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Brief history of assimilation : ideas and methods

Two powerful classes of algorithms : Variational
Assimilation (4D-Var), (Ensemble) Kalman Filter

Links between assimilation and stability — instability
of the flow (but not really up to date !)

Complements

- Observability



Assimilation of observations, as it is known in meteorology and oceanography,
originated from the need of defining initial conditions (ICs) for numerical weather
prediction. Difficulties gradually arose

= Need for defining ICs with appropriate spatial scales = ‘structure functions’ (now
incorporated in background error covariance matrices)

= Need for defining ICs in approximate geostrophic balance = ‘initialization’ (now also
incorporated in background error covariance matrices and/or specific penalty terms)



Need for defining ICs with appropriate spatial scales = ‘structure
functions’ (now incorporated in background error covariance matrices)

Need for defining ICs in approximate geostrophic balance = ‘initialization’ (now
also incorporated in background error covariance matrices and/or specific
penalty terms)

Realization that forecast was very sensitive to ICs = stressed still more need for
accurate ICs

Use of satellite observations, which are

- distributed continuously in time = need for using a dynamical model of the
flow before even the forecast is started (word assimilation was coined in
1967-68)

- indirect = need for some form of ‘inversion’



Relative cost of the various components of the operational forecast suite
at ECMWEF (september 2015, J.-N. Thépaut) :

4DVAR: 9.5%
HRES FC: 4.5%
EDA: 30%

ENS: 22%

ENS: hindcasts 14%

Other: 20% of which BC AN: 3.5% BC FC: 4% BC ENS: 9.5%

EDA (Ensemble Data Assimilation) provides both the variances of

background errors for the 4D-Var, and initial perturbations (in addition of
singular vectors) for the EPS.

Ratio 1 day of assimilation / 1 day of forecast = 15



One early attempt at assimilation

Charney, Halem and Jastrow, JAS, 1969

Twin experiment with 2-level primitive equation model,

7° x 9° lat-long grid

Question : 1s it possible to reconstruct the entire flow

from history of temperature field ?



Charney et al., JAS,1969
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Question. Role of geostrophic adjustment ?



Evolution equation

X1 = Mi(x) +

M, 1s (known) model, 1, 1s (unknown) model error

Observations at successive times

yk:Hk(xk)'l' gk k O,...
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For a period, assimilation was performed in operational applications through
various forms of Optimal Interpolation (OI). At observation time, state
predicted by assimilating model was updated with new observations, using
structure functions for propagation of influence of the observations in

space as well as to other physical fields.
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



Two classes of algorithms have come to dominate meteorological and
oceanographical assimilation, at least in practical applications : Ensemble

Kalman Filter and Four-Dimensional Variational Assimilation.
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Kalman Filter (R. H. Jones, JAS, 1965, Petersen, Tellus, 1968, Ghil et al.) evolves in time an
estimate of the state of the system and updates that estimate with new observations as they
become available. Associated uncertainty is evolved in parallel, originally in the form of a

covariance matrix

Analysis step

x4 = xb + PP HY[HP H + R (v - Hx?))
@ =P - PP HY[HPH+R,]"' H P

=  Forecast step
xb,. = M, x¢
k+1 — kY k

PP =M Py M+ Q,

In geophysical applications, uncertainty is represented by a number (O(10-100)) of

points in state space = Ensemble Kalman Filter (EnKF, Evensen et al.)
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Variational Assimilation (Thompson, Tellus, 1961, Penenko and Obraztsov, Soviet Meteorol.
Hydrol., 1976, Le Dimet and T., ...) globally adjusts a model to observations distributed over
a given time interval. Achieved through minimisation of a scalar objective function of the

form

5E S =
j(&o) = (1/2) (xob - ‘Eo)T [Pob]_l (xob - go) +(1/2) Zk[)’k - H(EDIT R, [y, - H(&)]
subject to &, = M (&), k=0,...,K-1

which measures the integrated misfit between a model solution and the observations.
Model error can be taken into account through Weak Constraint Variational Assimilation.

Minimization made possible through the adjoint of dynamical model x,,, = M (x,) (as well as

of observation operator y, = H,(x,))

‘4D-Var’
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Both algorithms are empirical extensions to weakly nonlinear and non-Gaussian situations of
algorithms which produce the same results in linear situations. And achieve bayesian

estimation in linear and additive gaussian situations.

Their success in meteorological and oceanographical situation lies in the fact that they are able to
take into account the temporal evolution of the uncertainty on the state of the flow, and in

particular of the growth in that uncertainty caused by the ‘instabilities of the day’.

Kalman Filter does explicitly compute the evolution of the uncertainty, either through the
evolution of the covariance matrix of the estimation error (standard linear filter) or through
the evolution of the ensemble elements (EnKF). Variational Assimilation ‘knows’ of the
instabilities of the day through the dynamical model. If an adjoint code is used, it is through
that adjoint that the information on the instabilities is carried backwards to the control

variable at initial time.

Farticle Filters (P. J. van Leeuwen and colleagues) are independent of any gaussian or linear
hypothesis.
16
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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FI1G. 1. Background fields for 0000 UTC 15 October-0000 UTC 16 October 1987. Shown here are the Northern Hemisphere (a) 500-

iPa geopotential height and (b) mean sea level pressure for 15 October and the (¢) 500-hPa geopotential height and (d) mean sea level
pressure for 16 October. The fields for 15 October are from the initial estimate of the initial conditions for the ADVAR minimization. The
fields for 16 October arc from the 24-h T63 adiabatic model forecast from the initial conditions. Contour intervals are 80 m and 5 hPa.

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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If there is uncertainty on the state of the system, and dynamics of the
system is perfectly known, uncertainty on the state along stable
modes decreases over time, while uncertainty along unstable
modes increases (Pires, Vautard and T.,, Tellus, 1996).

Stable (unstable) modes : perturbations to the basic state that
decrease (increase) over time.
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Consequence : 4D-Var assimilation, which carries information
both forward and backward in time, performed over time interval [t,,
t,] over uniformly distributed noisy data. If assimilating model is
perfect, estimation error is concentrated in stable modes at time f,,
and in unstable modes at time t,. Error is smallest somewhere
within interval [t,, ,].

Similar result holds true for Kalman filter (or more generally any
form of sequential assimilation), in which estimation error is
concentrated in unstable modes at any time.

23
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Lorenz (1963)

dx/dt = o(y-x)
dyldt = px -y -xz
dz/dt = -z + xy

with parameter values o= 10, p =28, f=8/3 = chaos
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Pires et al., Tellus, 1996 ; Lorenz system (1963)
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Quasi-Static Variational Assimilation (QSVA)

o

Data Assimilation over [0 T]with T=N .dt = M. dt T
4D-Var over [0 1] starting from the observations

0 1
_—-—

4D-Var over [0 21] starting from the minimizer found above
—_—)
0 27

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T

0. Talagrand & M. Jardak Optimization for Bayesian Estimation
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Swanson, Vautard and Pires,
1998, Tellus, 50A, 369-390
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Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390
(Trevisan and Palatella, 2011, NPG)
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Since, after an assimilation has been performed over a period of time, uncertainty is
likely to be concentrated in modes that have been unstable, it might be useful, at
least in terms of cost efficiency, to concentrate assimilation in modes that have been
unstable in the recent past, where uncertainty is likely to be largest.

Also, presence of residual noise in stable modes can be damageable for analysis and
subsequent forecast.

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for the case of
3D-Var)
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Four-dimensional variational assimilation in the wunstable subspace
(4DVar-AUS)

Trevisan, D’lsidoro and T., 2010, Four-dimensional variational assimilation in
the unstable subspace and the optimal subspace dimension, Q. J. R. Meteorol.

Soc..
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4D-Var-AUS

Algorithmic implementation

Define N perturbations to the current state, and evolve them according to the tangent
linear model, with periodic reorthonormalization in order to avoid collapse onto the
dominant Lyapunov vector (same algorithm as for computation of Lyapunov
exponents).

Cycle successive 4D-Var's, restricting at each cycle the modification to be made on the
current state to the space spanned by the N perturbations emanating from the
previous cycle (if N is the dimension of state space, that is identical with standard
4D-Var).
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Experiments performed on the Lorenz (1996) model

d

L0 = (j41 —xj—2)Tj—1 — 2 + F

with 7 =1..... 1.

with value F = 8, which gives rise to chaos.

Three values of | have been used, namely I/ = 40, 60, 80, which correspond to
respectively N* = 13, 19 and 26 positive Lyapunov exponents.

In all three cases, the largest Lyapunov exponent corresponds to a doubling time
of about 2 days (with 1 ‘day’ = 1/5 model time unit).

Identical twin experiments (perfect model)
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Figure 1. Time average RMS analysis error at ¢ = 7 as a function of the subspace dimension /N for three model configurations: =40, 60,

80. Different curves in the same panel refer to different assimilation windows from 1 to 5 days. The observation error standard deviation 1s
o, = 0.2.

No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Best performance for N slightly above number N* of positive Lyapunov exponents.
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configuration 7 = 40. Left panel: 4DVar. Right panel: 4DVar-AUS with N = 15. Solid lines refer to total assimilation error, dashed lines

refer to the error component in the stable subspace eis, ...

, €40.
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Experiments have been performed in which an explicit background term was present,
the associated error covariance matrix having been obtained as the average of a
sequence of full 4D-Var's.

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-
AUS. But they remain qualitatively similar, with best performance for 4D-Var-AUS
with N slightly above N*.
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Minimum of objective function cannot be made smaller by reducing control space.
Numerical tests show that minimum of objective function is smaller (by a few
percent) for full 4D-Var than for 4D-Var-AUS. Full 4D-Var is closer to the noisy
observations, but farther away from the truth. And tests also show that full 4D-Var
performs best when observations are perfect (no noise).

Results show that, if all degrees of freedom that are available to the model are used, the
minimization process introduces components along the stable modes of the system,
in which no error is present, in order to ensure a closer fit to the observations. This
degrades the closeness of the fit to reality. The optimal choice is to restrict the
assimilation to the unstable modes.

Now, consider for instance a Kalman Filter, which carries in time an explicit estimate of
the uncertainty on the current state of the system. If it is properly implemented (i.e., if
it produces a reliable estimate of the uncertainty), it will know that the uncertainty is
concentrated in the unstable subspace, and will not need (except maybe for
economy of computation) to explicitly restrict the analysis to that subspace.
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Trevisan and Palatella (NPG, 2011). In the Extended Kalman Filter, and in the case of a
perfect model, uncertainty on the state of the system concentrates on the subspace
spanned by the backwards Lyapunov vectors associated with non-negative
exponents. Restricting the assimilation to that subspace is asymptotically equivalent
to the full Filter.

Bocquet and Carrassi (Tellus, 2017)

Presentation by J. M. Lopez yesterday, and other presentations in this session
(Uboldi, Palatella, Bocquet et al., Grudzien, ...)
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(W. Ohayon and O. Pannekoucke, 2011).

Impact of model errors
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- Impact of model errors (other talks) ?

- All the above has been done in the context of the tangent linear
approximation, and of the associated machinery of Lyapunov
exponents and vectors. That is sucessful because those exponents
and vectors tend rapidly to their asymptotic values (i.e., the systems
under consideration have ‘good’ ergodicity).

- What happens when the tangent linear approximation is not valid
(thresholds, bounded variables) ? Gaussian anamorphosis ?
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A few of the (many) remaining problems

- Observability

What can we know from which observations ?

Which space-time distributions of observations completely define
the state of the system ?

Does the knowledge of the history of the mass field defines the
velocity field (or vice-versa) ? Geostrophic adjustment.

But : system has (infinitely) many scales, is chaotic, and
observations are noisy !
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Linear case

Data available in the form
z=Ix+ ¢
where Xx 1s unknown, I'is a known matrix (and £ is ‘error’)

Observability <>1'is one-to-one < rank/ = dimx <> data vector can be decomposed into
"background’ plus additional ’observations’

Fukumori et al. (1993): oceanic circulation is observable from surface height.

Infinite dimension : Linear first-order EDPs : characteristics
In general, solver may be unbounded (diffusion)

But, in all cases, observability depends only on space-time distribution of observations.

No more true in nonlinear case : observability depends on observed values (advection).



Observability can be studied numerically.

ERA-20C (ECMWF): Ensemble variational

reassimilation of surface observations (surface

pressure and 10m-wind) over the period
1900-2010
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Observability. Works by E. Titi (Texas A&M University) and colleagues

Farhat, Lunasin and Titi, 2016, CONTINUOUS DATA ASSIMILATION FOR A 2D

BENARD CONVECTION SYSTEM THROUGH HORIZONTAL VELOCITY
MEASUREMENTS ALONE, Journal of Nonlinear Science, 27(2017)

2-D incompressible fluid between two horizontal walls maintained at fixed different

temperatures 7,,,,,,,> T,,,= convective motions transporting heat from bottom to top.

Boussinesq equations for horizontal vector velocity # and normalized temperature 6

u—vAu+@wV)u+Vp’ - 0e,=0 (1a)
0,—kAO+ (u.V)0—ue,=0 (1b)
Vau=0 (Ic)

+ BC and periodicity in horizontal direction



Assume horizontal component v, of velocity of some solution (v(z), 717(¢)) is observed
exactly and corresponding observations are introduced into a numerical integration of eq.

(1) modified through following scheme (‘nudging’)
u—vAu+@Vyu+Vp - 0e,=—u(u,-v,) e with >0 (1’a)

Theorem. 1f the spatial density of the observations is high enough, and nudging
coefficient u is large enough, the ‘nudged’ solution (u(7), 6(¢)) converges exponentially
to observed solution (v(7), 17(¢)) when ¢ tends to infinity.

Observation of horizontal component of velocity only ensures complete asymptotic
observability, and algorithm is available for asymptotic reconstruction of observed
solution (but infinite temporal density of observations seems to be necessary for the
trheorem to hold).

If there are errors in the observations, error on the nudging solution can be estimated
in terms of the errors on the observations.



Assimilation, which originated from the need of defining initial conditions for numerical
weather forecasts, has gradually extended to many diverse applications

e Oceanography

e Atmospheric chemistry (both troposphere and stratosphere)
e  QOceanic biogeochemistry

e  Ground hydrology

e  Terrestrial biosphere and vegetation cover

e Glaciology

e  Magnetism (both planetary and stellar)

* Plate tectonics

* Planetary atmospheres (Mars, ...)

e Reassimilation of past observations (mostly for climatological purposes, ECMWFEF,
NCEP/NCAR)

e Identification of source of tracers

e Parameter identification

e A priori evaluation of anticipated new instruments

e Definition of observing systems (Observing Systems Simulation Experiments)
e Validation of models

e Sensitivity studies (adjoints)

: : : : 53
It has now become a major tool of numerical environmental science



