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Introduction B2 Reading

“Observational records and climate
projections provide abundant evidence that
freshwater resources are vulnerable and
have the potential to be strongly impacted
by climate change, with wide-ranging
consequences for human societies and

S ————

Water vapour in the
climate system
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CLIMATE MODEL PROJECTIONS pccwsi % Reading

Precipitation Intensity * Increased Precipitation
| WAy 3 * More Intense Rainfall
* More droughts

* Wet regions get wetter,
dry regions get drier
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Precipitation Change (%) relative to 1961-1990: 2 scenarios, multi model (IPCC, 2001)
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See discussion in: Allen & Ingram (2002) Nature; Trenberth et al. (2003) BAMS
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How should mean precipitation hesdiig

respond to warming?
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@ Unlver5|ty of
Reading

Projected changes in specific
humidity and precipitation (A1B)
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Circulation response
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Models achieve muted precipitation response by reducing
strength of Walker circulation.

Some observational evidence of this (Vecchi and Soden 2006 Nature)
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Evaporation i T
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- Muted Evaporation changes in models are
—=-explained by small changes in Boundary Layer:
1) declining wind stress
2) reduced surface temperature lapse rate (T.-T,)

s 3) increased surface relative humidity (RH,)




@ Unlver5|ty of
Reading

Moisture Transport
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Reading

Using observations and a
physical basis to inform
projections In future changes
In the water cycle
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Low-level water vapour rises with temperature in
models & observations in accordance with

Clausius Clapeyron equation LN RLP ST
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...despite inaccurate mean state, Pierce et al.; John and Soden (both GRL, 2006)

- see also Trenberth et al. (2005) Clim. Dyn., Soden et al. (2005) Science
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For a given precipitation event, more ~ ®reading
moisture would suggest more intense rainfall

Water Vapour (mm)

Water vapour in the
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Convective

rainfall draws in
moisture from
surroundings
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Daily Satellite Microwave Observations over B8 Reading
tropical ocean appear to confirm warmer months
are associated with more frequent intense rainfall

A SSM/ satellite data
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Frequency of rainfall
Intensities vary with

SST In models and obs

Frequency of intense
rainfall increases with
warming in models and
satellite data

Model scaling close to
7%/K expected from
Clausius Clapeyron

SSM/I satellite data
suggest a greater
response of intense
rainfall to warming
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Change in Frequency of Precipitation
(% per K warming) in Bins of Intensity
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Water vapour in the
climate system

* Large spread in the response
of the heaviest precipitation to

warming between models and

compared with satellite data.

* But intense vertical motion
and PDF of precipitation events

iIn models are unrealistic:
Wilcox and Donner (2007) J Clim;
Field and Shutts (2009) QJ

* Changes in extreme vertical

motion may be important:
Gastineau & Soden (2009) GRL,;
O’Gorman & Schneider (2009) PNAS;
Lenderink & van Meijgaard (2008)
Nature Geoscience
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Changes in Extreme Precipitation Determined by @ggaers'm;gf
changes In low-level water vapour and updraft velocity
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Does Observed Mean Precipitation and # Reading
Evaporation Follow Clausius Clapeyron?
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Models simulate robust response of clear-sky
radiation to warming (~2-3 Wm-=2K-!) and a resulting

Increase Iin precipitation to balance (~2-3 %K-1)
e.g. Allen and Ingram (2002) Nature, Stephens & Ellis (2008) J. Clim
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Models simulate robust response of clear-sky
radiation to warming (~2-3 Wm-=2K-!) and a resulting

Increase Iin precipitation to balance (~2-3 %K)
e.g. Allen and Ingram (2002) Nature, Stephens & Ellis (2008) J. Clim
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Contrasting precipitation response expected B3 Reading

Precipitation -

Temperature -2

e.g.Held & Soden (2006) J. Clim; Trenberth et al. (2003) BAMS; Allen & Ingram (2002) Nature

Water vapour in the
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Wet Dry @ Umversntyof
dP /dT=7%/K  dP/dT Reading

Assume wet region follows
Clausius Clapeyron (7%/K)
and mean precip follows
radiation constraint (~3%/K)

dP/dT=3%/K

A is the wet region
fractional area

P is precipitation

T is temperature

Water vapour in the

climate system © University of Reading 2009 r.p.allan@reading.ac.uk



Wet Dry @ UnlverS|tyof
dP /dT=7%/K  dP/dT Reading

Assume wet region follows
Clausius Clapeyron (7%/K)
and mean precip follows
radiation constraint (~3%/K)

dI:)/dT: A(dPW/dT)-l-(l_A) (dpd/dT)
> dP = (dP-AdP,)/(1-A)

P=3 mm/day

dP/dT=3%/K

A is the wet region (mm/day/K)
fractional area oK

-0.05
+0.02

P is precipitation

T is temperature

Water vapour in the
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Contrasting precipitation response in ascending and
descending portions of the tropical circulation
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The Rlch Get Richer? B Reading

There iIs limited
observational evidence
of a contrasting
precipitation responses
In wet and dry regions

over land (zhang et al. 2007
Nature)

rankregresslon (1960-2099)

Models AP [IPCC 2007 WGI‘ 010 B F
BT ] . | Precip trends, 0-30°N
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A further consequence:

(mm/day) / decade

Rainy season: wetter

ac - Chou et al. (2007) GRL

Dry season: drier o711
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Wat_er vapour in the © University of Reading 2009 r.p.allan@reading.ac.uk
climate system



. University of
Are observing systems adeguate? ® Reading

* It Is notoriously difficult to measure
changes In precipitation from space
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Could changes in aerosol be imposing direct and indirect

C

U4t
- Mishchenko et al. (2007) Science
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hanges in the hydrological cycle? e.g. wild et al. (2008) GRL
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Wielicki et al. (2002) Science; Wong et al.
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Precipitation response depends B Reading
upon the forcing and the feedback

H - —
[ w——x 2 x L0, ]
[ A— — & Salar . ]

Change in precipitation rate (%)

—2r UEMO—HadSh3

Change in surface dgir temperature (K)

Andrews et al. (2009) J Climate

Partitioning of energy between atmosphere and
surface is crucial to the hydrological response

Water vapour in the
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Are the I1ssues of cloud feedback
and the water cycle linked?

(a) Model Albedo GERB Albedo
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Towards regional prediction BP Reading
of the water cycle...

a) Precipitation

summer
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Water vapour in the
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Conclusions B3 Reading

Low level moisture responses robust
— Less clear over land and at higher levels.
— Inaccurate model mean state?

Precipitation extremes linked to moisture
— Moisture response at lowest level?
— Changes in updraft velocity?
— Differences between individual models/obs

Mean and regional precipitation response: a tug of war
— Slow rises in radiative cooling (~3 Wm-2K)
— Rises in low-level moisture (~7%/K) faster than precipitation (~3%/K)
— Reduced frequency? Wet get wetter and dry get drier
— Who cares about drought/flooding over the ocean?

Recent Precipitation Responses appear larger in observations than models.
— Could aerosol be influencing decadal variability in the hydrological cycle?
— Are observing systems up to monitoring changes in the water cycle?

Understanding changes in near surface conditions may be important

Water vapour in the
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@ Unlver5|ty of
Reading

Unanswered guestions

How does UTH really respond to warming?

Do we understand the upper tropospheric moistening processes?
Is moisture really constrained by Clausius Clapeyron over land?
What time-scales do feedbacks operate on?

Apparent discrepancy between observed and simulated changes
In precipitation

— Is the satellite data at fault?

— Are aerosol changes short-circuiting the hydrological cycle?

— Could model physics/resolution be inadequate?

Could subtle changes in the boundary layer be coupled with
decadal swings in the hydrological cycle?

How do clouds respond to forcing and feedback including
changes in water vapour?

Are the cloud feedback and water cycle issues linked?

Wat_er vapour in the © University of Reading 2009 r.p.allan@reading.ac.uk
climate system
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