Rotating Shallow Water on a Tangent Plane

V. Zeitlin

M1 ENS

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves Quasi-geostrophic

Rossby waves and barotropic instability

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Motion in a rotating frame Material point in a frame rotating with angular velocity Ω :

$$mrac{dm{v}}{dt}+2mm{\Omega}\wedgem{v}+mm{\Omega}\wedge(m{\Omega}\wedgem{x})=m{F},\ \ m{v}=rac{dm{x}}{dt}$$
 (1)

m- mass, \mathbf{x} -current position of the point, \mathbf{F} - sum of forces acting on the point

Euler equations in the rotating frame +gravity:

Fluid under the influence of gravity: $m \rightarrow \rho$, $\frac{d}{dt} \rightarrow \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$, forces: pressure + gravity \Rightarrow

$$rac{\partial oldsymbol{v}}{\partial t} + oldsymbol{v} \cdot oldsymbol{
abla} oldsymbol{v} + 2 oldsymbol{\Omega} \wedge oldsymbol{v} = -rac{oldsymbol{
abla} P}{
ho} + oldsymbol{g}^*$$
 (2)

Effective gravity: gravity + centrifugal acceleration (also potential)

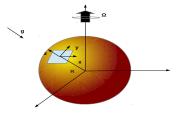
$$oldsymbol{g}^* = oldsymbol{g} + \Omega \wedge (\Omega \wedge oldsymbol{x})$$
by a the set of (3) a (3)

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model Derivation

Inertia-gravity waves Quasi-geostrophic approximation and model

Tangent plane approximation



Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} + f\hat{z} \wedge \mathbf{v} = -\frac{\nabla P}{\rho} + \mathbf{g}$$
(4)
- plane: $f = const; \beta$ - plane: $f = f + \beta y; f$ - Coriolis
arameter: $f = 2\Omega \sin \phi$, where ϕ - latitude

Hydrostatics. Stratification

The state of rest $\mathbf{v} \equiv 0$ is solution of (4) if hydrostatic equilibrium holds:

$$\mathsf{0}=-rac{oldsymbol{
abla} \mathsf{P}}{
ho}+oldsymbol{g}$$

The continuity equation:

$$\frac{d\rho}{dt} + \rho \boldsymbol{\nabla} \cdot \boldsymbol{v} = \boldsymbol{0}$$

is satisfied by time-independent ρ in a state of rest. Statically stable states: $\rho = \rho_0(z), \, \rho'_0(z) \leq 0 \rightarrow$

$$P=P_0(z)=-\int dz\,g\,\rho_0(z)$$

Dependence of ρ_0 on *z* is called stratification. Surfaces of constant ρ : isopycnals.

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

approximation and model

Rossby waves and barotropic instability

・ロト・西ト・ヨト ・ヨー シタの

Parent equations

Fluid with constant density ρ_0 with a free surface \leftrightarrow single isopycnal, simplest stratification. Thin layer \rightarrow columnar motion \equiv horizontal velocity $\mathbf{v}_h = \mathbf{v}_h(x, y, t)$. Hydrostatic equations, $\mathbf{v} = \mathbf{v}_h + \hat{\mathbf{z}}\mathbf{w}$:

$$\frac{\partial \mathbf{v}_h}{\partial t} + \mathbf{v}_h \cdot \nabla \mathbf{v}_h + f\hat{z} \wedge \mathbf{v}_h = -\frac{\nabla_h P}{\rho}, \quad \nabla_h = (\partial_x, \, \partial_y)$$

$$abla \cdot \mathbf{v} = \mathbf{0}, \quad g = -\frac{\partial_z \mathbf{v}}{\rho}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model Rossby waves and barotropic instability

Boundary conditions

Horizontal boundary conditions: Periodic, decay, or other

Vertical kinematic boundary conditions:

Free surface
$$z = h(x, y, t)$$
:

$$w|_{z=h}=rac{dh}{dt}=\partial_th+\mathbf{v}_h\cdot\nabla_hh.$$

Meaning: material surface made of fluid parcels.

Flat bottom:

$$w|_{z=0}=0.$$

Meaning: non-penetration through the boundary.

Vertical dynamic boundary condition: Continuity of pressure: $P|_{z=h} = P_0 = \text{const.}$ Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model Resety waves and

Eliminating *P* and *w*

Integrating hydrostatic equation:

 $P(x, y, z, t) = -\rho_0 g z + \mathcal{P}(x, y, t),$

 $\mathcal{P}(x, y, t)$ - integration "constant". Dynamic boundary condition: $\mathcal{P}(x, y, t) = \rho_0 gh(x, y, t) + P_0$.

Integrating continuity equation:

$$abla_h \mathbf{v}_h(x, y, t) + \partial_z w(x, y, z, t) = 0 \rightarrow$$

 $w = -z \, \nabla_h \mathbf{v}_h(x, y, t) + \mathcal{W}(x, y, t).$

W(x, y, t) - integration "constant". Bottom boundary condition: W(x, y, t) = 0.

Kinematic boundary condition at the surface:

$$w|_{z=h} = -h \nabla_h \boldsymbol{v}_h(x, y, t) = \partial_t h + \boldsymbol{v}_h \cdot \nabla_h h.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

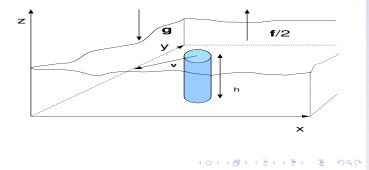
Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model Rossby waves and

Rotating shallow water (Saint-Venant) equations

$$\partial_t \mathbf{v}_h + \mathbf{v}_h \cdot \nabla \mathbf{v}_h + f \hat{\mathbf{z}} \wedge \mathbf{v}_h + g \nabla h = 0, \qquad (5)$$

$$\partial_t h + \nabla \cdot (\mathbf{v}_h h) = 0, \qquad (6)$$

Meaning: horizontal motion of columns of fluid of variable depth.



Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model

Conservation laws and acoustic analogy

Eulerian conservation laws

Equations (5), (6) express the local conservation of the horizontal momentum and mass.

By direct calculation using (5), (6), for energy density:

$$m{e}=hrac{m{v}^2}{2}+grac{h^2}{2}$$

we get

$$\partial_t \boldsymbol{e} = -\nabla \cdot \left(\boldsymbol{v} h \left(\frac{\boldsymbol{v}^2}{2} + g h \right) \right) \Rightarrow$$
 (8)

total energy, $E = \int dx dy e = \text{const}$, for isolated system.

Acoustic analogy

Equation (6) is a continuity equation for "density" *h*. Equations. (5) are 2-dimensional Euler equations in a rotating frame for a barotropic fluid with density *h* and pressure $P = \frac{g h^2}{2}$. Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

(7)

Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model Rossby waves and barotronic instability

Vorticity and Potential vorticity

Only the vertical component of relative vorticity counts in RSW:

$$\zeta = V_X - U_y$$

Relative vorticity: vorticity measured in the rotating frame. Absolute vorticity: vorticity measured in a fixed frame

$$\zeta_{a} = \zeta + f$$

Planetary vorticity *f*: vorticity due to rotation of the system. Potential vorticity (PV):

$$q=rac{\zeta+f}{h}.$$

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

```
・ロト・西ト・山田・山田・山下
```

(9)

Lagrangian conservation of PV:

.

$$\frac{dq}{dt} \equiv (\partial_t + \boldsymbol{\nu} \cdot \nabla) q = 0, \qquad (10)$$

is obtained by combining equations of vorticity:

$$\frac{d(\zeta+f)}{dt} + (\zeta+f)\nabla\cdot \mathbf{v} = 0, \qquad (11)$$

and mass conservation:

$$\frac{dh}{dt} + h\nabla \cdot \mathbf{v} = 0 : \qquad (12)$$

$$\frac{d}{dt}\frac{\zeta+f}{h} = \frac{1}{h}\frac{d}{dt}(\zeta+f) - \frac{\zeta+f}{h^2}\frac{d}{dt}h = 0, \quad (13)$$

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves Quasi-geostrophic approximation and model Rossby waves and

・ロト・日本・日本・日本・日本・日本・日本

Eulerian expression:

Conservation of PV leads to independence of time of any integral:

$$\int dxdy \, h\mathcal{F}(q), \qquad (1$$

over the whole flow, with \mathcal{F} - arbitrary function.

Qualitative image of the RSW dynamics:

Two-dimensional motion of the fluid columns of variable depth, each preserving its potential vorticity.

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

4)

Potential vorticity

Inertia-gravity waves Quasi-geostrophic approximation and model

Spectrum of small perturbations to the state of rest on the *f*-plane

Method of small perturbations

State of rest $\mathbf{v} = 0$, $h = H_0 = const$ - exact solution. Consider small perturbations $\mathbf{v} = (u, v) h = H_0 + \eta$, such that ||u||, ||v||, $||\eta||$ are all \ll 1, which allows to neglect the nonlinear terms \rightarrow linearization.

Linearized RSW equations :

Linearized equations in the approximation f = const:

$$u_{t} - fv + g\eta_{x} = 0,$$

$$v_{t} + fu + g\eta_{y} = 0,$$

$$\eta_{t} + H_{0}(u_{x} + v_{y}) = 0,$$

(15)

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and parotropic instability

Method of Fourier Solutions - harmonic waves:

$$(\boldsymbol{u}, \boldsymbol{v}, \eta) = (\boldsymbol{u}_0, \boldsymbol{v}_0, \eta_0) \boldsymbol{e}^{i(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})} + \text{c.c.},$$

where ω and **k** are frequency and wavenumber, respectively \Rightarrow algebraic system for (u_0, v_0, η_0):

$$\begin{pmatrix} i\omega & -f & -igk_{x} \\ f & i\omega & -igk_{y} \\ -iH_{0}k_{x} & -iH_{0}k_{y} & i\omega \end{pmatrix} \begin{pmatrix} u_{0} \\ v_{0} \\ \eta_{0} \end{pmatrix} = 0, \quad (17)$$

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model Derivation

Potential vorticity

(16)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Inertia-gravity waves

Quasi-geostrophic approximation and model

Dispersion equation

Condition of solvability:

$$\det \begin{pmatrix} i\omega & -f & -igk_x \\ f & i\omega & -igk_y \\ -iH_0k_x & -iH_0k_y & i\omega \end{pmatrix} = 0, \quad (18)$$

which gives:

$$\omega \left(\omega^2 - g H_0 \boldsymbol{k}^2 - f^2 \right) = 0. \tag{19}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Physical meaning of solutions

3 roots of the equation correspond to

Stationary solutions ω = 0 ↔ linearized PV-conservation equation:

$$\partial_t \left(\frac{\partial_x v - \partial_y u}{H_0} - \frac{f \eta}{H_0^2} \right) = 0$$

Propagative waves with the dispersion relation:

$$\omega^2 - gH_0 k^2 - f^2 = 0.$$
 (20)

Inertia-gravity waves.

Dispersion relation (20) is isotropic. No-rotation limit:

$$\omega=\pm\sqrt{gH_{0}}|m{k}|
ightarrow$$

acoustic waves with "speed of sound" $c = \sqrt{gH_0}$.

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Potential vorticity

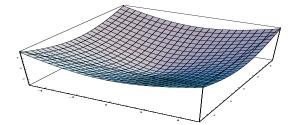
Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

・ロト・日本・山本・山本・山本・山本・山本・山本・山本・山本

Dispersion relation



Dispersion relation for inertia-gravity waves. $c = \sqrt{gH_0} = 1$, f = 1, the part with $\omega < 0$ is not presented. Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Horizontal motion equations

$$\frac{\partial \mathbf{v}_h}{\partial t} + \mathbf{v}_h \cdot \nabla_h \mathbf{v}_h + f\hat{z} \wedge \mathbf{v}_h = -g\nabla_h h.$$
(21)
$$f = f_0(1 + \beta y), \quad H = H_0 + \eta$$
(22)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

"Vortex" scaling

- Velocity $\boldsymbol{v}_h = (u, v), \ u, v \sim U$
- Unique horizontal spatial scale L,
- Vertical scale $H_0 << L$,
- Time-scale: tirn-over time $T \sim L/U$.

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

nertia-gravity waves

Quasi-geostrophic approximation and model

Characteristic parameters

Intrinsic scale of the system: deformation (Rossby) radius:

$$R_d = \frac{\sqrt{gH_0}}{f_0}$$

- Rossby number: $Ro = \frac{U}{f_0L}$,
- Burger number: $Bu = \frac{R_d^2}{L^2}$,
- Typical amplitude of the free surface elevations = non-linearity parametre: λ = ΔH/H₀, where ΔH is the typical value of η,
- ► Non-dimensional meridional gradientof $f: \tilde{\beta} \sim \beta L$

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

(23

Potential vorticity

nertia-gravity waves

Quasi-geostrophic approximation and model

Non-dimensional RSW equations

$$Ro\left(\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v}\right) + (1 + \tilde{\beta} \boldsymbol{y}) \hat{\boldsymbol{z}} \wedge \boldsymbol{v} = -\frac{\lambda B u}{Ro} \nabla \eta, \quad (24)$$

$$\lambda \partial_t \eta + \nabla \cdot (\mathbf{v}(1 + \lambda \eta)) = \mathbf{0}.$$
(25)

Geostrophic equilibrium

Equilibrium between the force of Coriolis and pressure force \rightarrow geostrophic wind:

$$f\hat{\mathbf{z}} \wedge \mathbf{v}_g = -g \nabla h$$
 (26)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

nertia-gravity waves

Quasi-geostrophic approximation and model

Quasi-geostrophic approximation

Conditions of realization of the geostrophic equilibrium:

- *Ro* → 0,
- $\lambda Bu \sim Ro$,
- ► $\tilde{\beta} \rightarrow 0$.

Quasi- geostrophy (QG):

$$Ro \equiv \epsilon \ll 1, \lambda \sim Ro, \Rightarrow Bu \sim 1, \Rightarrow L \sim R_d, \ \tilde{eta} \sim Ro$$
 (27)

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

nertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

・ロト・日本・日本・日本・日本・日本

Potential vorticity in QG approximation

Non-dimensional potential vorticity:

(

$$\begin{aligned} q &= \frac{f_0}{H_0} \frac{\epsilon(v_x - u_y) + (1 + \epsilon y)}{1 + \epsilon \eta} \\ &= \frac{f_0}{H_0} \left(\epsilon(v_x - u_y) + (1 + \epsilon y) \right) (1 - \epsilon \eta + \dots) \\ &= \frac{f_0}{H_0} \left[1 + \epsilon \left(v_x - u_y + y - \eta \right) + \mathcal{O} \left(\epsilon^2 \right) \right]. \end{aligned}$$
(28)

Non-dimensional geostrophic wind:

$$\mathbf{v} = \eta_{\mathbf{x}} \quad \mathbf{u} = -\eta_{\mathbf{y}} \Rightarrow \mathbf{v}_{\mathbf{x}} - \mathbf{u}_{\mathbf{y}} = \nabla^2 \eta$$
 (29)

Advection by the geostrophic wind:

$$\partial_t \dots + u \partial_x \dots + v \partial_y \dots \to \partial_t \dots + \mathcal{J}(\eta, \dots)$$
 (30)

 $\mathcal{J}(A, B) = A_x B_y - A_y B_x$ - Jacobian.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

nertia-gravity waves

Quasi-geostrophic approximation and model

QG equation

$$\partial_t \left(\nabla^2 \eta - \eta \right) + \mathcal{J}(\eta, \nabla^2 \eta - \eta) + \partial_x \eta = 0.$$
 (31)

Physical meaning: conservation of (non-dimensional) geostrophic PV $q_G = \nabla^2 \eta - \eta + y$. Restitution of dimensions:

$$abla^2 \eta - \eta
ightarrow
abla^2 \eta - rac{1}{R_d^2} \eta, \ \partial_x \eta
ightarrow eta \partial_x \eta.$$
 (32)

Formal linearization:

$$\partial_t \eta - \nabla^2 \partial_t \eta - \partial_x \eta = 0.$$
 (33)

Wave solutions: $\eta \propto exp^{i(kx+ly-\omega t)} \rightarrow dispersion relation:$

$$\omega = -\frac{k}{k^2 + l^2 + 1}.$$
 (34)

Rossby waves: strongly dispersive, with anisotropic dispersion ↔ vorticity waves.

Hydrodynamics on a tangent plane to a rotating planet

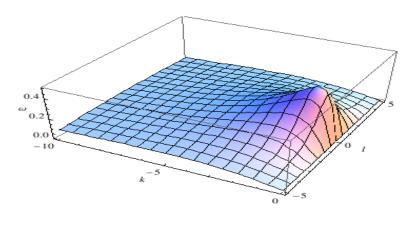
Rotating Shallow Water (RSW) model Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Dispersion diagram for Rossby waves



Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

・ロト・日本・日本・日本・日本・日本

Rossby waves over a mean flow Zonal flow: (u, v) = (U(y), 0). Corresponding geopotential anomaly:

$$\eta = \eta_0(\mathbf{y}) = -\int^{\mathbf{y}} d\mathbf{y}' U(\mathbf{y}') \Rightarrow \nabla^2 \eta = -U'(\mathbf{y}).$$
 (35)

Linearization of (31) about η_0 , $\eta \rightarrow \eta_0 + \eta$:

$$(\partial_t + U(y)\partial_x) \left(\nabla^2 \eta - \eta\right) + \partial_x \eta (-U''(y) + U(y)) + \partial_x \eta = 0. \Rightarrow$$
(36)

PV gradient of the mean flow (-U''(y) + U(y)) plays the same rôle as β (last term in (36)).

If U = const, equation (36) has constant coefficients \rightarrow Fourier -transform \rightarrow dispersion relation for short waves with $k^2 + l^2 \gg 1$:

$$\omega = Uk - \frac{k}{k^2 + l^2} \tag{37}$$

absolute frequency . $\omega = -\frac{k}{k^2 + l^2}$ - intrinsic frequency .

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model Derivation Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model

Rossby waves over mean flow on the *f*-plane

Equation (36) on the *f*-plane, in the limit $R_d \rightarrow \infty$:

$$\boldsymbol{\nabla}^2 \eta_t + \boldsymbol{U}(\boldsymbol{y}) \boldsymbol{\nabla}^2 \eta_x - \eta_x \boldsymbol{U}''(\boldsymbol{y}) = \boldsymbol{0}. \tag{38}$$

Partial Fourier-transform: $\eta(x, y, t) \rightarrow \hat{\eta}(y)e^{ik(x-ct)} \Rightarrow$

$$\hat{\eta}''(y) - \left[k^2 + \frac{U''(y)}{U(y) - c}\right]\hat{\eta}(y) = 0.$$
 (39)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Boundary conditions: free-slip in the zonal channel $y_1 \le y \le y_2$

$$|v|_{y=y_{1,2}} = \eta_x|_{y=y_{1,2}} = 0, \Rightarrow \hat{\eta}|_{y=y_{1,2}} = 0$$

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model Derivation Potential vorticity Inertia-gravity waves Quasi-geostrophic emercimenties and model

Integral estimate

Integration over y

$$\int_{y_1}^{y_2} dy \left[\hat{\eta}^*(y) \left(\hat{\eta}^{\prime\prime}(y) - \left[k^2 + \frac{U^{\prime\prime}(y)}{U(y) - c} \right] \hat{\eta}(y) \right) \right] = 0$$
(40)

Integration by parts + boundary conditions:

$$\int_{y_1}^{y_2} dy \, \left(\hat{\eta}^{*\prime}(y) \hat{\eta}'(y) + \left[k^2 + \frac{U''(y)}{U(y) - c} \right] \hat{\eta}^{*}(y) \hat{\eta}(y) \right) = 0$$
(41)

Imaginary part:

Only in phase velocity \Rightarrow

$$c_i \int_{y_1}^{y_2} dy \, \frac{U''(y)}{|U(y) - c|^2} \hat{\eta}^*(y) \hat{\eta}(y) = 0$$

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model Derivation Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Rayleigh criterion of barotropic instability

$$\int_{y_1}^{y_2} dy \, rac{U''(y)}{|U(y)-c|^2} \hat{\eta}^*(y) \hat{\eta}(y) = 0, \quad ext{if} \ \ c_i
eq 0 \Rightarrow$$

In the absence of critical levels $(U(y) - c \neq 0)$, if the flow is unstable, then U(y) has inflexion point $\exists y_0 : U''(y_0) = 0.$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

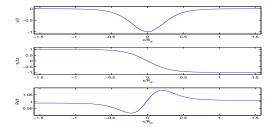
Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Example: barotropic instability of a meridional jet on the *f*-plane in RSW



Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

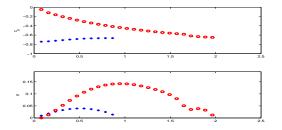
Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

Jet in geostrophic equilibrium. From top to bottom: meridional velocity, geopotential, and PV

Dispersion relation and growth rate



Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

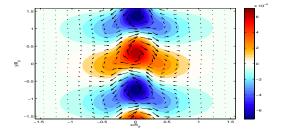
Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

Phase velocity (top) and growth rate (bottom) of two most unstable modes.

The most unstable mode



Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

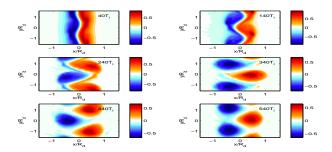
Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

Pressure and velocity anomalies of the most unstable mode.

Nonlinear evolution of the instability (relative vrticity)



Hydrodynamics on a tangent plane to a rotating planet

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability