmons (ECMWF) 
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Credit  
Poli and 
Simmons 
(ECMWF) 
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Poli et al., 2013, ECMWF, ERA Report No 14  



Observability. Works by E. Titi (Texas A&M University) and colleagues	


Farhat, Lunasin and Titi, 2016, CONTINUOUS DATA ASSIMILATION FOR A 2D 
BÉNARD CONVECTION SYSTEM THROUGH HORIZONTAL VELOCITY 
MEASUREMENTS ALONE, Journal of Nonlinear Science, 27(2017) 

2-D  incompressible  fluid  between  two  horizontal  walls  maintained  at  fixed  different  
temperatures Tbottom > Ttop ⇒ convective motions transporting heat from bottom to top.	


	
 Boussinesq equations for horizontal vector velocity u and normalized temperature θ 	


	
 ut – ν Δu + (u.∇)u + ∇p’ - θ e2 = 0	
 	
 	
 	
 (1a)	


	
 θt – κ Δθ + (u.∇)θ – u.e2 = 0	
 	
 	
 	
 	
 (1b)	


	
 ∇.u  = 0	
 	
 	
 	
 	
 	
 (1c)	

	
   	

       + BC and periodicity in horizontal direction	




	
 Assume  horizontal  component  v1  of  velocity  of  some  solution  (v(t),  η(t))  is  observed 
exactly and corresponding observations are introduced into a numerical integration of eq. 
(1) modified through following scheme (‘nudging’)	


 	
 ut – ν Δu + (u.∇)u + ∇p’ - θ e2 = –µ (u1 – v1) e1 	
 with  µ > 0	
	
 (1’a)	


	
 Theorem.  If  the  spatial  density  of  the  observations  is  high  enough,  and  nudging 
coefficient µ is large enough, the ‘nudged’ solution (u(t), θ(t)) converges exponentially 
to observed solution (v(t), η(t)) when t tends to infinity.	


	
 Observation  of  horizontal  component  of  velocity  only  ensures  complete  asymptotic 
observability,  and  algorithm  is  available  for  asymptotic  reconstruction  of  observed 
solution (but  infinite temporal  density of  observations seems to be necessary for the 
trheorem to hold).	


	
 If  there  are  errors  in  the  observations,  error  on  the  nudging  solution  can  be  estimated 
in terms of the errors on the observations.	
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Assimilation, which originated from the need of defining initial  conditions for numerical 
weather forecasts, has gradually extended to many diverse applications	


•  Oceanography	

•  Atmospheric chemistry (both troposphere and stratosphere)	

•  Oceanic biogeochemistry	

•  Ground hydrology	

•  Terrestrial biosphere and vegetation cover	

•  Glaciology	

•  Magnetism (both planetary and stellar)	

•  Plate tectonics	

•  Planetary atmospheres (Mars, …)	

•  Reassimilation of past observations (mostly for climatological purposes, ECMWF, 

NCEP/NCAR)	

•  Identification of source of tracers	

•  Parameter identification	

•  A priori evaluation of anticipated new instruments	

•  Definition of observing systems (Observing Systems Simulation Experiments)	

•  Validation of models	

•  Sensitivity studies (adjoints)	

•  …	


It has now become a major tool of numerical environmental science 


