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Special places: coasts and Equator

What changes near the coasts?
A very idealized coast: a straight wall.
Change: boundary conditions↔ normal velocity
vanishes, in the absence of dissipation.
Consequence: homogeneity in the cross-coast direction
is broken⇒ Fourier transformation compromised.

What changes at the equator?
Change: Coriolis parameter in the tangent plane at the
Equator (equatorial beta-plane) has no constant part

f = βy

Consequence: coordinate - dependent coefficients in the
equations of motion⇒ Fourier transformation impossible.
Conclusion: analysis of the linearized equations to be
revisited. Below: linear wave analysis using RSW model.



Linearised RSW with a lateral boundary
Setup: non-dissipative 1-layer RSW equations in a
half-plane with a rectilinear meridional boundary at x = 0.
Linearised non-dimensional RSW equations:

ut − v + ηx = 0,
vt + u + ηy = 0,
ηt + ux + vy = 0 (1)

Rectlinear meridional west coast: b.c.: u|x=0 = 0.
Inhomogeneity in x , but Fourier-transform in y , t possible:

(u, v , η) = (ū0(x), v̄0(x), h̄0(x))ei(ly−ωt) ⇒

−iωū0 − v̄0 + h̄′0 = 0,
−iωv̄0 + ū0 + il h̄0 = 0,
−iωh̄0 + il v̄0 + ū′0 = 0, (2)



Reduction to a single equation (ω 6= 1)

h̄′′0 + (ω2 − 1− l2)h̄0 = 0, (3)

while

ū0 = i
l h̄0 − ωh̄′0
ω2 − 1

, (4)

and hence the b. c. is:

l h̄0 − ωh̄′0
∣∣
x=0 = 0. (5)



Solutions of two different types:

I Free inertia-gravity waves:

ω2 − 1− l2 ≡ k2 > 0, (6)

h̄0 ∝ e±ikx , ω2 = 1 + k2 + l2. (7)

I Trapped at the boundary waves:

ω2 − 1− l2 ≡ −κ2 < 0, (8)

h̄0 ∝ e−κx . (9)

The second type of solution is exponentially growing for
x < 0, this is why it was discarded on the whole plane.



Trapped solutions - Kelvin waves
Kelvin waves are dispersionless. Boundary condition→

l h̄0 − ωh̄′0
∣∣
x=0 = 0 ⇒ κ = − l

ω
,

⇒ ω2 − 1− l2 +
l2

ω2 = 0, ⇒ ω2 = l2 (ω 6= 1), (10)

and
κ > 0⇒ ω = −l , η ∝ e−x . (11)

Any packet of Kelvin waves:

(u, v ,h) = (0,K (y + t),−K (y + t))e−x , (12)

where K - an arbitrary function, is a solution of linearised
RSW equations. Kelvin waves are traveling along the
boundary leaving it on their right. Normal to the boundary
component of the velocity is absent, and the along-
boundary velocity and height anomaly are in quadrature.



Dispersion diagram for RSW with a
meridional boundary

Dispersion relation for internal-gravity and coastal Kelvin
waves in the RSW model. Upper curved surface:
inertia-gravity waves, lower plane: Kelvin waves.



Modification of inertia-gravity waves: reflexion

Boundary condition⇒ "free" wave is a sum of incident
and reflected waves:

(u, v ,h) = (ui , vi ,hi) + (ur , vr ,hr )

(ui , vi ,hi) = Ai

(
kω + il
ω2 − 1

,
lω − ik
ω2 − 1

,1
)

ei(kx+ly−ωt) + c.c.,

(ur , vr ,hr ) = Ar

(
−kω + il
ω2 − 1

,
lω + ik
ω2 − 1

,1
)

ei(−kx+ly−ωt) + c.c..

Boundary condition:

ui + ur |x=0 = 0, ⇒ Ar = Ai
kω + il
kω − il

, ω2 = 1+k2+l2. (13)

→ analog of Snell’s law in optics.



RSW model on the equatorial β- plane

∂tv + v · ∇v + βy ẑ ∧ v + g∇h = 0 . (14)

∂th +∇ · (vh) = 0 , (15)

Boundary conditions: decay at y → ±∞↔ waveguide.
Characteristic scales:

I Spatial scale - equatorial deformation radius:

L ∼
(√

gH
β

) 1
2

I Time-scale - T ∼ (βL)−1

I Velocity scale - U ∼
√

gH;



Non-dimensional linearized system:

ut − yv + hx = 0, (16)
vt + yu + hy = 0, (17)
ht + ux + vy = 0. (18)

Useful change of variables:

f =
1
2

(u + h); g =
1
2

(u − h). (19)

Equations (??) - (??) are simplified:

ft + fx +
1
2

(vy − yv) = 0, (20)

gt − gx −
1
2

(vy + yv) = 0, (21)

vt + y(f + g) + (f − g)y = 0. (22)



Kelvin waves

Particular solution with v ≡ 0⇒:

ft + fx = 0, gt−gx = 0, ⇒ f = F (x− t , y), g = G(x + t , y).
(23)

y(f + g) + (f − g)y = 0, ⇒ F ∝ e−
y2

2 , G ∝ e+ y2

2 (24)

B.C. at y ±∞ ⇒ G ≡ 0⇒

u = F0(x − t)e−
y2

2 ; h = F0(x − t)e−
y2

2 ; v = 0. (25)



Velocity and pressure distribution in a Kelvin
wave



Yanai waves
Particular solution with g = 0, f 6= 0, v 6= 0. From (??) -
(??) we get:

ft + fx +
1
2

(vy − yv) = 0, (26)

vy + yv = 0, (27)
vt + yf + fy = 0, (28)

Solution by separation of variables:

v = v0(x , t)φ0(y), f = F1(x , t)φ1(y), (29)

where

φn(y) =
Hn(y)e−

y2

2√
2nn!
√
π
, (30)

and Hn - Hermite polynomials:

H0 = 1, H1 = 2y , H2 = 4y2 − 2, . . . . (31)



Equations for v0 and F1:

F1t + F1x −
1√
2

v0 = 0, v0t +
√

2F1 = 0. (32)

Dispersion relation:
Fourier-transformation ∝ ei(ωt−kx) → algebraic system for
amplitudes. Solvability condition→

ω =
k
2
±
√

k2

4
+ 1, (33)



Velocity and pressure distribution in a Yanai
wave; eastward propagation



Rossby wave, propagation uniquely westward
As usual at the beta-plane Rossby waves exist, too
(technically more difficult to demonstrate):



Inertia-gravity wave, eastward propagation
Gravity always present⇒ inertia-gravity waves, too
(technically more difficult to demonstrate):



Dispersion diagram for equatorial waves
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