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c Variational assimilation: A simple analogy - data fi_
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o

Given some measurements, y(x), find the best model fit for model
f(x,c) by adjusting coefficients in model (c) to achieve a 'best’ fit:

Define a cost, J, that measures misfit of model to measurements
eg RMS of y-f(x,c)

Minimise the cost wrt c
Involves computing the gradient of J wrt ¢

With prior knowlege of ¢ ,eg previous estimates of c, with
uncertainties U(c,), we can modify the cost to include two terms :
misfit to model + misfit to Er'lor es’nma’res something like :
Joy- €=, = fe)
ue) | u(y)




c Data Assimilation: 4D-Var

|

Data assimilation combines information
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Radiance Assimilation

Assimilation of radiances
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Scattering in the MW: -
Why MW radiometers see through clouds and IR radiomete

o Importance of scattering governed by size parameter:
x=2mr/ _.

o Mie scattering important for x ~ 1 or greater.
a  For water clouds, r~10_m, MW _'s ~2-6 mm, -> x~102 ->
water clouds appear as homogeneous absorbers/emitters,

o ->scattering unimportant.

a For ice, rain or snow, r~1-10mm, x~1
o ->scattering important.
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c Scattering: _
size parameter for clouds / hydrometeors )

Size parameter

o Size (a) 2x=0.5 pm =10 pm »=1cm

g S  Aerosol lum 1.26x10! 6.3x 107! 6.3x 10*
7S Water droplet 10 um 1.26x10° 6.3 x 10° 6.3x 107
*§ :Ea Ice crystal 100 pm 1.26x10° 6.3 x 10' 6.3x10°
S »  Raindrop 1 mm 1.26x10* 6.3 x 10° 6.3x 10"
% 2 Snowflake 1 cm 1.26x10° 6.3 x 10° 6.3 x 10°
&3 Rayleigh Mie G. Optics
% ‘c’): (Adapted from Liou, An introduction to atmospheric radiation, 2002. Table 5.1)
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c Microwave Sounders in operational systems

N-15 F-17 SSMIS

i ewases ) romsdimams ) eeermses
ECMWF Data Coverage (All obs DA) - ATOVS

24/APR/2009; 00 UTC
Total number of obs = 435630

F-16 SSMIS * T information from 50-60 GHz O,
absorption

EOS-AQUA | ‘ |
2 * Q information from 183 GHz H,O
5 NG absorption, and window channels at
= N18 ") (19, 22, 37, 89 and 150 GHz)
i{ { MetOp-A ‘
g
g
n
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c Microwave data: some examples of measured ¢

Brightness
Temperature
measurements
obtained over
~12 hours by 598
(F-16 SSMIS) /

o :ﬂ;;-‘{ R K
".‘ 3

b t

53.6 GHz S+

i )
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200k~ 300K 150K - 300K



c Microwave data: some examples of measured r'c-

Measurements 37 GHz (H pOI
obtained over P e S ol
~12 hours by

(F-16 SSMIS)
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c Recap: Radiative transfer equation in clear SKies -

S(ensor) dI (over ds)
o —<

Change in radiant intensity along a path is given by the
sum of source and loss terms, in the clear sky case:
emission and absorption, respectively:

dI,...= BB ds (emission)

emit ~
dI,. = - _,I ds(absorption)

Hence:

dI =dI, ; +dI,,

emit

e Role of Water Vapour in the Climate System,
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= B (B-I)ds

and:

dl/ds = (B-I) (Schwarzschilds Equation)




c Radiative transfer equation in clear skies
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Introducing optical path:

and noting:

use integrating factor e *:

after Petty (2006)

v(s) = [B,(s")ds'

7(S)=0
dt =-f ds

dl

—=/-B
dt

e’ ﬂ —le" =-Be”"
dt

% [Ie_r ]= —-Be™

'L" d T,
9 [le™1dt = -(Be™d
{d‘v e ldt { e"dt

1(0) = I(@)e™ +[Be™dr
0




c Radiative transfer equation in clear skies -

!

[(0)=I(T)e ™ + fBe-fdz

AL
7 N

Radiance at sensor

Integral of source function along
path multiplied by transmission
between sensor and each point

Radiance at start of path
multiplied by path transmission
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c Radiative transfer equation in clear skies -

Can write this in two other

forms, firstly using: l=e ,
dt = —e"dr,
£ S
N H
o3 Oy =1z &)+ [Bdr.
22 1o get: (0) = I(z )i(r ) f
% ?5 Hr )
£ di
2 5 dt =—ds
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kg fiy] - 1’(30)5(5@)4«;5(;‘;)
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Weighting function
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c The Microwave Spectrum |

L
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c Vibrational-Rotational (IR) / Rotational Spectroscopyatii
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Microwave absorption lines are normally
due to rotational transitions.

Differences in rotational energy levels B [ T TS ——r
are small in comparison fo :

- Vibrational levels (AE ~ 100-5000cm- 2
0, 5

*(IR spectroscopy) 5
* Electronic s ~ cm-1)

‘UV/XLS spectroscopy

/ 0AE~1-5cm'l\

\ ' Internuclear Separation (r)

Dimer problem — not a true bound state.

potential function shallow - levels very close
— continuum-like absorption ?




c Broadening of atmospheric absorption / emiSSiol I_

For most absorption / emission lines in the earths atmosphere,
two broadening mechanisms are important:

* Pressure (collisional) broadening ( *)
- Doppler broadening

If both are important (eg in IR) the line shape is given by the
convolution of both - the Voigt line shape

Role of Water Vapour in the Climate System,
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c Line strengths (S) -

Nuclear spin Isotopic See Rothman et al
degeneracy  abundance 1987

8’ gl A
S (T)=—wuv. |l -exp(-cv.,./T) P—2xexp(-c,E./T)R .10
/D)=l -ewen, 1T fEoexew-a B /TR,

3
< , .* _ Boltzmann factor for
Spontaneous partition function ground state with

emission term energy E.
|

where R = |< i|/\/\|'l:>|2 - transition dipole matrix element
= 0 if no change in dipole moment

involved in transition fromi to j
Note: S(T)
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obtained through measurement, and available through
published spectroscopic databases (eg HITRAN..)




3

Pressure Broadening (F) -

Lorentz line shape omits this factor

4

fWy,v) = 1 v ) Y Van Vleck and
AL Vo=v) +7° (Vo +v)’ +)/2] Weisskopf (1945)

.S

BR

& 8 s y ] Approximation valid near line
L - - N 2 2 .
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own ! 5

20 1 frequencies and higher
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o= E . ° ° .

- Sy (T Pressure broadening coefficient is

(@] =

58 ; obtained through measurement and

is available from spectroscopic databases
T o~ 1-3 GHz. atm!

who cares ?
eg .22 GHz line widths




5 A ,. Due to Doppler shift resulting
gv,v,) —\/ s : exp(— me (v ~v,) ) from relative motion between

27T, 2kTv,, observer and abs/emitting
-2 molecule
g 8
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38 8kT ln2 . :
§3 FWHM = \/ —=—V, Note line widths scale
g o linearly with frequency
= £
o E
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c Doppler vs Pressure Broadening : IR vs MW
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neglect Doppler broadening in most applications (not mesospheric

sounding though)
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c Line-by-line to fast models (eg RTTOV) -

o Use LbL to generate optical depths () in discrete layers, given
inputs:
o 4, , S, -foreach linein the spectral region of interest
o P, T, q- for each layer, for a range of profiles (1000's)

o For each layer, find coefficients A, which solve (in a least
squares sense) :

y = AX
where (for a single frequency) :

y = vector of simulated optical depths (1XN)
x = matrix of predictors, constructed from p,T and ¢ (MXN)
A= vector of coefficients (1XM)

Role of Water Vapour in the Climate System,
ST Summer School Cargese, Sept 14-26" 2009

(M = no of predictors, N = no. of profiles)



c Fast Models: eg RTTOV -

For a given input profile (x), generate optical depths (tau) in
each layer, using an expression of the form:

n n = number of predictors,
¥ 2 a,tf; typically ~ 20
\ eqg. T,q, T?,..

* Predictors are simple functions of input profile
* Fast: ~1ImS per profile

* K, TL, AD generated from 'direct’ code

* Fast models now capable of :

- Scattering calculations in MW & IR
- allowing cloud/rain analysis
* Modelling trace gas effects (eg CO,, CO, CH,, O;, N,O)

e Role of Water Vapour in the Climate System,
ST Summer School Cargese, Sept 14-26" 2009




c Fast RT models (eg RTTOV)

Version Function Input Output
Forward calculation: . Profile (x) Radiances, usually as
‘Direct’ generate T, from profile | . Channel specifications | brightness
2 (x) - Observation geometry | temperatures
é § (Tg) for all channels.
‘Zf § Generate full Jacobian [as for direct] Arrays containing
E % K matrices (H) H (= dT,/dx ..) for all
cn profile variables, and
£ % channels.
£ D
’g 8 Generate increments in [as for direct] + ... Increments in
g3 TL radiance (_T;) from increments in profile radiances (_Tp)
E S increments in profile variables (_x)
‘;" ’g variables
:,5, E Generate gradients of [as for direct] + Gradients of cost wrt
2 g AD cost wrt profile variables | normalised departures: | Profile variables.
20 from gradients of cost R1d
wrt T, = Ri(y-H(x,))

or RY(y-H(x,)-H_x)




c RT with scattering -

Recall clear sky RT, where the change in radiant intensity
along a path was given by the sum of sink (absorption) and
source (emission) terms.

(©))
= S
o : . :
2% Scattering contributes to both sink and source terms:
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c RT with scattering -

dl =dl _ +dl__ +dl

emit + scat

are 1R [ p(Q,DI(Qdw'ds

scat 475

ég Lf p(fg’, Q)dw’ =~ normalised phase function,
ch 3 Qg JAn represents scattering from
T B angles Q' info view direction Q
G o dl = - Ids + p_Bds +— f p(Q, Q) (Q)dw'ds
s
$S e _
g é then, dividing through by: dt = ﬁedS
- dI(Q) 7]
© E i ; i (48] g SNF f
s 3 = [PQ.D1(Q)dw
s 2 dr 47t
£5 ! ll

sca’r’rér‘ing |

albedo phase function




c RTTOV-SCATT : A fast scattering model for MW-
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|

(M

(M

Scattering albedo and phase function (asymmetry parameter for
Henyey-Greenstein phase function) are pre-computed using Mie
theory, and stored in look up tables.

Look-up tables are indexed by hydrometeor amounts (for rain,
snhow, cloud water, cloud ice)

See Appendix for details, also Bauer et al, QIRMS, 2006,
Vol.132, pp.1259-1281.



c Combined cloud-radiative transfer modelling

ns_snowstormnew_1800_2km EXtinction [1/km]
e 10.000E

1.000 &

200
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MW data
v. important
for NWP |

50 GHz

W. Fns span
troposphere/
stratosphere &
give infoon T

MW

Spectroscopy &
RT in clear skies

is relatively

simple (few lines) %4 GHz

Fast RT models
used in DA

53.6 GHz =%

TR

183 GHz channels
are centred on
H,O line,
channels selected
to give vertical
coverage.

MW scattering
RT more complex
but Fast RT
models now
available



c Summary
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19 GHz (H pol)

19 GHz (v pol)

Ocea" SUI‘face |s Polamnﬁ‘w’
This gives ocean WS |
lnfor'ma‘non

22 GHz (&‘19/37/85) gives
information on WV and cloud
although vertical resolution is
limited (wrt IR)

Land surface emissivity is

more difficult to model, this
restricts use of data over

22 GHz (V pol)

37 GHz (H pol

37 GHz (V pol)




