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Vectors: definitions and superposition
principle
Vector A is a coordinate-independent (invariant) object
having a magnitude |A| and a direction. Alternative
notation ~A.
Adding/subtracting vectors:

A

BA+B

Superposition principle: Linear combination of vectors is
a vector.
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Products of vectors

Scalar product of two vectors:
Projection of one vector onto another:

A · B := |A| |B| cosφAB ≡ B · A,

where φAB is an included angle between the two.

Vector product of two vectors:

A ∧ B := îAB |A| |B| sinφAB = −B ∧ A,

where îAB is a unit vector, |̂iAB| = 1, perpendicular to both
A and B, with the orientation of a right-handed screw
rotated from A toward B.
× is an alternative notation for ∧ .
Distributive properties:
(A + B) ·C = A ·C + B ·C, (A + B)∧C = A∧C + B ∧C.
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Vectors in Cartesian coordinates

0

Z

X

Y

y

x

z

V

Cartesian coordinates: defined by a right triad of mutually
orthogonal unit vectors forming a basis:

(x̂ , ŷ , ẑ) ≡ (x̂1, x̂2, x̂3),
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Tensor notation and Kronecker delta
(x̂ , ŷ , ẑ)→ x̂ i , i = 1,2,3. Ortho-normality of the basis:

x̂ i · x̂ j = δij ,

where δij is Kronecker delta-symbol, an invariant tensor of
second rank (3× 3 unit diagonal matrix):

δij =

{
1, if i = j ,
0, if i 6= j .

The components Vi of a vector V are given by its
projections on the axes Vi = V · x̂ :

V = V1x̂1 + V2x̂2 + V3x̂3 ≡
3∑

i=1

Vi x̂ i

Einstein’s convention:∑3
i=1 Ai Bi ≡ Ai Bi (self-repeating index is “dumb”).
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Vector products by Levi-Civita tensor
Formula for the vector product:

A ∧ B =

∥∥∥∥∥∥
x̂ ŷ ẑ
A1 A2 A3
B1 B2 B3

∥∥∥∥∥∥
Tensor notation (with Einstein’s convention):

(A ∧ B)i = εijkAjBk ,

where

εijk =


1, if ijk = 123,231,312
−1, if ijk = 132,321,213
0, otherwise

Magic identity:

εijkεklm = δilδjm − δimδjl . (1)
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Scalar, vector, and tensor fields

Any point in space is given by its radius-vector
x = x x̂ + y ŷ + zẑ .
A field is an object defined at any point of space
(x , y , z) ≡ (x1, x2, x3) at any moment of time t , i.e. a
function of x and t .
Different types of fields:

I scalar f (x , t),
I vector v(x , t),
I tensor tij(x , t)

The fields are dependent variables, and x , y , z and t -
independent variables.
Physical examples: scalar fields - temperature, density,
pressure, geopotential, vector fields - velocity, electric and
magnetic fields, tensor fields - stresses, gravitational field.
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Differential operations on scalar fields

Partial derivatives:

∂f
∂x

:= lim
∆x→0

f (x + ∆x , y , z)− f (x , y , z)

∆x
,

and similar for other independent variables. Differential
operator nabla:

∇ := x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

Gradient of a scalar field: the vector field

grad f ≡∇f = x̂
∂f
∂x

+ ŷ
∂f
∂y

+ ẑ
∂f
∂z

Heuristic meaning: a vector giving direction and rate of
fastest increase of the function f .
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Visualizing gradient in 2D

From left to right: 2D relief, its contour map, and its
gradient. Graphics by Mathematica c©
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Differential operations with vectors

I Scalar product: divergence

divv ≡∇ · v(x) =
∂vi

∂xi

I Vector product: curl

curlv ≡∇ ∧ v(x); (curlv)i = εijk
∂vk

∂xj

I Tensor product:

∇⊗ v(x); (∇⊗ v)ij =
∂vi

∂xj

For any v , f : div curl v ≡ 0, curl grad f ≡ 0,
div grad f = ∇2f , ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 - Laplacian.



Necessary
mathematics
Vector algebra

Differential operations on
scalar and vector fields

Integration in 3D space

Fourier analysis

A crash course in
fluid dynamics
The perfect fluid

Governing equations

Euler - Lagrange duality

Energy and
thermodynamics

Kelvin circulation theorem

Real fluids: incorporating
molecular transport

Visualizing divergence in 2D

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

From left to right: vector field v(x , y) = (v1(x , y), v2(x , y),
and its divergence ∂v1

∂x + ∂v2
∂y . The curl ẑ

(
∂v2
∂x −

∂v1
∂y

)
of

this field is identically zero. (The field is a gradient of the
previous example.) Graphics by Mathematica c©
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Visualizing curl in 2D

-3 -2 -1 0 1 2 3
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-1

0
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From left to right: vector field v(x , y) = (v1(x , y), v2(x , y),
and its curl ∂v2

∂x −
∂v1
∂y . The divergence ∂v1

∂x + ∂v2
∂y of this

field is identically zero, so the field is a curl of another
vector field. Graphics by Mathematica c©
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Strain field with non-zero curl and divergence
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From left to right: vector field, and its curl and divergence.
Graphics by Mathematica c©
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Useful identities

∇ ∧ (∇ ∧ v) = ∇(∇ · v)−∇2v , (2)

v ∧ (∇ ∧ v) = ∇
(

v2

2

)
− (v ·∇) v , (3)

∇f · (∇ ∧ v) = −∇ · (∇f ∧ v). (4)

Proofs: using tensor representation (∇ ∧ v)i = εijk∂jvk ,
with shorthand notation ∂

∂xi
≡ ∂i , exploiting the

antisymmetry of εijk , using that δijvj = vi , and applying the
magic formula (1).

Example: proof of (2).

εijk∂jεklm∂lvm = (δilδjm − δimδjl)∂j∂lvm = ∂i∂jvj − ∂j∂jvi .
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Integration of a field along a (closed) 1D
contour

0

Z

X

Y

t

Summation of the values of the field at the points of the
contour times oriented line element d l = t̂ dl :∮

d l (...),

where t̂ is unit tangent vector, and dl is a length element
along the contour. Positive orientation: anti-clockwise.
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Integration of a field over a 2D surface

0

Z

X

Y

n
dS

Summation of the values of the field at the points of the
surface times oriented surface element ds = n̂ ds:∫ ∫

ds (...) ≡
∫

S
ds (...),

where n̂ is unit normal vector. Positive orientation for
closed surfaces: outwards.
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Integration of a field over a 3D volume

0

Z

X

Y

n

dV

dS

Summation of the values of the field at the points in the
volume times volume element dV .∫ ∫ ∫

dV (...) ≡
∫

V
dV (...).
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Linking contour and surface integrations:
Stokes theorem

0

Z

X

Y

n
dS

tdl

S

C

r

r

r

∮
C

d l · v(x) =

∫
SC

ds · (∇ ∧ v(x)). (5)

Left-hand side: circulation of the vector field over the
contour C. Right-hand side: curl of v integrated over any
surface SC having the contour C as a base.
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Stokes theorem: the idea of proof

(x,y) (x+dx,y)

(x,y + dy)

V
2V

2

V
1

V
1

Circulation of the vector v = v1x̂ + v2ŷ over an
elementary contour, with dx → 0, dy → 0, using
first-order Taylor expansions:

v1(x , y)dx + v2(x + dx , y)dy − v1(x , y + dy)dx − v2(x , y)dy

=
∂v2

∂x
dx dy − ∂v1

∂y
dx dy ,

with a z-component of curlv multiplied by the z-oriented
surface element arising in the right-hand side.
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Linking surface and volume integrations:
Gauss theorem

∮
SV

ds · v(x) =

∫
V

dV ∇ · v(x). (6)

Left-hand side: flux of the vector field through the surface
SV which is a boundary of the volume V . Right-hand
side: volume integral of the divergence of the field.

Important. The theorem is also valid for the scalar field:∮
SV

ds · f (x) =

∫
V

dV ∇f (x). (7)
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Gauss theorem: the idea of proof

dxdx

dy

dz

V
1

V
2

V
3

Flux of the vector v = v1x̂ + v2ŷ + v3ẑ over a surface of
an elementary volume, taking into account the opposite
orientation of the oriented surface elements:

[v1(x + dx , y , z)− v1(x , y , z)] dydz+
[v2(x , y + dy , z)− v2(x , y , z)] dxdz+

[v3(x , y , z + dz)− v3(x , y , z)] dxdy =
(
∂v1
∂x + ∂v2

∂y + ∂v3
∂z

)
dx dy dz
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Fourier series for periodic functions
Consider f (x) = f (x + 2π), a periodic smooth function on
the interval [0, 2π]. Fourier series:

f (x) =
∞∑

n=0

[an cos(n x) + bn sin(n x)] .

The expansion is unique du to ortogonality of the basis
functions:∫ 2π

0
dx cos(n x) cos(m x) =

∫ 2π

0
dx sin(n x) sin(m x) = πδnm,

∫ 2π

0
dx sin(n x) cos(m x) ≡ 0.

The coefficients of expansion, thus, are uniquely defined:

an =
1
π

∫ 2π

0
dx f (x) cos(n x), bn =

1
π

∫ 2π

0
dx f (x) sin(n x)
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Complex exponential form

einx = cos(n x) + i sin(n x)⇒

cos(n x) =
einx + e−inx

2
, sin(n x) =

einx − e−inx

2i
Hence

f (x) =
∞∑

n=0

(an − ibn)

2
einx + c.c ≡

∞∑
−∞

Aneinx , A∗n = A−n

Orthogonality: ∫ 2π

0
dx einxe−imx = 2πδnm

Expression for coefficients

An =
1

2π

∫ 2π

0
dx f (x) e−inx
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Fourier integral
Fourier series on arbitrary interval L: sin(nx), cos(nx)→
sin(2π

L nx), cos(2π
L nx),

∫ 2π
0 dx →

∫ L
0 dx , normalization

1
π →

1
L . In the limit L→∞:

∑∞
−∞ →

∫∞
−∞.

Fourier-transformation and its inverse:

f (x) =

∫ ∞
−∞

dk F (k) eikx , F (k) =

∫ ∞
−∞

dx f (x) e−ikx .

Based on orthogonality:∫ ∞
−∞

dx eikxe−ilx = δ(k − l),

where δ(x) - Dirac’s delta-function, continuous analog of
Kronecker’s δnm, with properties:∫ ∞

−∞
dx δ(x) = 1,

∫ ∞
−∞

dy δ(x − y) F (y) = F (x).
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Multiple variables and differentiation

f (x , y , z) =

∫ ∞
−∞

dk dl dm F (k , l ,m) ei(kx+ly+mz),

F (k , l ,m) =

∫ ∞
−∞

dx dy dz f (x , y , z) e−i(kx+ly+mz).

Physical space (x , y , z) −→ (k , l ,m), Fourier space.
Radius-vector x → k , "wavevector",

f (x) =

∫ ∞
−∞

dk F (k) eik ·x

Main advantage: differentiation in physical space→
multiplication by the corresponding component of the
wavevector in Fourier space ∂

∂x → ik :

∂

∂x
f (x) =

∫ ∞
−∞

dk ik F (k) eik ·x ,

and similarly for other variables.
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Equations of motion
Eulerian description: in terms of fluid velocity field v(x, t),
and scalar density and pressure fields ρ(x, t), P(x, t),
defined at each point x of the volume occupied by the
fluid at any time t .

Euler equations
Local conservation of momentum in the presence of
forcing F:

ρ

(
∂v
∂t

+ v ·∇v
)

= −∇P + F, (8)

Continuity equation
Local conservation of mass:

∂ρ

∂t
+ ∇ · (ρv) = 0. (9)
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Equation of state: baroclinic fuid

Fluid: thermodynamical system⇒ equation of state
relating P and ρ and closing the system (8), (9) (4
equations for 5 dependent variables).
General equation of state:

P = P(ρ, s), (10)

s(x, t) is entropy per unit mass⇒ evolution equation for s
required. Perfect fluid:

∂s
∂t

+ v ·∇s = 0. (11)
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Equation of state: barotropic fluid

P = P(ρ)↔ s = const, (12)

sufficient to close the system (8), (9).
Particular case: incompressible fluid. Conservation of
volume per unit mass⇒ zero divergence:

∇ · v = 0, ⇒ (13)

∂ρ

∂t
+ v ·∇ρ = 0, and ∇ · (v ·∇v) = −∇ ·

(
∇P
ρ

)
⇒

(14)
Pressure entirely determined by density and velocity
distributions.
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Lagrangian view of the fluid: momentum
balance
Fluid ≡ ensemble of fluid parcels with time-dependent
positions X(x0, t), X(x0,0) = x.
Euler - Lagrange duality: continuity of the fluid⇒ any
point in the flow x is, at the same time, a position of some
fluid parcel⇒ Eulerian velocity at the point v(x) =
velocity of the parcel v(X, t) = dX

dt ≡ Ẋ. Lagrangian
(material) derivative in Eulerian terms by chain
differentiation:

d
dt

=
∂

∂t
+
∂x
∂t
·∇ ≡ ∂

∂t
+ v ·∇. (15)

⇒ Newton’s second law for the parcel

ρ(X, t)
d2X
dt2 = −∇XP(X, t) + F, (16)

⇔ Euler equation (8).
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Lagrangian view of the fluid: mass balance
Mass conservation in Lagrangian terms:

ρi(x)d3x = ρ(X, t)d3X,↔ ρi(x) = ρ(X, t)J (17)

where ρi is the initial distribution of density, and d3x and
d3X are initial and current elementary volumes. The
Jacobi determinant (Jacobian) in this formula is defined
as the determinant:

J =

∣∣∣∣∣∣∣
∂X
∂x

∂X
∂y

∂X
∂z

∂Y
∂x

∂Y
∂y

∂Y
∂z

∂Z
∂x

∂Z
∂y

∂Z
∂z

∣∣∣∣∣∣∣ ≡
∂(X ,Y ,Z )

∂(x , y , z)

Incompressibility in Lagrangian terms: J = 1. Taking
Lagrangian time-derivative of this relation, we obtain the
incompressibility condition of zero velocity divergence in
Eulerian terms. Advection of entropy (11)⇔ conservation
of entropy by each fluid parcel ṡ = 0.
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1st principle of thermodynamics
Reversible processes in one-phase systems:

δε = T δs − Pδv , (18)

ε - internal energy per unit mass, v = 1
ρ - specific

volume.Enthalpy per unit mass: h = ε+ Pv ⇒

δh = T δs + vδP. (19)

Energy density: sum of kinetic and internal parts:

e =
ρv2

2
+ ρε. (20)

Local conservation of energy :

∂e
∂t

+ ∇ ·
[
ρv
(

v2

2
+ h
)]

= 0. (21)

Barotropic fluid:

δh =
δP
ρ
⇒ ∇P

ρ
= ∇h. (22)
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Kelvin theorem
Circulation of velocity around a contour Γ consisting of
fluid parcels, and moving with the fluid:

γ =

∫
Γ

v · d l =

∫
SΓ

(∇ ∧ v) · d l, (23)

Kelvin theorem states that
I for barotropic fluids

dγ
dt

= 0, (24)

I for baroclinic fluids

dγ
dt

= −
∫

Γ

∇P
ρ
· d l. (25)

Proof: direct calculation of the time-derivative of the
circulation using the equations of motion, and the
Lagrangian nature of Γ.
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Perfect vs real fluids

Perfect fluid approximation: macroscopic fluxes of mass,
momentum and energy. Real fluids: corrections to these
fluxes due to molecular transport. Simplest way to include
them: flux-gradient relations following from Le Chatelier
principle: molecular fluxes tend to restore the
thermodynamical equilibrium. For any thermodynamical
variable A

fA = −kA∇A,

where fA is related molecular flux, and kA is molecular
transport coefficient.
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Viscosity, diffusivity, and thermal conductivity
I Viscosity corrections to the Euler equation in the

incompressible case, giving the Navier - Stokes
equation

∂v
∂t

+ v ·∇v = −∇P
ρ

+ ν∇2v , ∇ · v = 0. (26)

I Diffusivity corrections to the continuity equation
∂ρ

∂t
+ ∇ · (ρv) = D∇2ρ. (27)

I Thermal conductivity corrections to the
heat/temperature advection giving the heat equation

∂T
∂t

+ v ·∇T = χ∇2T . (28)

ν,D, χ are kinematic viscosity, diffusivity, and
thermo-conductivity, the molecular transport coefficients
for momentum, mass, and energy, respectively, all with
dimension

[
L2

T

]
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Dimensional/scale analysis. Reynolds
number
Molecular transport coefficients: dimensional, value
varies with changes if units. Only non-dimensional
parameters are relevant. Typical space and velocity
scales in the incompressible fluid flow: L, U. Time-scale
T = L/U. Pressure scale: ρU2.
Scaled NS equation:

U2

L

(
∂v
∂t

+ v ·∇v + ∇P
)

=
U ν

L2 ∇2v → (29)

Non-dimensional NS equation

∂v
∂t

+ v ·∇v = −∇P +
1

Re
∇2v (30)

Re = U L
ν - Reynolds number, the true measure of

viscosity. Similar, Pecklet number for diffusivity.
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