Mathematics/Hydrodynamics Refresher

V. Zeitlin

Necessary
mathematics
Vector algebra
Differential operations on scalar and vector fields

fluid dynamics

The perfect fluid
Governing equations
Euler - Lagrange duality
Energy and thermodynamics

M1 ENS

Vectors: definitions and superposition

 principleVector \boldsymbol{A} is a coordinate-independent (invariant) object having a magnitude $|\boldsymbol{A}|$ and a direction. Alternative notation \vec{A}.
Adding/subtracting vectors:

Vector algebra

Superposition principle: Linear combination of vectors is a vector

Products of vectors

Scalar product of two vectors:
Projection of one vector onto another:

$$
\boldsymbol{A} \cdot \boldsymbol{B}:=|\boldsymbol{A}||\boldsymbol{B}| \cos \phi_{A B} \equiv \boldsymbol{B} \cdot \boldsymbol{A},
$$

where $\phi_{A B}$ is an included angle between the two.
Vector product of two vectors:

$$
\boldsymbol{A} \wedge \boldsymbol{B}:=\hat{\boldsymbol{i}}_{A B}|\boldsymbol{A}||\boldsymbol{B}| \sin \phi_{A B}=-\boldsymbol{B} \wedge \boldsymbol{A},
$$

where $\hat{\boldsymbol{i}}_{A B}$ is a unit vector, $\left|\hat{\boldsymbol{i}}_{A B}\right|=1$, perpendicular to both \boldsymbol{A} and \boldsymbol{B}, with the orientation of a right-handed screw rotated from \boldsymbol{A} toward \boldsymbol{B}.
x is an alternative notation for \wedge.
Distributive properties:
$(A+B) \cdot C=A \cdot C+B \cdot C,(A+B) \wedge C=A \wedge C+B \wedge C$.

Vectors in Cartesian coordinates

Vector algebra
Differential operations on scalar and vector fields

Cartesian coordinates: defined by a right triad of mutually orthogonal unit vectors forming a basis:

$$
(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}) \equiv\left(\hat{\boldsymbol{x}}_{1}, \hat{\boldsymbol{x}}_{2}, \hat{\mathbf{x}}_{3}\right),
$$

Tensor notation and Kronecker delta

$(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}) \rightarrow \hat{\boldsymbol{x}}_{i}, i=1,2,3$. Ortho-normality of the basis:

$$
\hat{\mathbf{x}}_{i} \cdot \hat{\mathbf{x}}_{j}=\delta_{i j}
$$

where $\delta_{i j}$ is Kronecker delta-symbol, an invariant tensor of second rank (3×3 unit diagonal matrix):

$$
\delta_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

The components V_{i} of a vector \boldsymbol{V} are given by its projections on the axes $V_{i}=\boldsymbol{V} \cdot \hat{\boldsymbol{x}}$:

$$
\boldsymbol{V}=V_{1} \hat{\mathbf{x}}_{1}+V_{2} \hat{\boldsymbol{x}}_{2}+V_{3} \hat{\mathbf{x}}_{3} \equiv \sum_{i=1}^{3} V_{i} \hat{\mathbf{x}}_{i}
$$

Einstein's convention:
$\sum_{i=1}^{3} A_{i} B_{i} \equiv A_{i} B_{i}$ (self-repeating index is "dumb").

Vector products by Levi-Civita tensor

Formula for the vector product:

$$
\boldsymbol{A} \wedge \boldsymbol{B}=\left\|\begin{array}{lll}
\hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3}
\end{array}\right\|
$$

Tensor notation (with Einstein's convention):

$$
(\boldsymbol{A} \wedge \boldsymbol{B})_{i}=\epsilon_{i j k} A_{j} B_{k},
$$

where

$$
\epsilon_{i j k}=\left\{\begin{array}{l}
1, \text { if } i j k=123,231,312 \\
-1, \text { if } i j k=132,321,213 \\
0, \text { otherwise }
\end{array}\right.
$$

Magic identity:

$$
\begin{equation*}
\epsilon_{i j k} \epsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l} . \tag{1}
\end{equation*}
$$

Scalar, vector, and tensor fields

Any point in space is given by its radius-vector
$\boldsymbol{x}=x \hat{\boldsymbol{x}}+y \hat{\boldsymbol{y}}+z \hat{\mathbf{z}}$.
A field is an object defined at any point of space
$(x, y, z) \equiv\left(x_{1}, x_{2}, x_{3}\right)$ at any moment of time t, i.e. a
function of \boldsymbol{x} and t.
Different types of fields:

- scalar $f(\boldsymbol{x}, t)$,
- vector $\boldsymbol{v}(\boldsymbol{x}, t)$,
- tensor $t_{i j}(\boldsymbol{x}, t)$

The fields are dependent variables, and x, y, z and t independent variables.
Physical examples: scalar fields - temperature, density, pressure, geopotential, vector fields - velocity, electric and magnetic fields, tensor fields - stresses, gravitational field.

Differential operations on scalar fields

Partial derivatives:

$$
\frac{\partial f}{\partial x}:=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y, z)-f(x, y, z)}{\Delta x}
$$

and similar for other independent variables. Differential operator nabla:

$$
\boldsymbol{\nabla}:=\hat{\boldsymbol{x}} \frac{\partial}{\partial x}+\hat{\boldsymbol{y}} \frac{\partial}{\partial y}+\hat{\boldsymbol{z}} \frac{\partial}{\partial z}
$$

Gradient of a scalar field: the vector field

$$
\operatorname{grad} f \equiv \nabla f=\hat{\boldsymbol{x}} \frac{\partial f}{\partial x}+\hat{\boldsymbol{y}} \frac{\partial f}{\partial y}+\hat{\boldsymbol{z}} \frac{\partial f}{\partial z}
$$

Heuristic meaning: a vector giving direction and rate of fastest increase of the function f.

Visualizing gradient in 2D

Necessary
mathematics
Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

A crash course in

fluid dynamics

The perfect fluid

Governing equations

Euler - Lagrange duality
Energy and
thermodynamics
Kelvin circulation theorem
Real fluids: incorporating molecular transport

From left to right: 2D relief, its contour map, and its gradient. Graphics by Mathematica ${ }^{\circ}$

Differential operations with vectors

- Scalar product: divergence

$$
\operatorname{div} \boldsymbol{v} \equiv \boldsymbol{\nabla} \cdot \boldsymbol{v}(\boldsymbol{x})=\frac{\partial v_{i}}{\partial x_{i}}
$$

- Vector product: curl

$$
\operatorname{curl} \boldsymbol{v} \equiv \nabla \wedge \boldsymbol{v}(\boldsymbol{x}) ; \quad(\operatorname{curl} \boldsymbol{v})_{i}=\epsilon_{i j k} \frac{\partial v_{k}}{\partial x_{j}}
$$

- Tensor product:

$$
\boldsymbol{\nabla} \otimes \boldsymbol{v}(\boldsymbol{x}) ; \quad(\boldsymbol{\nabla} \otimes \boldsymbol{v})_{i j}=\frac{\partial \boldsymbol{v}_{i}}{\partial x_{j}}
$$

For any \boldsymbol{v}, f : div curl $\boldsymbol{v} \equiv 0$, curl grad $f \equiv 0$, $\operatorname{div} \operatorname{grad} f=\nabla^{2} f, \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ - Laplacian.

Visualizing divergence in 2D

From left to right: vector field $\boldsymbol{v}(x, y)=\left(v_{1}(x, y), v_{2}(x, y)\right.$, and its divergence $\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}$. The curl $\hat{\boldsymbol{z}}\left(\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}\right)$ of this field is identically zero. (The field is a gradient of the previous example.) Graphics by Mathematica©

Visualizing curl in 2D

From left to right: vector field $\boldsymbol{v}(x, y)=\left(v_{1}(x, y), v_{2}(x, y)\right.$, and its curl $\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}$. The divergence $\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}$ of this field is identically zero, so the field is a curl of another vector field. Graphics by Mathemaica \odot

Strain field with non-zero curl and divergence

Necessary
mathematics

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

A crash course in

fluid dynamics

The perfect fluid
Governing equations
Euler - Lagrange duality
Energy and
thermodynamics
Kelvin circulation theorem
Real fluids: incorporating molecular transport

From left to right: vector field, and its curl and divergence. Graphics by Mathematica ${ }^{\text {© }}$

Useful identities

$$
\begin{gather*}
\nabla \wedge(\nabla \wedge v)=\nabla(\nabla \cdot v)-\nabla^{2} v \tag{2}\\
v \wedge(\nabla \wedge v)=\nabla\left(\frac{v^{2}}{2}\right)-(v \cdot \nabla) v \tag{3}\\
\nabla f \cdot(\nabla \wedge v)=-\nabla \cdot(\nabla f \wedge v) \tag{4}
\end{gather*}
$$

Proofs: using tensor representation $(\boldsymbol{\nabla} \wedge \boldsymbol{v})_{i}=\epsilon_{i j k} \partial_{j} v_{k}$, with shorthand notation $\frac{\partial}{\partial x_{i}} \equiv \partial_{i}$, exploiting the antisymmetry of $\epsilon_{i j k}$, using that $\delta_{i j} v_{j}=v_{i}$, and applying the magic formula (1).

Example: proof of (2).

$$
\epsilon_{i j k} \partial_{j} \epsilon_{k l m} \partial_{l} v_{m}=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) \partial_{j} \partial_{l} v_{m}=\partial_{i} \partial_{j} v_{j}-\partial_{j} \partial_{j} v_{i} .
$$

Integration of a field along a (closed) 1D contour

Summation of the values of the field at the points of the contour times oriented line element $d \boldsymbol{I}=\hat{\boldsymbol{t}} d$:

$$
\oint d I(\ldots),
$$

where $\hat{\boldsymbol{t}}$ is unit tangent vector, and $d l$ is a length element along the contour. Positive orientation: anti-clockwise,

Integration of a field over a 2D surface

Vector algebra
Differential operations on

Summation of the values of the field at the points of the surface times oriented surface element $d \boldsymbol{s}=\hat{\boldsymbol{n}} d s$:

$$
\iint d \boldsymbol{s}(\ldots) \equiv \int_{S} d \boldsymbol{s}(\ldots),
$$

where $\hat{\boldsymbol{n}}$ is unit normal vector. Positive orientation for closed surfaces: outwards.

Integration of a field over a 3D volume

Necessary
mathematics
Vector algebra
Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

A crash course in

fluid dynamics

The perfect fluid
Governing equations
Euler - Lagrange duality
Energy and
thermodynamics
Kelvin circulation theorem
Real fluids: incorporating molecular transport

Summation of the values of the field at the points in the volume times volume element $d V$.

$$
\iiint d V(\ldots) \equiv \int_{V} d V(\ldots)
$$

Linking contour and surface integrations: Stokes theorem

$$
\oint_{C} d \boldsymbol{l} \cdot \boldsymbol{v}(\boldsymbol{x})=\int_{S_{C}} d \boldsymbol{s} \cdot(\nabla \wedge \boldsymbol{v}(\boldsymbol{x})) .
$$

Left-hand side: circulation of the vector field over the contour C. Right-hand side: curl of v integrated over any surface S_{C} having the contour C as a base.

Stokes theorem: the idea of proof

Circulation of the vector $\boldsymbol{v}=v_{1} \hat{\boldsymbol{x}}+v_{2} \hat{\boldsymbol{y}}$ over an elementary contour, with $d x \rightarrow 0, d y \rightarrow 0$, using first-order Taylor expansions:
$v_{1}(x, y) d x+v_{2}(x+d x, y) d y-v_{1}(x, y+d y) d x-v_{2}(x, y) d y$

$$
=\frac{\partial v_{2}}{\partial x} d x d y-\frac{\partial v_{1}}{\partial y} d x d y
$$

with a z-component of curlv multiplied by the z-oriented surface element arising in the right-hand side.

Linking surface and volume integrations:

 Gauss theorem$$
\begin{equation*}
\oint_{S_{V}} d \boldsymbol{s} \cdot \boldsymbol{v}(\boldsymbol{x})=\int_{V} d V \boldsymbol{\nabla} \cdot \boldsymbol{v}(\boldsymbol{x}) . \tag{6}
\end{equation*}
$$

Left-hand side: flux of the vector field through the surface S_{V} which is a boundary of the volume V. Right-hand side: volume integral of the divergence of the field.

Important. The theorem is also valid for the scalar field:

$$
\begin{equation*}
\oint_{S_{V}} d \boldsymbol{s} \cdot f(\boldsymbol{x})=\int_{V} d V \nabla f(\boldsymbol{x}) \tag{7}
\end{equation*}
$$

Gauss theorem: the idea of proof

Flux of the vector $\boldsymbol{v}=v_{1} \hat{\boldsymbol{x}}+v_{2} \hat{\boldsymbol{y}}+v_{3} \hat{\boldsymbol{z}}$ over a surface of an elementary volume, taking into account the opposite orientation of the oriented surface elements:

$$
\begin{aligned}
& {\left[v_{1}(x+d x, y, z)-v_{1}(x, y, z)\right] d y d z+} \\
& {\left[v_{2}(x, y+d y, z)-v_{2}(x, y, z)\right] d x d z+} \\
& {\left[v_{3}(x, y, z+d z)-v_{3}(x, y, z)\right] d x d y=\left(\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z}\right) d x d y d z}
\end{aligned}
$$

Fourier series for periodic functions

Consider $f(x)=f(x+2 \pi)$, a periodic smooth function on the interval $[0,2 \pi]$. Fourier series:

$$
f(x)=\sum_{n=0}^{\infty}\left[a_{n} \cos (n x)+b_{n} \sin (n x)\right]
$$

The expansion is unique du to ortogonality of the basis functions:
$\int_{0}^{2 \pi} d x \cos (n x) \cos (m x)=\int_{0}^{2 \pi} d x \sin (n x) \sin (m x)=\pi \delta_{n m}$,

$$
\int_{0}^{2 \pi} d x \sin (n x) \cos (m x) \equiv 0
$$

The coefficients of expansion, thus, are uniquely defined:
$a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} d x f(x) \cos (n x), \quad b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} d x f(x) \sin (n x)$

Complex exponential form

$$
\begin{gathered}
e^{i n x}=\cos (n x)+i \sin (n x) \Rightarrow \\
\cos (n x)=\frac{e^{i n x}+e^{-i n x}}{2}, \sin (n x)=\frac{e^{i n x}-e^{-i n x}}{2 i}
\end{gathered}
$$

Hence

$$
f(x)=\sum_{n=0}^{\infty} \frac{\left(a_{n}-i b_{n}\right)}{2} e^{i n x}+c . c \equiv \sum_{-\infty}^{\infty} A_{n} e^{i n x}, A_{n}^{*}=A_{-n}
$$

Orthogonality:

$$
\int_{0}^{2 \pi} d x e^{i n x} e^{-i m x}=2 \pi \delta_{n m}
$$

Expression for coefficients

$$
A_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d x f(x) e^{-i n x}
$$

Fourier integral

Fourier series on arbitrary interval $L: \sin (n x), \cos (n x) \rightarrow$ $\sin \left(\frac{2 \pi}{L} n x\right), \cos \left(\frac{2 \pi}{L} n x\right), \int_{0}^{2 \pi} d x \rightarrow \int_{0}^{L} d x$, normalization $\frac{1}{\pi} \rightarrow \frac{1}{L}$. In the limit $L \rightarrow \infty: \sum_{-\infty}^{\infty} \rightarrow \int_{-\infty}^{\infty}$. Fourier-transformation and its inverse:

$$
f(x)=\int_{-\infty}^{\infty} d k F(k) e^{i k x}, \quad F(k)=\int_{-\infty}^{\infty} d x f(x) e^{-i k x} .
$$

Based on orthogonality:

$$
\int_{-\infty}^{\infty} d x e^{i k x} e^{-i l x}=\delta(k-l)
$$

where $\delta(x)$ - Dirac's delta-function, continuous analog of Kronecker's $\delta_{n m}$, with properties:

$$
\int_{-\infty}^{\infty} d x \delta(x)=1, \quad \int_{-\infty}^{\infty} d y \delta(x-y) F(y)=F(x) .
$$

Multiple variables and differentiation

$$
\begin{aligned}
f(x, y, z) & =\int_{-\infty}^{\infty} d k d l d m F(k, l, m) e^{i(k x+l y+m z)} \\
F(k, l, m) & =\int_{-\infty}^{\infty} d x d y d z f(x, y, z) e^{-i(k x+l y+m z)}
\end{aligned}
$$

Physical space $(x, y, z) \longrightarrow(k, I, m)$, Fourier space. Radius-vector $\boldsymbol{x} \rightarrow \boldsymbol{k}$, "wavevector",

$$
f(\boldsymbol{x})=\int_{-\infty}^{\infty} d \boldsymbol{k} F(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

Main advantage: differentiation in physical space \rightarrow multiplication by the corresponding component of the wavevector in Fourier space $\frac{\partial}{\partial x} \rightarrow i k$:

$$
\frac{\partial}{\partial x} f(\boldsymbol{x})=\int_{-\infty}^{\infty} d \boldsymbol{k} \text { ik } F(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

and similarly for other variables.

Equations of motion

Eulerian description: in terms of fluid velocity field $\mathbf{v}(\mathbf{x}, t)$, and scalar density and pressure fields $\rho(\mathbf{x}, t), P(\mathbf{x}, t)$, defined at each point \mathbf{x} of the volume occupied by the fluid at any time t.

Euler equations

Local conservation of momentum in the presence of forcing F:

$$
\begin{equation*}
\rho\left(\frac{\partial \mathbf{v}}{\partial t}+\boldsymbol{v} \cdot \nabla \mathbf{v}\right)=-\nabla P+\mathbf{F} \tag{8}
\end{equation*}
$$

Continuity equation
Local conservation of mass:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v})=0 \tag{9}
\end{equation*}
$$

Equation of state: baroclinic fuid

Fluid: thermodynamical system \Rightarrow equation of state relating P and ρ and closing the system (8), (9) (4 equations for 5 dependent variables). General equation of state:

$$
\begin{equation*}
P=P(\rho, s) \tag{10}
\end{equation*}
$$

$s(\mathbf{x}, t)$ is entropy per unit mass \Rightarrow evolution equation for s required. Perfect fluid:

$$
\begin{equation*}
\frac{\partial s}{\partial t}+\boldsymbol{v} \cdot \nabla s=0 \tag{11}
\end{equation*}
$$

Equation of state: barotropic fluid

$$
\begin{equation*}
P=P(\rho) \leftrightarrow s=\text { const } \tag{12}
\end{equation*}
$$

sufficient to close the system (8), (9).
Particular case: incompressible fluid. Conservation of volume per unit mass \Rightarrow zero divergence:

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{v}=0, \Rightarrow \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\boldsymbol{v} \cdot \nabla \rho=0, \text { and } \nabla \cdot(\boldsymbol{v} \cdot \nabla \boldsymbol{v})=-\nabla \cdot\left(\frac{\nabla P}{\rho}\right) \Rightarrow \tag{14}
\end{equation*}
$$

Pressure entirely determined by density and velocity distributions.

Lagrangian view of the fluid: momentum balance

Fluid \equiv ensemble of fluid parcels with time-dependent positions $\mathbf{X}\left(\mathbf{x}_{0}, t\right), \mathbf{X}\left(\mathbf{x}_{0}, 0\right)=\mathbf{x}$.
Euler - Lagrange duality: continuity of the fluid \Rightarrow any point in the flow \mathbf{x} is, at the same time, a position of some fluid parcel \Rightarrow Eulerian velocity at the point $\mathbf{v}(\mathbf{x})=$ velocity of the parcel $\mathbf{v}(\mathbf{X}, t)=\frac{d \mathbf{X}}{d t} \equiv \dot{\mathbf{X}}$. Lagrangian (material) derivative in Eulerian terms by chain differentiation:

$$
\begin{equation*}
\frac{d}{d t}=\frac{\partial}{\partial t}+\frac{\partial \boldsymbol{x}}{\partial t} \cdot \nabla \equiv \frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla \tag{15}
\end{equation*}
$$

\Rightarrow Newton's second law for the parcel

$$
\begin{equation*}
\rho(\mathbf{X}, t) \frac{d^{2} \mathbf{X}}{d t^{2}}=-\nabla_{\mathbf{X}} P(\mathbf{X}, t)+\mathbf{F} \tag{16}
\end{equation*}
$$

\Leftrightarrow Euler equation (8).

Lagrangian view of the fluid: mass balance

Mass conservation in Lagrangian terms:

$$
\begin{equation*}
\rho_{i}(\mathbf{x}) d^{3} \mathbf{x}=\rho(\mathbf{X}, t) d^{3} \mathbf{X}, \leftrightarrow \rho_{i}(\mathbf{x})=\rho(\mathbf{X}, t) \mathcal{J} \tag{17}
\end{equation*}
$$

where ρ_{i} is the initial distribution of density, and $d^{3} \mathbf{x}$ and $d^{3} \mathbf{X}$ are initial and current elementary volumes. The Jacobi determinant (Jacobian) in this formula is defined as the determinant:

$$
\mathcal{J}=\left|\begin{array}{lll}
\frac{\partial X}{\partial x} & \frac{\partial X}{\partial v} & \frac{\partial X}{\partial z} \\
\frac{\partial Y}{\partial X} & \frac{\partial Y}{\partial y} & \frac{\partial Y}{\partial z} \\
\frac{\partial Z}{\partial x} & \frac{\partial Z}{\partial y} & \frac{\partial Z}{\partial z}
\end{array}\right|=\frac{\partial(X, Y, Z)}{\partial(x, y, z)}
$$

Incompressibility in Lagrangian terms: $\mathcal{J}=1$. Taking Lagrangian time-derivative of this relation, we obtain the incompressibility condition of zero velocity divergence in Eulerian terms. Advection of entropy (11) \Leftrightarrow conservation of entropy by each fluid parcel $\dot{s}=0$.

1st principle of thermodynamics

Reversible processes in one-phase systems:

$$
\begin{equation*}
\delta \epsilon=T \delta s-P \delta v \tag{18}
\end{equation*}
$$

ϵ - internal energy per unit mass, $v=\frac{1}{\rho}$ - specific volume.Enthalpy per unit mass: $h=\epsilon+P v \Rightarrow$

$$
\begin{equation*}
\delta h=T \delta s+v \delta P \tag{19}
\end{equation*}
$$

Energy density: sum of kinetic and internal parts:

$$
\begin{equation*}
e=\frac{\rho \boldsymbol{v}^{2}}{2}+\rho \epsilon \tag{20}
\end{equation*}
$$

Local conservation of energy :

$$
\begin{equation*}
\frac{\partial e}{\partial t}+\nabla \cdot\left[\rho v\left(\frac{\boldsymbol{v}^{2}}{2}+h\right)\right]=0 \tag{21}
\end{equation*}
$$

Barotropic fluid:

$$
\begin{equation*}
\delta h=\frac{\delta P}{\rho} \Rightarrow \frac{\nabla P}{\rho}=\nabla h \tag{22}
\end{equation*}
$$

Kelvin theorem

Circulation of velocity around a contour Γ consisting of fluid parcels, and moving with the fluid:

$$
\begin{equation*}
\gamma=\int_{\Gamma} \boldsymbol{v} \cdot d \mathbf{l}=\int_{S_{\Gamma}}(\boldsymbol{\nabla} \wedge \boldsymbol{v}) \cdot d \mathbf{l}, \tag{23}
\end{equation*}
$$

Kelvin theorem states that

- for barotropic fluids

$$
\begin{equation*}
\frac{d \gamma}{d t}=0 \tag{24}
\end{equation*}
$$

- for baroclinic fluids

$$
\begin{equation*}
\frac{d \gamma}{d t}=-\int_{\Gamma} \frac{\nabla P}{\rho} \cdot d \mathbf{I} . \tag{25}
\end{equation*}
$$

Proof: direct calculation of the time-derivative of the circulation using the equations of motion, and the Lagrangian nature of Γ.

Perfect vs real fluids

Perfect fluid approximation: macroscopic fluxes of mass, momentum and energy. Real fluids: corrections to these fluxes due to molecular transport. Simplest way to include them: flux-gradient relations following from Le Chatelier principle: molecular fluxes tend to restore the thermodynamical equilibrium. For any thermodynamical variable A

$$
\mathbf{f}_{A}=-k_{A} \nabla A,
$$

where \mathbf{f}_{A} is related molecular flux, and k_{A} is molecular transport coefficient.

Viscosity, diffusivity, and thermal conductivity

- Viscosity corrections to the Euler equation in the incompressible case, giving the Navier - Stokes equation

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v}=-\frac{\nabla P}{\rho}+\nu \nabla^{2} \mathbf{v}, \nabla \cdot \mathbf{v}=0 \tag{26}
\end{equation*}
$$

- Diffusivity corrections to the continuity equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{v})=D \nabla^{2} \rho \tag{27}
\end{equation*}
$$

- Thermal conductivity corrections to the heat/temperature advection giving the heat equation

$$
\begin{equation*}
\frac{\partial T}{\partial t}+\boldsymbol{v} \cdot \nabla T=\chi \nabla^{2} T \tag{28}
\end{equation*}
$$

ν, D, χ are kinematic viscosity, diffusivity, and
thermo-conductivity, the molecular transport coefficients for momentum, mass, and energy, respectively, all with dimension $\left[\frac{L^{2}}{T}\right]$

Dimensional/scale analysis. Reynolds number

Molecular transport coefficients: dimensional, value varies with changes if units. Only non-dimensional parameters are relevant. Typical space and velocity scales in the incompressible fluid flow: L, U. Time-scale $T=L / U$. Pressure scale: ρU^{2}.
Scaled NS equation:

$$
\begin{equation*}
\frac{U^{2}}{L}\left(\frac{\partial \mathbf{v}}{\partial t}+\boldsymbol{v} \cdot \nabla \boldsymbol{v}+\nabla P\right)=\frac{U^{2}}{L^{2}} \nabla^{2} \boldsymbol{v} \rightarrow \tag{29}
\end{equation*}
$$

Non-dimensional NS equation

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}=-\nabla P+\frac{1}{R e} \nabla^{2} \boldsymbol{v} \tag{30}
\end{equation*}
$$

$R e=\frac{U L}{\nu}$ - Reynolds number, the true measure of viscosity. Similar, Pecklet number for diffusivity.

