Mathematics/Hydrodynamics Refresher

V. Zeitlin

M1 ENS

Necessary mathematic

Differential operations o scalar and vector fields Integration in 3D space Fourier analysis

A crash course in fluid dynamics

The pe

Governing equations

Euler - Lagrange duality

Energy and thermodynamics

Vectors: definitions and superposition principle

Vector \mathbf{A} is a coordinate-independent (invariant) object having a magnitude $|\mathbf{A}|$ and a direction. Alternative notation \vec{A} .

Adding/subtracting vectors:

Necessary

Vector algebra

scalar and vector fields Integration in 3D space Fourier analysis

A crash course in fluid dynamics

The pe

Governing equations

Euler - Lagrange duality

Energy and thermodynamics

Kelvin circulation theoren Real fluids: incorporating

Superposition principle: Linear combination of vectors is

a vector

Products of vectors

Scalar product of two vectors:

Projection of one vector onto another:

$$\mathbf{A} \cdot \mathbf{B} := |\mathbf{A}| |\mathbf{B}| \cos \phi_{\mathbf{A}\mathbf{B}} \equiv \mathbf{B} \cdot \mathbf{A},$$

where ϕ_{AB} is an included angle between the two.

Vector product of two vectors:

$$m{A} \wedge m{B} := \hat{m{i}}_{AB} |m{A}| |m{B}| \sin \phi_{AB} = -m{B} \wedge m{A},$$

where \hat{i}_{AB} is a unit vector, $|\hat{i}_{AB}| = 1$, perpendicular to both \boldsymbol{A} and \boldsymbol{B} , with the orientation of a right-handed screw rotated from \boldsymbol{A} toward \boldsymbol{B} .

 \times is an alternative notation for \wedge .

Distributive properties:

$$(\mathbf{A} + \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}, (\mathbf{A} + \mathbf{B}) \wedge \mathbf{C} = \mathbf{A} \wedge \mathbf{C} + \mathbf{B} \wedge \mathbf{C}.$$

Necessary

Vector algebra

Differential operations o scalar and vector fields Integration in 3D space Fourier analysis

A crasn course in luid dynamics

The per

Euler - Lagrange duality

Energy and thermodynamics Kelvin circulation theor

Vectors in Cartesian coordinates

Vector algebra

Cartesian coordinates: defined by a right triad of mutually orthogonal unit vectors forming a basis:

$$(\hat{\pmb{x}},\,\hat{\pmb{y}},\,\hat{\pmb{z}})\equiv(\hat{\pmb{x}}_1,\,\hat{\pmb{x}}_2,\,\hat{\pmb{x}}_3),$$

Tensor notation and Kronecker delta

 $(\hat{\boldsymbol{x}},\,\hat{\boldsymbol{y}},\,\hat{\boldsymbol{z}}) \rightarrow \hat{\boldsymbol{x}}_i,\,i=1,2,3.$ Ortho-normality of the basis:

$$\hat{\boldsymbol{x}}_i \cdot \hat{\boldsymbol{x}}_j = \delta_{ij},$$

where δ_{ij} is Kronecker delta-symbol, an invariant tensor of second rank (3 × 3 unit diagonal matrix):

$$\delta_{ij} = \left\{ \begin{array}{l} 1, \text{ if } i = j, \\ 0, \text{ if } i \neq j. \end{array} \right.$$

The components V_i of a vector \mathbf{V} are given by its projections on the axes $V_i = \mathbf{V} \cdot \hat{\mathbf{x}}$:

$$V = V_1 \hat{x}_1 + V_2 \hat{x}_2 + V_3 \hat{x}_3 \equiv \sum_{i=1}^3 V_i \hat{x}_i$$

Einstein's convention:

 $\sum_{i=1}^{3} A_i B_i \equiv A_i B_i$ (self-repeating index is "dumb").

Necessary

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

A crash course in fluid dynamics

Ine per

Euler - Lagrange duality

Energy and thermodynamics Kelvin circulation theore

Vector products by Levi-Civita tensor

Formula for the vector product:

$$\mathbf{A} \wedge \mathbf{B} = \left\| \begin{array}{cc} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_1 A_2 A_3 \\ B_1 B_2 B_3 \end{array} \right\|$$

Tensor notation (with Einstein's convention):

$$(\mathbf{A} \wedge \mathbf{B})_i = \epsilon_{ijk} A_j B_k,$$

where

$$\epsilon_{ijk} = \begin{cases} 1, & \text{if } ijk = 123, 231, 312\\ -1, & \text{if } ijk = 132, 321, 213\\ 0, & \text{otherwise} \end{cases}$$

Magic identity:

$$\epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}. \tag{1}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ◆ ○ ◆

Necessary

Vector algebra

Differential operations o scalar and vector fields Integration in 3D space Fourier analysis

A crash course in fluid dynamics

The pert

Euler - Lagrange duality

Energy and thermodynamics

Scalar, vector, and tensor fields

Any point in space is given by its radius-vector $\mathbf{x} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$.

A field is an object defined at any point of space $(x, y, z) \equiv (x_1, x_2, x_3)$ at any moment of time t, i.e. a function of \mathbf{x} and t.

Different types of fields:

- ▶ scalar $f(\mathbf{x}, t)$,
- ightharpoonup vector $\mathbf{v}(\mathbf{x},t)$,
- ▶ tensor $t_{ij}(\mathbf{x}, t)$

The fields are dependent variables, and x, y, z and t -independent variables.

Physical examples: scalar fields - temperature, density, pressure, geopotential, vector fields - velocity, electric and magnetic fields, tensor fields - stresses, gravitational field.

mathematics
Vector algebra
Differential operations on

scalar and vector fields Integration in 3D space

A crash course in fluid dynamics

The perfect

Euler - Lagrange duality

thermodynamics
Kelvin circulation theorer

Differential operations on scalar fields

Partial derivatives:

$$\frac{\partial f}{\partial x} := \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y, z) - f(x, y, z)}{\Delta x},$$

and similar for other independent variables. Differential operator nabla:

$$\nabla := \hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}$$

Gradient of a scalar field: the vector field

$$\operatorname{grad} f \equiv \nabla f = \hat{\boldsymbol{x}} \frac{\partial f}{\partial x} + \hat{\boldsymbol{y}} \frac{\partial f}{\partial y} + \hat{\boldsymbol{z}} \frac{\partial f}{\partial z}$$

Heuristic meaning: a vector giving direction and rate of fastest increase of the function f.

mathematics

Differential operations on scalar and vector fields Integration in 3D space

A crash course in fluid dynamics

The perfect fluid

Governing equations
Euler - Lagrange duality

Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Visualizing gradient in 2D

From left to right: 2D relief, its contour map, and its gradient. Graphics by Mathematica®

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

A crash course in fluid dynamics

The perfect fluid

overning equations

Euler - Lagrange dual

thermodynamics

Kelvin circulation theorem eal fluids: incorporating

Differential operations with vectors

Scalar product: divergence

$$\operatorname{div} \boldsymbol{v} \equiv \boldsymbol{\nabla} \cdot \boldsymbol{v}(\boldsymbol{x}) = \frac{\partial v_i}{\partial x_i}$$

Vector product: curl

$$\operatorname{curl} \boldsymbol{v} \equiv \boldsymbol{\nabla} \wedge \boldsymbol{v}(\boldsymbol{x}); \quad (\operatorname{curl} \boldsymbol{v})_i = \epsilon_{ijk} \frac{\partial v_k}{\partial x_i}$$

Tensor product:

$$abla\otimes \mathbf{v}(\mathbf{x}); \quad (\mathbf{\nabla}\otimes\mathbf{v})_{ij}=\frac{\partial v_i}{\partial x_i}$$

For any \mathbf{v} , f: div curl $\mathbf{v} \equiv 0$, curl grad $f \equiv 0$, div grad $f = \nabla^2 f$, $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ - Laplacian.

Necessary mathematics

Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

A crash course in fluid dynamics

Ocuproi

Euler - Lagrange duality

Energy and thermodynamics

Visualizing divergence in 2D

From left to right: vector field $\mathbf{v}(x,y) = (v_1(x,y), v_2(x,y),$ and its divergence $\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y}$. The curl $\hat{\mathbf{z}} \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \right)$ of this field is identically zero. (The field is a gradient of the previous example.) Graphics by Mathematica®

Necessary mathematics

Differential operations on

scalar and vector fields Integration in 3D space Fourier analysis

A crash course in fluid dynamics

Governing equ

Governing equation

inergy and nermodynamics

Kelvin circulation theorem leal fluids: incorporating

Visualizing curl in 2D

From left to right: vector field $\mathbf{v}(x,y) = (v_1(x,y), v_2(x,y),$ and its curl $\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}$. The divergence $\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y}$ of this field is identically zero, so the field is a curl of another vector field. Graphics by Mathematica®

Necessary mathematics

Differential operations on

scalar and vector fields Integration in 3D space Fourier analysis

A crash course in fluid dynamics

Governing equat

Euler - Lagrange dua

Energy and thermodynamics Kelvin circulation the

Strain field with non-zero curl and divergence

From left to right: vector field, and its curl and divergence. Graphics by Mathematica®

Necessary mathematics

Differential operation

Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

A crash course in fluid dynamics

The perio

Governing equation

Energy and

thermodynamics
Kelvin circulation theor

Useful identities

$$\nabla \wedge (\nabla \wedge \mathbf{v}) = \nabla (\nabla \cdot \mathbf{v}) - \nabla^2 \mathbf{v},$$
 (2)

$$\mathbf{v} \wedge (\mathbf{\nabla} \wedge \mathbf{v}) = \mathbf{\nabla} \left(\frac{\mathbf{v}^2}{2} \right) - (\mathbf{v} \cdot \mathbf{\nabla}) \mathbf{v},$$
 (3)

$$\nabla f \cdot (\nabla \wedge \mathbf{v}) = -\nabla \cdot (\nabla f \wedge \mathbf{v}). \tag{4}$$

<u>Proofs</u>: using tensor representation $(\nabla \wedge \mathbf{v})_i = \epsilon_{ijk} \partial_i \mathbf{v}_k$, with shorthand notation $\frac{\partial}{\partial x_i} \equiv \partial_i$, exploiting the antisymmetry of ϵ_{iik} , using that $\delta_{ii}v_i=v_i$, and applying the magic formula (1).

Example: proof of (2).

$$\epsilon_{ijk}\partial_{j}\epsilon_{klm}\partial_{l}v_{m} = (\delta_{il}\delta_{jm} - \delta_{im}\delta_{jl})\partial_{j}\partial_{l}v_{m} = \partial_{i}\partial_{j}v_{j} - \partial_{j}\partial_{j}v_{i}.$$

Differential operations on scalar and vector fields

Integration of a field along a (closed) 1D contour

Summation of the values of the field at the points of the contour times oriented line element $dI = \hat{t} dI$:

$$\oint d\boldsymbol{l}(...),$$

where \hat{t} is unit tangent vector, and dl is a length element along the contour. Positive orientation: anti-clockwise.

Necessary mathematics

Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

A crash course in fluid dynamics

The perfect fluid

Euler - Lagrange duality
Energy and
thermodynamics

Integration of a field over a 2D surface

Summation of the values of the field at the points of the surface times oriented surface element $d\mathbf{s} = \hat{\mathbf{n}} d\mathbf{s}$:

$$\int \int d\boldsymbol{s}(...) \equiv \int_{\mathcal{S}} d\boldsymbol{s}(...),$$

where \hat{n} is unit normal vector. Positive orientation for closed surfaces: outwards.

Necessary mathematics

Differential operations of scalar and vector fields

Integration in 3D space Fourier analysis

A crash course in fluid dynamics

Governing equations

Energy and thermodynamics Kelvin circulation theorer

Integration of a field over a 3D volume

Summation of the values of the field at the points in the volume times volume element dV.

$$\int \int \int dV (...) \equiv \int_{V} dV (...).$$

Necessary mathematics

Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

A crash course in fluid dynamics

The per

Euler - Lagrange duality

Energy and thermodynamics

Kelvin circulation theorer Real fluids: incorporating

Linking contour and surface integrations: Stokes theorem

$$\oint_{C} d\mathbf{I} \cdot \mathbf{v}(\mathbf{x}) = \int_{S_{C}} d\mathbf{s} \cdot (\nabla \wedge \mathbf{v}(\mathbf{x})). \tag{5}$$

Left-hand side: circulation of the vector field over the contour C. Right-hand side: curl of \mathbf{v} integrated over any surface S_C having the contour C as a base.

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

A crash course in fluid dynamics

The perfect fluid

Euler - Lagrange duality
Energy and

thermodynamics
Kelvin circulation theorem
Real fluids: incorporating

Stokes theorem: the idea of proof

Circulation of the vector $\mathbf{v} = v_1 \hat{\mathbf{x}} + v_2 \hat{\mathbf{y}}$ over an elementary contour, with $dx \to 0$, $dy \to 0$, using first-order Taylor expansions:

$$\begin{split} v_1(x,y)dx + v_2(x+dx,y)dy - v_1(x,y+dy)dx - v_2(x,y)dy \\ &= \frac{\partial v_2}{\partial x}dx\,dy - \frac{\partial v_1}{\partial y}dx\,dy, \end{split}$$

with a *z*-component of curl **v** multiplied by the *z*-oriented surface element arising in the right-hand side.

Necessary

Vector algebra

Differential operations or scalar and vector fields

Integration in 3D space Fourier analysis

A crash course in fluid dynamics

fluid dynamics
The perfect fluid

Governing equations
Euler - Lagrange duality
Energy and
thermodynamics
Kelvin circulation theorem

Linking surface and volume integrations: Gauss theorem

$$\oint_{S_V} d\mathbf{s} \cdot \mathbf{v}(\mathbf{x}) = \int_V dV \, \nabla \cdot \mathbf{v}(\mathbf{x}). \tag{6}$$

Left-hand side: flux of the vector field through the surface S_V which is a boundary of the volume V. Right-hand side: volume integral of the divergence of the field.

Important. The theorem is also valid for the scalar field:

$$\oint_{S_V} d\mathbf{s} \cdot f(\mathbf{x}) = \int_V dV \, \nabla f(\mathbf{x}). \tag{7}$$

Necessary mathematic

Vector algebra

Differential operations or scalar and vector fields

Integration in 3D space Fourier analysis

A crash course in fluid dynamics

The perfect fluid
Governing equations

Energy and thermodynamics

Kelvin circulation theorem
Real fluids: incorporating

Gauss theorem: the idea of proof

Flux of the vector $\mathbf{v} = v_1 \hat{\mathbf{x}} + v_2 \hat{\mathbf{y}} + v_3 \hat{\mathbf{z}}$ over a surface of an elementary volume, taking into account the opposite orientation of the oriented surface elements:

$$\begin{aligned} & [v_1(x+dx,y,z)-v_1(x,y,z)] \, dydz + \\ & [v_2(x,y+dy,z)-v_2(x,y,z)] \, dxdz + \\ & [v_3(x,y,z+dz)-v_3(x,y,z)] \, dxdy = \left(\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}\right) \, dx \, dy \, dz \end{aligned}$$

Necessary mathematics

Vector algebra

Differential operations of scalar and vector fields

Integration in 3D space Fourier analysis

A crash course in fluid dynamics

The perfect flu

Governing equations
Euler - Lagrange duality

Energy and hermodynamics Kelvin circulation theo

Fourier series for periodic functions

Consider $f(x) = f(x + 2\pi)$, a periodic smooth function on the interval $[0, 2\pi]$. Fourier series:

$$f(x) = \sum_{n=0}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right].$$

The expansion is unique du to ortogonality of the basis functions:

$$\int_0^{2\pi} dx \, \cos(nx) \cos(mx) = \int_0^{2\pi} dx \, \sin(nx) \sin(mx) = \pi \delta_{nm},^{\text{Kelvin circulation the Real fluids: incorporm molecular transport}}$$

$$\int_0^{2\pi} dx \, \sin(nx) \cos(mx) \equiv 0.$$

The coefficients of expansion, thus, are uniquely defined:

$$a_n = \frac{1}{\pi} \int_0^{2\pi} dx \, f(x) \, \cos(nx), \quad b_n = \frac{1}{\pi} \int_0^{2\pi} dx \, f(x) \, \sin(nx)$$

4 D > 4 A P > 4 B > 4 B > 9 Q P

Fourier analysis

Complex exponential form

$$e^{inx} = \cos(nx) + i\sin(nx) \Rightarrow$$
 $\cos(nx) = \frac{e^{inx} + e^{-inx}}{2}, \sin(nx) = \frac{e^{inx} - e^{-inx}}{2i}$

Hence

$$f(x) = \sum_{n=0}^{\infty} \frac{(a_n - ib_n)}{2} e^{inx} + c.c \equiv \sum_{-\infty}^{\infty} A_n e^{inx}, A_n^* = A_{-n}$$

Orthogonality:

$$\int_0^{2\pi} dx \, e^{inx} e^{-imx} = 2\pi \delta_{nm}$$

Expression for coefficients

$$A_n = \frac{1}{2\pi} \int_0^{2\pi} dx \, f(x) \, e^{-inx}$$

Necessary

Vector algebra

Differential operations o scalar and vector fields Integration in 3D space

Fourier analysis

A crash course in fluid dynamics

The perte

Euler - Lagrange duality

Energy and thermodynamics Kelvin circulation theor

Fourier series on arbitrary interval L: $\sin(nx)$, $\cos(nx) \rightarrow \sin(\frac{2\pi}{L}nx)$, $\cos(\frac{2\pi}{L}nx)$, $\int_0^{2\pi} dx \rightarrow \int_0^L dx$, normalization $\frac{1}{\pi} \rightarrow \frac{1}{L}$. In the limit $L \rightarrow \infty$: $\sum_{-\infty}^{\infty} \rightarrow \int_{-\infty}^{\infty}$.

$$f(x) = \int_{-\infty}^{\infty} dk \, F(k) \, e^{ikx}, \quad F(k) = \int_{-\infty}^{\infty} dx \, f(x) \, e^{-ikx}.$$

Based on orthogonality:

$$\int_{-\infty}^{\infty} dx \, e^{ikx} e^{-ilx} = \delta(k-l),$$

where $\delta(x)$ - Dirac's delta-function, continuous analog of Kronecker's δ_{nm} , with properties:

$$\int_{-\infty}^{\infty} dx \, \delta(x) = 1, \quad \int_{-\infty}^{\infty} dy \, \delta(x-y) \, F(y) = F(x).$$

Necessary nathematic

Vector algebra

Differential operations scalar and vector fi

Fourier analysis

A crash course in fluid dynamics

The perfect flui

Euler - Lagrange duality

Energy and thermodynamics Kelvin circulation theorer

Multiple variables and differentiation

$$f(x,y,z) = \int_{-\infty}^{\infty} dk \, dl \, dm \, F(k,l,m) \, e^{i(kx+ly+mz)},$$
$$F(k,l,m) = \int_{-\infty}^{\infty} dx \, dy \, dz \, f(x,y,z) \, e^{-i(kx+ly+mz)}.$$

Physical space $(x, y, z) \longrightarrow (k, l, m)$, Fourier space. Radius-vector $\mathbf{x} \rightarrow \mathbf{k}$, "wavevector",

$$f(\mathbf{x}) = \int_{-\infty}^{\infty} d\mathbf{k} \, F(\mathbf{k}) \, e^{i\mathbf{k}\cdot\mathbf{x}}$$

Main advantage: differentiation in physical space \rightarrow multiplication by the corresponding component of the wavevector in Fourier space $\frac{\partial}{\partial x} \rightarrow ik$:

$$\frac{\partial}{\partial x}f(\mathbf{x}) = \int_{-\infty}^{\infty} d\mathbf{k} \, ik \, F(\mathbf{k}) \, e^{i\mathbf{k} \cdot \mathbf{x}},$$

and similarly for other variables.

mathematics

Vector algebra

Differential operations or scalar and vector fields
Integration in 3D space

Fourier analysis

A crash course ir fluid dynamics

Ine per

Euler - Lagrange duality
Energy and
thermodynamics

thermodynamics
Kelvin circulation theorem
Real fluids: incorporating

4 D > 4 A > 4 E > 4 E > 9 Q P

Equations of motion

Eulerian description: in terms of fluid velocity field $\mathbf{v}(\mathbf{x},t)$, and scalar density and pressure fields $\rho(\mathbf{x},t)$, $P(\mathbf{x},t)$, defined at each point \mathbf{x} of the volume occupied by the fluid at any time t.

Euler equations

Local conservation of momentum in the presence of forcing **F**:

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla P + \mathbf{F}, \tag{8}$$

Continuity equation

Local conservation of mass:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = 0. \tag{9}$$

Necessary

Vector algeb

Differential operations of scalar and vector fields Integration in 3D space Fourier analysis

fluid dynamics

The perfect fluid

Governing equations

Euler - Lagrange duality
Energy and
thermodynamics
Kelvin circulation theorem

Equation of state: baroclinic fuid

Fluid: thermodynamical system \Rightarrow equation of state relating P and ρ and closing the system (8), (9) (4 equations for 5 dependent variables). General equation of state:

$$P = P(\rho, s), \tag{10}$$

 $s(\mathbf{x},t)$ is entropy per unit mass \Rightarrow evolution equation for s required. Perfect fluid:

$$\frac{\partial s}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} s = 0. \tag{11}$$

Necessary mathematics Vector algebra Differential operations o scalar and vector fields Integration in 3D space

fluid dynamics

The perfect fluid

Governing equations

Energy and thermodynamics Kelvin circulation theorem

Kelvin circulation theorem
Real fluids: incorporating

Equation of state: barotropic fluid

$$P = P(\rho) \leftrightarrow s = \text{const},$$
 (12)

sufficient to close the system (8), (9).

Particular case: incompressible fluid. Conservation of volume per unit mass ⇒ zero divergence:

$$\nabla \cdot \mathbf{v} = 0, \Rightarrow \tag{13}$$

$$\frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho = 0$$
, and $\nabla \cdot (\mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla \cdot \left(\frac{\nabla P}{\rho}\right) \Rightarrow$ (14)

Pressure entirely determined by density and velocity distributions.

Necessary mathematics

Vector algebra

Differential operations or scalar and vector fields
Integration in 3D space

fluid dynamics

The perfect fluid

Governing equations

Euler - Lagrange duality

thermodynamics
Kelvin circulation theorem

Lagrangian view of the fluid: momentum balance

Fluid \equiv ensemble of fluid parcels with time-dependent positions $\mathbf{X}(\mathbf{x}_0, t)$, $\mathbf{X}(\mathbf{x}_0, 0) = \mathbf{x}$.

Euler - Lagrange duality: continuity of the fluid \Rightarrow any point in the flow \mathbf{x} is, at the same time, a position of some fluid parcel \Rightarrow Eulerian velocity at the point $\mathbf{v}(\mathbf{x}) =$ velocity of the parcel $\mathbf{v}(\mathbf{X},t) = \frac{d\mathbf{X}}{dt} \equiv \dot{\mathbf{X}}$. Lagrangian (material) derivative in Eulerian terms by chain differentiation:

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \frac{\partial \mathbf{x}}{\partial t} \cdot \mathbf{\nabla} \equiv \frac{\partial}{\partial t} + \mathbf{v} \cdot \mathbf{\nabla}. \tag{15}$$

⇒ Newton's second law for the parcel

$$\rho(\mathbf{X}, t) \frac{d^2 \mathbf{X}}{dt^2} = -\nabla_{\mathbf{X}} P(\mathbf{X}, t) + \mathbf{F}, \tag{16}$$

4D > 4B > 4B > 4B > 900

⇒ Euler equation (8).

mathematics

Vector algebra

Differential operations o scalar and vector fields
Integration in 3D space

A crash course in fluid dynamics

Governing equations

Euler - Lagrange duality

Energy and thermodynamics Kelvin circulation theorem

Lagrangian view of the fluid: mass balance

Mass conservation in Lagrangian terms:

$$\rho_i(\mathbf{x})d^3\mathbf{x} = \rho(\mathbf{X}, t)d^3\mathbf{X}, \leftrightarrow \rho_i(\mathbf{x}) = \rho(\mathbf{X}, t)\mathcal{J}$$
 (17)

where ρ_i is the initial distribution of density, and $d^3\mathbf{X}$ and $d^3\mathbf{X}$ are initial and current elementary volumes. The Jacobi determinant (Jacobian) in this formula is defined as the determinant:

$$\mathcal{J} = \begin{vmatrix} \frac{\partial X}{\partial x} & \frac{\partial X}{\partial y} & \frac{\partial X}{\partial z} \\ \frac{\partial Y}{\partial x} & \frac{\partial Y}{\partial y} & \frac{\partial Y}{\partial z} \\ \frac{\partial Z}{\partial x} & \frac{\partial Z}{\partial y} & \frac{\partial Z}{\partial z} \end{vmatrix} \equiv \frac{\partial (X, Y, Z)}{\partial (x, y, z)}$$

Incompressibility in Lagrangian terms: $\mathcal{J}=1$. Taking Lagrangian time-derivative of this relation, we obtain the incompressibility condition of zero velocity divergence in Eulerian terms. Advection of entropy (11) \Leftrightarrow conservation of entropy by each fluid parcel $\dot{s}=0$.

Necessary mathematics Vector algebra Differential operations o scalar and vector fields

A crash course in fluid dynamics

Governing equations

Euler - Lagrange duality

thermodynamics
Kelvin circulation theorem
Real fluids: incorporating

4 □ ト 4 □ ト 4 亘 ト 4 亘 ・ 9 Q @

1st principle of thermodynamics

Reversible processes in one-phase systems:

$$\delta \epsilon = T \delta \mathbf{s} - P \delta \mathbf{v},\tag{18}$$

 ϵ - internal energy per unit mass, $v=\frac{1}{\rho}$ - specific volume. Enthalpy per unit mass: $h=\epsilon+Pv$

$$\delta h = T \delta s + v \delta P. \tag{19}$$

Energy density: sum of kinetic and internal parts:

$$e = \frac{\rho \mathbf{v}^2}{2} + \rho \epsilon. \tag{20}$$

Local conservation of energy:

$$\frac{\partial e}{\partial t} + \nabla \cdot \left[\rho \mathbf{v} \left(\frac{\mathbf{v}^2}{2} + h \right) \right] = 0.$$
 (21)

Barotropic fluid:

$$\delta h = \frac{\delta P}{\rho} \Rightarrow \frac{\nabla P}{\rho} = \nabla h.$$
 (22)

ecessary athematics

Vector algebra
Differential operations on scalar and vector fields
Integration in 3D space
Fourier analysis

A crash course in luid dynamics

ne perfect fluid Governing equations

Energy and thermodynamics Kelvin circulation theorem

Kelvin theorem

Circulation of velocity around a contour Γ consisting of fluid parcels, and moving with the fluid:

$$\gamma = \int_{\Gamma} \mathbf{v} \cdot d\mathbf{l} = \int_{S_{\Gamma}} (\nabla \wedge \mathbf{v}) \cdot d\mathbf{l}, \qquad (23)$$

Kelvin theorem states that

for barotropic fluids

$$\frac{d\gamma}{dt}=0, (24)$$

for baroclinic fluids

$$\frac{d\gamma}{dt} = -\int_{\Gamma} \frac{\nabla P}{\rho} \cdot d\mathbf{I}.$$
 (25)

Proof: direct calculation of the time-derivative of the circulation using the equations of motion, and the Lagrangian nature of Γ .

ecessary

Vector algebra

Differential operations on scalar and vector fields

Integration in 3D space

A crash course in fluid dynamics

The pene

Euler - Lagrange duality Energy and

Kelvin circulation theorem

Perfect vs real fluids

Perfect fluid approximation: macroscopic fluxes of mass, momentum and energy. Real fluids: corrections to these fluxes due to molecular transport. Simplest way to include them: flux-gradient relations following from Le Chatelier principle: molecular fluxes tend to restore the thermodynamical equilibrium. For any thermodynamical variable A

$$\mathbf{f}_{A}=-k_{A}\mathbf{\nabla}A,$$

where \mathbf{f}_A is related molecular flux, and k_A is molecular transport coefficient.

Necessary

Vector algebra

Differential operations on scalar and vector fields
Integration in 3D space

A crash course fluid dynamics

The per

Euler - Lagrange duality

Energy and thermodynamics

Kelvin circulation theorer

Viscosity, diffusivity, and thermal conductivity

 Viscosity corrections to the Euler equation in the incompressible case, giving the Navier - Stokes equation

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{\nabla P}{\rho} + \nu \nabla^2 \mathbf{v}, \ \nabla \cdot \mathbf{v} = 0.$$
 (26)

Diffusivity corrections to the continuity equation

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = D \boldsymbol{\nabla}^2 \rho. \tag{27}$$

 Thermal conductivity corrections to the heat/temperature advection giving the heat equation

$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \chi \nabla^2 T. \tag{28}$$

 u, D, χ are kinematic viscosity, diffusivity, and thermo-conductivity, the molecular transport coefficients for momentum, mass, and energy, respectively, all with dimension $\left[\frac{L^2}{T}\right]$

lecessary nathematics

Vector algebra

Differential operations on scalar and vector fields
Integration in 3D space
Fourier analysis

A crash course in fluid dynamics

Governir

Euler - Lagrange dua

thermodynamics
Kelvin circulation theorer

Dimensional/scale analysis. Reynolds number

Molecular transport coefficients: dimensional, value varies with changes if units. Only non-dimensional parameters are relevant. Typical space and velocity scales in the incompressible fluid flow: L, U. Time-scale T = L/U. Pressure scale: ρU^2 .

Scaled NS equation:

$$\frac{U^2}{L} \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla P \right) = \frac{U \nu}{L^2} \nabla^2 \mathbf{v} \rightarrow (29)$$

Non-dimensional NS equation

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \frac{1}{Re} \nabla^2 \mathbf{v}$$
 (30)

 $Re = \frac{UL}{V}$ - Reynolds number, the true measure of viscosity. Similar, Pecklet number for diffusivity.

Real fluids: incorporating molecular transport

4 ロ ト 4 倒 ト 4 豆 ト 4 豆 ト 9 9 9 9