Lagrangian transport

WAVACS 2009
B. Legras, legras@Imd.ens.fr, http://www.Imd.ens.fr/legras

The Lagragian point of view

Lagrangian dispersion (Taylor)

Scale of distances
We neglect here molecular diffusion and show that at large scales where dispersion exceeds the size of most energetic eddies, transport is again diffusive. In Lagragian coordinates, motion of a parcel is

$$
\boldsymbol{x}(\boldsymbol{a}, t)=\boldsymbol{x}(\boldsymbol{a}, 0)+\int_{0}^{t} \boldsymbol{u}(\boldsymbol{x}(\boldsymbol{a}, s), s) d s
$$

where $x(a, t)$ is position at time t of parcel which was in a at time 0 (hence $\boldsymbol{x}(\boldsymbol{a}, 0)=a$)
For each parcel with initial positiona a_{i}, define $\boldsymbol{x}_{\boldsymbol{i}}(t)=\boldsymbol{x}\left(a_{i}, t\right)$ and $\boldsymbol{v}_{\boldsymbol{i}}(t)=\boldsymbol{u}\left(\boldsymbol{x}\left(\boldsymbol{a}_{i}, t\right), t\right)$
Hence, $\frac{d}{d t}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{a}_{\boldsymbol{i}}\right)^{2}=2\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{a}_{i}\right) \boldsymbol{v}_{\boldsymbol{i}}=2 \int_{0}^{t} \boldsymbol{v}_{\boldsymbol{i}}(t) \boldsymbol{v}_{\boldsymbol{i}}(s) d s$, and after averaging over ensemble

$$
\frac{d}{d t}\left\langle\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{a}_{\boldsymbol{i}}\right)^{2}\right\rangle=2 \int_{0}^{t} S(t-s) d s=2 \int_{0}^{t} S(s) d s
$$

where $S(t-s)=\left\langle\boldsymbol{v}_{\boldsymbol{i}}(t) v_{i}(s)\right\rangle$ is the Lagrangian velocity correlation, assuming homogeneity and stationnarity. This can be solved as

Integral scale I
$\int_{0}^{\infty} S(s) d s=\left\langle v^{2}\right\rangle I$

$$
\left\langle\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{a}_{\boldsymbol{i}}\right)^{2}\right\rangle=2 \int_{0}^{t}(t-s) S(s) d s
$$

Diffusive regime: If $S(s)$ decays fast enough, and fort $\gg I$

$$
\left\langle\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{a}_{\boldsymbol{i}}\right)^{2}\right\rangle \sim 2 D t \text { with } D=\int_{0}^{\infty} S(s) d s
$$

If the integral $\int_{0}^{\infty} S(s) d s$ diverges, the diffusive regime does not exis. For instance if $S(s) \sim s^{-\eta}$ with $0<\eta<1$, the regime is super-diffusive

$$
\left\langle\boldsymbol{x}^{2}\right\rangle \sim t^{2-\eta}
$$

If now $\int_{0}^{\infty} S(s) d s=0$, but if $\int_{0}^{t}(t-s) S(s) d s$ diverges with t, we have a sub-diffusive regime. For instance ifS $(s) \sim s^{-\eta}$ with $1<\eta<2$ for large enough times, we have again $\left.x^{2}\right\rangle \sim t^{2-\eta}$ but with an exponent less than 1

Reconstruction of tracer fields

Reconstruction of a tracer field is obtained by reverse time integration of particle trajectories initialised from their final position from t_{0} to $t_{0}-\tau$, using analysed winds (e.g. ECMWF winds).

- assignment of the chemical tracer value or PV at $\dagger_{0}-\tau$ location from low resolution CTM (chemical transport model) or analysed fields

Time T
Regular grid (domain filing) or aircraft track
velocity $\vec{u}(\vec{x}(\vec{a}, t), t)$
tracer concentration $c(\vec{x}(\vec{a}, t), t)$

$$
\text { Time } T-\Delta T
$$

Layerwise motion and the generation of filaments in the lower stratosphere -> laminae in the ozone
ozone profile from Lerwick vertical profile

The ERTEL potential vorticity

$$
P=\frac{(\overrightarrow{r o t} \vec{v}+2 \vec{\Omega}) \cdot \vec{\nabla} \theta}{\rho} \approx \frac{\left(f+\zeta_{\theta}\right)}{\rho_{\theta}}
$$

with the isentropic density $\rho_{\theta}=-g \partial p / \partial \theta$, measuring static stability

The potential vorticity $P(P V)$ is a material invariant under inviscid and adiabatic approximation

A discontinuity in static stability must show up equally well in PV

Unit: 1 PVU $=10^{-6} \mathrm{~m}^{2} \mathrm{~s} \mathrm{~K} \mathrm{~kg}^{-1}$

Meteosat water-vapour

PV reconstruction by isentropic contour advection at 320 K

Lagrangian trajectories are able to reconstruct small-scale structures well beyond the resolution of the
observed/analysed winds.

Why does this work? What are the limitations?

Large-scale motion ($L>100 \mathrm{~km}$ in the atmosphere, $L>10 \mathrm{~km}$ in the ocean) is dominated by layerwise quasi two-dimensional motion as a result of aspect-ratio, rotation and stratification

Numerically simulated

 two-dimensional turbulence

Chlorophyll in the ocean

Visible channel Meteosat

Water vapour channel Meteosat

1
Although mixing and convective instability do occur during the development, the main ingredient is adiabatic baroclinic instability, that is isentropic motion.

II. 4

Ubiquity of quasi-horizontal layers in the troposphere

Reginald E. Newell*, Valerie Thouret ${ }^{*} \dagger$, John Y. N. Cho ${ }^{*}$, Patrick Stoller ${ }^{*}$, Alain Marenco \dagger \& Herman G. Smit§

Nature, 25 March 1999

About 15% of the atmosphere is occupied by layers.

Mainly due to stratospheric intrusions

Example of layering in the free troposphere

SIRTA aerosol lidar on 26-28 May 2003
Ecole Polytechnique / LMD

Turbulent versus chaotic mixing

- Turbulent mixing in 3D flows with a large number of degrees of freedom
- Kolmogorov scale law
- ivelocity increment $\delta U(r) \sim r^{1 / 3}$
- The velocity gradient is singular in the inviscid limit
- Chaotic stirring in layerwise (quasi-2D) flows is dominated by the advection of the large-scale energetic eddies
- Batchelor flow
- Velocity increment $\delta U(r) \sim r$
- Velocity gradient is everywhere bounded

Atmospheric spectra from commercial aircraft data

FIG. 1. From left to right: variance power spectra of zonal wind, meridional wind $\left(\mathrm{m}^{3} \mathrm{~s}^{-2}\right)$, and potential temperature $\left(\mathrm{K}^{2} \mathrm{~m}\right)$ near the tropopause from Global Atmospheric Sampling Program aircraft data. The spectra for meridional wind and temperature are shifted one and two decades to the right, respectively. Reproduced from [7].

Dispersion of atmospheric tracers.
EOLE balloon experiment.

FIG. 5. FSLE of the balloon pairs, (-) describing total and (\times) meridional dispersion, with initial $100-\mathrm{km}$ threshold. The meridional FSLE is $\lambda_{\text {mat }}$ defined in Eq. (2.7). The meridional eddy diffusion coefficient is $D_{Z} \simeq 1.5 \times 10^{6} \mathrm{~m}^{2} \mathrm{~s}^{-1}$.

Lacorata et al., J. Atmos. Sci., 1984

Nastrom \& Gage, J. Atmos. Sci., 1985

Bacmeister et al., JGR, 1996

Figure 7. Log-averaged DWT power spectra of ozone and $\mathrm{N}_{2} \mathrm{O}$ mixing ratio variance. Log averages are taken over the entire set of available 1024 s spectra of each quantity Solid circles show log-averaged spectrum of ozone mixing ratio variance. Solid triangles show $\mathrm{N}_{2} \mathrm{O}$ variance. Mixing ratios $\mathrm{N}_{2} \mathrm{O}$ were arbitrarily multiplied by 8 to make them comparable to ozone mixing ratios. Short dashed line shows -3 slope. Long dashed line shows $-5 / 3$ slope.

Tracer spectra in the lower stratosphere display slope of about -1.7 that can be explained by a combination of isentropic advection and diffusion.

Fic. 8. Comparison between (a) 1D spectrum $G(k)$ and (b) 2D Isotropic spectrum $F(k)$ obtained after 30 days with $\kappa=10^{-2} \mathrm{~m}^{2}$ 5^{-1}

Haynes \& Vanneste, JAS, 2004 theory

Efficient stirring is performed by a periodic flow
Trajectories may be chaotic in 2D for a periodic flow, in 3D for a stationary flow.

J.M. Ottino, The kinematics of mixing: stretching, chaos, and transport (Cambridge, 1989)

Lyapunov exponent

Evolution equations for a line element and the passive scalar gradient in the absence of diffusion and source are very similar since $\nabla \theta \cdot \mathbf{x}=\delta \theta$ is preserved

$$
\begin{aligned}
& \frac{D}{D t} \delta x_{i}=\frac{\partial u_{i}}{\partial x_{j}} \delta x_{j} \quad \frac{D}{D t} \frac{\partial \theta}{\partial x_{i}}=\frac{-\partial u_{j}}{\partial x_{i}} \frac{\partial \theta}{\partial x_{j}} \\
& \left(\frac{D}{D t} \text { time derivation along a given trajectory } \mathbf{x}(t)\right)
\end{aligned}
$$

Over a time interval $\left[t_{0}, t_{0}+\tau\right]$:

$$
\delta \mathbf{x}\left(t_{0}+\boldsymbol{\tau}\right)=\mathbf{M}\left(t_{0}, t_{0}+\tau\right) \delta \mathbf{x}\left(t_{0}\right) \quad \nabla \theta\left(t_{0}+\boldsymbol{\tau}\right)=-\mathbf{M}^{\boldsymbol{T}}\left(t_{0}, t_{0}+\tau\right) \nabla \theta\left(t_{0}\right)
$$

Finite-time Lyapunov exponent

$$
\lambda\left(\tau, \mathbf{x}\left(t_{0}\right)\right)=\frac{1}{\tau} \ln \frac{|\mathbf{M} \delta \mathbf{x}|}{|\delta \mathbf{x}|}=\frac{1}{\tau} \ln \frac{\left|\mathbf{M}^{T} \nabla \theta\right|}{|\nabla \theta|}
$$

At large τ, if the flow is ergodic, $\lambda\left(\tau, \mathbf{x}\left(t_{0}\right)\right)$ tends to a unique $\bar{\lambda}$. At intermediate τ, λ exhibits large spatial and temporal variations.

Local Lyapunov exponent in a two dimensional flow

Evolution of a tracer blob under the combined action of stretching and diffusion

L_{s} Characteristic size of sync (energetic) advecting structu

$$
\begin{aligned}
& \text { Size of the dispersed blob } \\
& R \sim \sqrt{\tau} \text { for } \tau \gg \tau_{0}=\bar{\lambda}^{-1} \ln \left(L_{s} / l_{0}\right)
\end{aligned}
$$

Filament encounter on 3 March 2000 SOLVE campaign

Improvement of CTM MOCAGE by Lagrangian reconstructions

Lagrangian reconstructions and diffusion

Diffusion and random vertical motion

Let vertical motion be $\delta=w \delta t+\eta \delta t$ where η is a white noise and δt is the time step.
Over a large number of time steps, this is equivalent to a diffusive process with $D=\frac{1}{2}<\eta^{2}>\delta t$.

How to estimate Lagrangian diffusivity?
Pure advection (no diffusion) generates a number of spurious laminae which are not observed in the tracer profiles.

D can be estimated by adjusting diffusion until the reconstructed transect exhibits the same roughness as the observed transect r when well identified structures are similar.

The advection -diffusion equation

$$
\frac{\partial \theta}{\partial t}+u \nabla \theta=\kappa \Delta \theta
$$

can be solved as

$$
\theta(x, t)=\int \rho(y, s) G(x, t ; y, s) \theta(y, s) d^{3 y}
$$

where G is a Green function solution of

$$
\begin{gather*}
\frac{\partial G}{\partial t}+u(x, t) \nabla_{x} G-\frac{\kappa}{\rho(x, t)} \nabla_{x} \rho(x, t) \nabla_{x} G=\frac{1}{\rho(y, s)} \delta(t-s) \delta(y-s) \tag{1}\\
\frac{\partial G}{\partial s}+u(y, s) \nabla_{y} G+\frac{\kappa}{\rho(y, s)} \nabla_{y} \rho(y, s) \nabla_{y} G=\frac{1}{\rho(x, t)} \delta(t-s) \delta(y-s) \tag{2}
\end{gather*}
$$

or

The Green function of the advection-diffusion equation describes the probability of transit of a particle from (y, s) to (x, t).
The statistical average of mixing ration over random backward trajectories is equivalent to solving (2).
$\mathrm{N}_{2} \mathrm{O}$ recons. $\mathrm{D}=0.01 \mathrm{~m}^{2} / \mathrm{s} \tau=11$ days

$\mathrm{N}_{2} \mathrm{O}$ recons. $\mathrm{D}=0.01 \mathrm{~m}^{2} / \mathrm{s} \quad \tau=88$ days

Fracer $\mathrm{N}_{2} \mathrm{O}$

Convergence of diffusive reconstructions

Reactive O_{3}

Local variations of Lagrangian turbulent diffusion

Filament width 100 km right edge 36 km left edge 2.5 km

Legras et al., ACP, 2005

Vertical mixing versus horizontal stirring

horizontal strain Γ only
$L(t) \sim \exp (-\Gamma t)$

horizontal strain $\Gamma \quad \tan \psi=\Gamma / \Lambda$ plus vertical shear Λ
$\mathrm{L}(\mathrm{t}) \sim \exp (-\Gamma \mathrm{t}) \quad \mathrm{D}(\mathrm{t}) \sim \mathrm{L}(\mathrm{t}) \Gamma / \Lambda$

Haynes \& Anglade, JAS, 1997
Building sloping sheets by combining vertical shear \wedge and horizontal strain Γ. In the lower stratosphere: $\Lambda / \Gamma \approx 250$. This is in good agreement with observations of tracer sheet aspect ratios. Lower aspect ratios $(O(50)$) are observed for tropopause folds near jet streams but still the aspect ratio is large.

Due to the high aspect artio (1 km in the horizontal $\Leftrightarrow 4 \mathrm{~m}$ in the verical) aircraft measurements have generally much higher equivalent resolution than balloon soundings.

Intermediate Summary

Basic facts about transport and mixing in the non convective atmosphere

- Quasi-layerwise motion generates a large amount of small-scale sheets by advection seen as filaments in 2D maps and laminae in profiles or transects.
- Advection is dominated by structures in the wind field that are of sufficiently large scale to be resolved by operational analysis \Rightarrow chaotic folding and stretching.
- Slow vertical motion.
- Laminae in the tracers are observed by in situ instruments at scales unresolved by NWP models.
- Sheets are sloping with an aspect ratio determined by the ratio between vertical shear and horizontal strain, 250 (Haynes \& Anglade, 1997) in the lower stratosphere (1 km in the horizontal $\Leftrightarrow 4 \mathrm{~m}$ in the vertical). As a result aircraft measurements have generally much higher equivalent resolution than standard balloon soundings.
- Sheet thickness is bounded by 3D unresolved turbulence that is primarily acting as vertical mixing.

Quasi-Lagrangian numerical methods

A number of numerical methods have been introduced to preserve flow invariants better than finitedifference or spectral methods. Most of them are in the family of finite-volume or ENO (essentially non oscillating) methods.

CLAMS numerical advection scheme

Regridding is applied locally where the Lyapunov exponent exceeds some threshold

quasiuniform distribution of air parcels
Delaunay triangulation \Rightarrow next neighbors

sheared flow
$\Delta t=6-24$ hours
grid adaptation $=$ regridding of the deformed grid

$$
\Rightarrow \text { new air parcels }
$$

\Rightarrow interpolations (num. diffusion)

$$
\Rightarrow \text { mixing }
$$

Mc Kenna et al., 2002, JGR, 107, 2000JD000114;

CLAMS results for SOLVE campaign

Argus CH 4 versus CLAMS

Konopka et al., 2004, JGR, 109, 2003JD003792

Transport barriers

I isentropic transport barriers

NASA ER-2 transect across the edge of the Antarctic polar vortex
sharp transition over a few km

Vortex erosion submitted to an external shear Generation of filamenst and gradients on its periphery

Streamfunction and vorticity chart (vorticity can ne replaced by a passive tracer)
Case of slow erosion

Chart of the polar Antarctic vortex. PV and stretching line maxima (Lyapunov) (backward and forward).

Vorticity chart and transverse section. Case of fast erosion.

Stretching rate - Lyapunov exponent

Over a time intervat $\left.t_{0}, t_{0}+\tau\right]: \delta \mathbf{x}\left(t_{0}+\tau\right)=\mathbf{M}\left(t_{0}, t_{0}+\tau\right) \delta \mathbf{x}\left(t_{0}\right) \nabla \theta\left(t_{0}+\tau\right)=-\mathbf{M}^{T}\left(t_{0}, t_{0}+\tau\right) \nabla \theta\left(t_{0}\right)$ Finite-time Lyapunov exponentit $\left(\tau, \mathbf{x}\left(t_{0}\right)\right)=\frac{1}{\tau} \ln \frac{|\mathbf{M} \delta \mathbf{x}|}{|\delta \mathbf{x}|}=\frac{1}{\tau} \ln \frac{\left|\mathbf{M}^{T} \nabla \theta\right|}{|\nabla \theta|}$

- Finite-time (FTLE) or finite-size (FSLE) Lyapunov exponent measures stretching experienced by a parcel during a time interval.
- Pro: Easily calculated and physically sound. Standard tool in the theory of dynamical systems. Not limited to 2D. Provides maps of dynamical barriers.
- Con: Complicated patterns when short lived structures. Is usually dominated by shear and hence is not a measure of mixing for distributed tracer. Does not correlate with effective diffusivitv Red: large forward Lyapunov <=> unstable (past) material line (manifold) Blue: large backward Lyapunov <=> stable (future) material line (manifold)

day 3

Courtesy of F. d'Ovidio
day 2

Intersection of stable and unstable material lines: hyperbolic trajectories

Effective diffusivity in practice

$$
K_{\mathrm{eff}}(A, t)=\frac{\partial A}{\partial C} \oint_{\gamma(C, t)} \kappa|\nabla c| d l=\frac{\left.\left.\langle\kappa| \nabla c\right|^{2}\right\rangle}{(\partial C / \partial A)^{2}}
$$

- Keff (Leq) is well defined from contour averaging on isentropic surfaces
- Measures mixing as the amount of foldings beared by a given contour.
- Pro: Is a diffusivity. Easily calculated. Depends weakly on the quantity being contoured. Usable as a turbulent parameterization in 2D vert-lat models.
- Con: Limited to isentropic motion. Does not diagnose variation of diffusion along contours.
L_{eq} as a function of log-pressure height and ϕ_{e}. Increased mixing in the summer lower stratosphere

see Haynes and Shuckburgh, 2000, JGR, 105, 22777-22810

Subtropical jets and polar vortex jets as minima (barriers) in effective diffusivity

Filament stretched until it reaches a width $l_{d}=\sqrt{\kappa / \lambda}$ where λ is the average Lyapunov exponent Effective diffusivity $\kappa_{\text {eff }}=\kappa \frac{L^{2}}{l_{O}^{2}}$ where L is the length of the contour. Wide packing hypothesis $L l_{d} \approx l_{0}^{2}$ implies $\kappa_{\text {eff }} \approx \lambda l_{0}^{2}$

WAVACS: Lagrangian transport

Within a shear zone, the

 width of the region invaded by filaments is bounded by barrier effects.

Under narrow packing hypothesis
$L l_{d} \approx l_{0}^{2} \sin \alpha$ and hence $\kappa_{\text {eff }} \approx l_{0}^{2} \lambda \sin ^{2} \alpha$

D' Ovidio etal., JAS, 2009

PV \& FSLE (+/- 10 d), 350 K, 01/07/1998, $r=100$

Finite-size Lyapunov exponent and PV in the subtropics of southern hemisphere. Patterns associated with travelling baroclinic perturbations. Barrier effect?

Red: large forward Lyapunov <=> unstable (past) material line Blue: large backward Lyapunov <=> stable (future) material line
\square

DJF 350K

MAM 350K

JJA 350K

SON 350K

Lyapunov diffusivity
Lyapunov exponent x $\sin ^{2}$ (angle between stable \& unstable direction) x coefficient(latitude)

D'Ovidio et al., JAS, 2009

51) Schuckburgh et al., JAS, 2009

Upper-level frontogenesis and tropopause fold (II)

Mixing barrier at the tropopause

Tracer-Tracer relations and barriers

Pre-AVE and CR-AVE campaigns

Fig. 2. (a) CO as a function of potential temperature; (b) O_{3} as a function of potential temperature; (c) tracer-tracer relation with O_{3} as a function of CO. Color code indicates the potential temperature (pink to red for tropical data and pale to dark blue for subtropical lowerstratosphere) with discontinuities at $\theta=360 \mathrm{~K}$ and $\theta=380 \mathrm{~K}$, and marks the mixing line (orange). Black points in Fig. 1 are discarded from this figure.

Fig. 4. Meridional distribution of the probability density function (pdf) of the particles contributing to the parcels belonging to the subtropical tropopause layer after a 9-day backward integration and as a function of latitude and potential temperature. The violet line shows the location of flight track along which the parcels have been initialized. The pdf is first calculated by binning parcels within boxes of $1 \mathrm{~K} \times 1 \mathrm{deg}$. Contours show integrated percentage of parcels by aggregating boxes starting from the most populated. The thick line shows the average tropopause calculated as the lower level satisfying either $\theta>380 \mathrm{~K}$ or $P V>2,3$ or $4 \times 10^{-6} \mathrm{~K} \mathrm{~kg}^{-1}$ $\mathrm{m}^{2} \mathrm{~s}^{-1}$ (light, medium and dark gray).

eor
James \& Learas ACP 2008

Origin of parcels from Lagrangian trajectories

Fig. 10. Same as Fig. 4 but for the distribution of the tropical parti-
cles after an integration of one month

Transport and water vapour. (subtropical intrusions)

LONGTUDE (DEGREES)
(d) PV 970130 350K

(b) PV 970126350 K

LONGIUDE (DECREES)

(c) PV 970128350 K

Figure 1. (a) zonal wind averaged between January 16 and February 14, 1997 (contour interval $10 \mathrm{~m} / \mathrm{s}$; negative values shaded). (b-f) PV on January 26 to February 1, 1997 (PV $=(-5,-4, \ldots, 5)$ PVU contoured, with $|P V|>2$ PVU shaded). All fields are on the 350 K isentrope.

Waugh \& Polvani, GRL, 2000

Figure 1. Maps of MLS 215 hPa RH (shading) and NCEP 350K PV (contours) for several days in January and February 1993. The shading interval for the RH is 20% with lightest shading corresponding to $\mathrm{RH}<20 \%$ and darkest shading to $\mathrm{RH}>120 \%$. Contours show PV $=1$ and 2 PVU.

Waugh, JGR, 2004
(a)

$0 \quad 60120180240300360$ longitude (degrees)
(b)

In the subtropics at 200-300hPa, dry air from the extratropical lower stratosphere mixes with relatively moist tropical air, contributing to dry subtropical troposphere.

Waugh, JGR, 2004

Figure 4. Longitudinal variation of the composite-mean RH for north Pacific intrusion events in January-February, for AIRS (solid curve) and MLS (dashed curve) measurements in 2003-2004 and 1992-1994, respectively. Diamonds and horizontal lines show MLS composite using individual profile data rather than gridded data. Longitude is relative to longitude of the $P V$ intrusion (vertical dotted

Observed brightness at $6.3 \mu \mathrm{~m}$

Calculated brightness

Pierremhumbert \& Roca, 1998

Water vapour and diffusion

Water vapour and diffusion

Consider the simple problem

$$
\partial_{t} q=D \partial_{y y} q-S\left(q, q_{s}\right)
$$

where $S\left(q, q_{s}\right)$ means that q is set to q_{s} as soon as $q>q_{s}$
$q=q_{s}$ is a solution in the infinite domain as long as $\partial_{y y} q_{s}>0$ In this case, diffusion flux and condensation maintain saturation everywhere.

In case of zero flux in $y=0$ and q_{s} decaying with y

Figure 5: Numerical results for the freely decaying diffusion-condensation model with a no-flux barrier at $y=0$. Left panel: Time evolution of the point $Y(t)$ bounding the subsaturated region, and of total moisture in the system. The short-dashed line gives the fit to the asymptotic result $Y \sim t^{1 / 3}$. Right panel: The profile of specific humidity at the times indicated on the curves.

Pierrehumbert et

 al., 2007If now we consider instead an ensemble of particles that execute independent random walks, and are tagged with a passive tracer c_{j} and water vapour q_{j} which is bound by saturation $q_{s}(y)$.
If the random walk is governed by the stochastic equation

$$
d y / d t=v(t) \text { with }<v(t) v\left(t^{\prime}\right) \geq 2 \mathrm{D} \delta\left(t-t^{\prime}\right)
$$

Then the distribution of the passive tracer follows the diffusion equation

$$
\partial_{t} c=D \partial_{y y} c
$$

while interesting behaviour is observed for the non passive water vapour.
First dry air is generated in the infinite domain because of the excursions of parcel into the dry region.
For the same reason, the decay in the bounded domain with zero flux is faster

Non mixing particles

Hence：

Random walk and condensation do not commute（same conclusio，n holds for order 2 chemical reactions）
Turbulent diffusivity is questionable for humidity and chemical compounds．
Consequences：large－scale models（GCM，NWP）may no \dagger represent the dry part of the water vapour distribution．
This can be investigated using Lagrangian trajectories

Pierrehumbert et
 al．， 2007

Figure 15：Probability distribution of relative humidity for Dec． 1994 over the region shown in Figure 14，computed 4 times daily using NCEP winds and temperatures．Results for experiments with temperature uniformly increased or decreased by 1 K are also shown，but the curves are barely visible because they lie almost exactly on the control case．For comparison，the relative humidity PDF over the same time and region for the ERA40 analysis is also shown．

Assumtion: The distribution of water vapour is essentially dependent on the transport properties of the flow + the last encounter with saturation. Then the variation of RH under climate change (where circulation is unchanged to first order) is linked to the Clausius-Clapeyron law

$$
r(\Delta T) \approx\left(\frac{p}{p_{m}}\right) \frac{e_{s}\left(T_{m}\right)+e_{s}\left(T_{m}\right) \frac{L}{R_{w} T_{m}^{2}} \Delta T}{e_{s}(T)+e_{s}(T) \frac{L}{R_{w} T^{2}} \Delta T} \approx r(0)\left(1+\frac{L}{R_{w} T}\left(\frac{T^{2}}{T_{m}^{2}}-1\right) \frac{\Delta T}{T}\right)
$$

where T is the parcel temperature and T_{m} its minimum encountered temperature

With $T=260 \mathrm{~K}, T_{m}=240 \mathrm{~K}$ and $\Delta T=1 \mathrm{~K}$ the increase is only $0.014 r(0)$

Vertical velocities and diabatic heating rates

- Vertical velocities $\mathrm{dp} / \mathrm{d} t$
- Standard archived product of most models.
- Offset adiabatic motion
- Instantaneous values very noisy. Remedies:
- increase temporal resolution (3h is OK, 1 h not needed)
- Time average (but loss of mass conservation)
- Mean ascent within the grid averaging convective ascent and environment cooling.
- Heating rates $d \theta / d t$
- Archived in ECMWF reanalysis. In most cases, need radiative calculations.
- Accumulated heating rates much less noisy than vertical velocities.
- Can separate radiative/convective, clear sky/all sky effects.
- Difficulty: weak vertical gradients of θ often encountered in the troposphere
- Loss of mass conservation

Comparison of reconstructions with

 several advecting wind fieldsNo sensitivity to spatial resolution but very large sensitivity to temporal resolution

Trajectories and clouds

Figure 5.8: Examples of trajectory with different vertical motion to illustrate the different criteria. Only clouds where all criteria are fulfilled are interpreted as the convective origin of the measured air.

Backward Lagrangian trajectories in the TTL from 100 hPa during monsoon season.
Diabatic heating rates from ERA-Interim
Rightness temperature from CLAUS

PDF of potential temperature of convective sources (CLAUS)
and of locations of minimum temperature (dehydration)

James et al., GRL, 2008

Corti et al, ACP, 2006
For soundings distributed within the tropics

Bay of Bengal (85-95E/0-20N) - July-August 2000

Cloud upwelling transports parcels from the outflow level to the level of zero clear sky heating rate

Corti et al, ACP, 2006

Reference -
Simulation with vertical velocities (instead of heating rates)

Reference Simulation ignoring cloud tops

Overshoot parameterization: encounter probability with exponential decay with height adjusted to be 6% over ocean and 15% over land 1 km above cloud top (10 times Liu \& Zipser, 2005). Frequency needs to be multiplied by 100 to get 0.3 ppmv)

Reference -
Simulation
with clear sky heating rates (instead of all sky)

