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GFD: what's that?

Hydrodynamics in all its complexity plus:

» Rotating frame
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GFD: what's that?

Hydrodynamics in all its complexity plus:

» Rotating frame
» Variable density (thermal/stratification) effects

» Spherical geometry (large- and meso-scales)
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Rotating frame
Variable density (thermal/stratification) effects
Spherical geometry (large- and meso-scales)

Fluid in the complex domains (coasts,
topography/bathymetry)
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Introduction

Hydrodynamics in all its complexity plus:

» Rotating frame
Variable density (thermal/stratification) effects

v

v

Spherical geometry (large- and meso-scales)

v

Fluid in the complex domains (coasts,
topography/bathymetry)
Multi-phase fluid (water vapor, ice)

v

But!
Some of these additional effects often allow to simplify the

analysis
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» Large: planetary 10* km
» Medium: atmosphere - synoptic, 103 km; ocean -
meso-scale 10 — 102 km

» Small: atmosphere - meso-scale 1 — 10 km; ocean -
sub-meso scale 1 km

> Very small: meters

Our prime interest: large and medium scales.



Dynamical actors: vortices, atmosphere

CréDS: COLA/ICES .
GFS Analysis: 007 Wed 16 JUL 2012

S00mb Geapotential Heights [dom}, Verticity (1e%/sec) |
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Dynamical actors: waves, atmosphere
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Where the governing equations come from:

» Mechanical system = Newton's 2nd law <> momentum
conservation.
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Where the governing equations come from:

» Mechanical system = Newton's 2nd law <> momentum
conservation.

» Continuous medium = local mass conservation

Geophysical
Fluid Dynamics 1

V Zeitlin - GFD

Re_mincler: perfect

Dissipative
phenomena
Rotating. frame
Spherical
coordinates.
Approximation of
the tangent plane

Primitive quations
Ocean
Atmosphere
"Pseudo-height"
coordinate
Isentropic/isopyecn:
coordonates
Anelastic
equations

Vertically
integrated models

RSW model
Primitive
equations (PE)
What we lose by
supposing
hydrostatics




Where the governing equations come from:

» Mechanical system = Newton's 2nd law <> momentum
conservation.

» Continuous medium = local mass conservation

» Thermodynamical system = 1st and 2nd laws of
thermodynamics, equation of state

Principal difficulty - nonlinearity
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Example of essentially nonlinear process: wave

breaking
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Related mathematical fields

Reminder: perfect

» Linear algebra
» Partial differential equations
» Vector and tensor analyses

» Fourier analysis

Toolbox
» Method of small perturbations. Linearisation.
Eigenproblems.
» Method of (time- and space-) averaging

» Asymptotic expansions, multi-scale analysis
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Description in terms of instantaneous positions of fluid
parcels )?()?, t), along their trajectories, where X are initial
positions (Lagrangian labels).

Newton's 2nd law:

Reminder: perfect

L d?X -
X, t)— = —VP(X,t). 1
p(X, t) a2 VP(X,t) (1)

Continuity equation:
()T = oK, 0 BK, o pi(x) = p(X, 0T (2)

where p; is initial distribution of density of the fluide,

J = % is the Jacobi determinant d(Jacobian). Fluid

velocity: (X, t) = &= X.

Q
X1
|
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Description in terms of instantaneous values of the velosity,
density and pressure fields at the fixed point of space:

\7()?, t), p()_(, t)7 P()_(, t) Duality )_( < )_(’ ‘Rle_r:lﬁnder: perfect
Newton's 2nd law:
ov - o
p(a‘;+v.vv> — VP (3)

Continuity equation:
L4V (pv)=0. 4
ot + V- (pv) (4)

Lagrangian derivative:

d 0 R
E—aﬁ-v'v. (5)



Proposition

Lagrangian and Eulerian continuity equations are equivalent
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Proposition V Zeitlin - GFD
Lagrangian and Eulerian continuity equations are equivalent

Proof.

Reminder: perfect

dpy_ 90y AT dpi
P =G g = =Y (6)
a7 (X, Y,Z)+6(X, Y,Z)+8(X, Y,Z)
d — d(xy,z)  Axy,z)  Axy,2)
(XY, Z) (09X oYy 0Z
dp | = . o0 e [ N_
E+pV~v—OHE+V (pv) =0. (7)

O



Closure of the system: equation of state
General equation of state
P = P(p,s), (8)
wher s - entropy per unit mass;

» Barotropic fluid:

P = ,D(p) <+ s = const, (9)
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Closure of the system: equation of state
General equation of state
P = P(p,s),
wher s - entropy per unit mass;

» Barotropic fluid:

P = P(p) <+ s = const,

» Baroclinic fluid:
P = P(p,s),=

Equation for s neccessary. Perfect fluid:

(8)
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Particular case of the barotropic fluid -
incompressible fluid:

Volume conservation:
J=1V-Vv=0=.
pressure is not independente variable.

1. If in addition, p = const:

V- (v-97) = _1sep,

(12)
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Particular case of the barotropic fluid -
incompressible fluid:

Volume conservation:

J=1V-V=0=.
pressure is not independente variable.

1. If in addition, p = const:

V- (v-97) = _1sep,

2. Otherwise 4 9
P_9% 5. F,—
P 8t+v Vp=0.
et .
= N - P
v.(g.v\7>:_v. vP
p

(12)

(14)

(15)
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Thermodynamics: reminder

1st principle, "dry" thermodynamics

de = Tbos — Pdv, (16)

where € - internal energy per unit mass, v = /1) - volume per

unit mass.
Enthalpy per unit mass: h = ¢ + Pv:

5h= Tds+ voP. (17)

Energy density of the fluid:

=2
e= % + pe. (18)

Local conservation of energy:

de o L[ V2
E%—V-[pv(?—i—h)}_o. (19)

Geophysical
Fluid Dynamics 1

V Zeitlin - GFD

Re_minder: perfect

Dissipative
phenomena
Rotating. frame
Spherical
coordinates
Approximation of
the tangent plane

Primitive quations
Ocean
Atmosphere
"Pseudo-height"
coordinate
Isentropic/isopycn:
coordonates
Anelastic
equations
Vertically
integrated models

RSW model
Primitive
equations (PE)
What we lose by
Theree
Pre|i:minary



Geophysical

Kelvin theorem Fluid Dynamics 1

V Zeitlin - GFD

Circulation:
Y= / \7 dl — / (v A ‘7> . dg; (21) ‘Rl:ir:incler: perfect
r Sr [ o]
1 . Rotating. frame
where [ - arbitrary contour, Sy - surface with the boundary I'. fé’i‘fifﬁ:g'tes_

Approximation of
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Kelvin theorem

Circulation:

7:/r\7~df:/5r(ﬁA\7>-d§,

(21)

where I - arbitrary contour, Sr - surface with the boundary T.

Kelvin theorem

» Barotropic fluid

» Baroclinic fluid

(22)

(23)
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Reminder: perfect

Exercise
» Prove energy conservation and Kelvin theorem for the
barotropic fluid
» Same for the baroclinic fluid

» Write down, with demonstration, the Euler equations for
the incompressible fluid in cylindrical coordinates



Geophysical
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Effects of dissipation: correction of the macroscopic fluxes of:

Dissipative
phenomena

» momentum
> mass
» internal energy (heat)

by the corresponding molecular fluxes, calculated from the
flux - gradient relations:

fa = —kaVA, (24)

A - a thermodynamical variable, f4 - corresponding molecular
flux.



Viscosity
Tensor notation

X—=x, V—ov, V=0, i=123. (25)

Einstein's convention: repeating indices - summation from 1
to 3.

Conservation of the momentum:

Ot(pvi)+0kmik =0, 7k = pvivk+Poy, iy = diag(1,1,1).

(26)

Viscous tensions - (density of) the molecular flux of the
momentum:

oix = vp(Oivk + Okvi) = 0:(pvi) + Ok(mixk — oix) = 0, (27)
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Incompressible case: Navier -Stokes (NS) equation

o = P .
7. Vi=—Y" 4V, VoV =0.  (28)  momiputie
8t p phenomena

Reynolds’ number
Dimensionless form of the NS equation:

4 V-Vi=—— + —V?7, (29)

Re = UL/v, U, L -typical velocity- and length-scales.

Remarque: typical Re for synoptic motions — oo



Diffusivity, thermal conductivity

Molecular fluxes of mass and heat:

—DVp,  —kVT (30)

Corrected continuity equation:

) -
a/; +V - (p¥) = DV2). (31)
Equation of heat/temperature

T - -
aa—t+\7-VT:XV2T. (32)
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Motion in a frame rotating with angular velocity € ru tveamies 1

Material point in the rotating frame: V Zeitlin - GFD
dv S i —_— -, dx
mZL 1 2mQ A7+ mG A (Q/\X) —F, v=2" (33)
dt dt
Rotating. frame
. X N Spher_ica
m- mass, X-current position of the point, F - sum of forces FrlrE e

the tangent plane

acting on the point

Euler equations in the rotating frame +gravity:
Fluid under the influence of gravity: m — p,
% — % + v -V, forces: pressure + gravity =

ov

E+vﬁv+2§w:—7+g* (34)

Effective gravity: gravity + centrifugal acceleration (also
potential)

F=z-0n(GA%) (35)



Spherical coordinates

N. Pole

£ GUartoy
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Euler and continuity equations

vf—&—v(%
R —2Qcospvy +g° =
d PV — t .
—;t)‘ vrA va)‘ an¢+2Q(—smgbv¢ +
d : 2t
dvo  Vive t KMBND | oo Ginry =
dt
d 1 9(rv, 1 9(cos
;Oeriz(fV)Jr (cos dvy)
dt > Or r cos ¢ fole
d 0
— R 8
dt ot vl ot cs<Z>
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1

“Lap,
P
Cos OVr) Rotating. frame
Spherica
1 Romsanination)of
— a}\ th"eptangent plane
pr cos ¢
~Lap
pr?
n ovy,
ox )|’

Traditional approx.: green + red — out, r - R = const

Non-traditional approx: green — out.



Tangent plane approximation

v . VP
N v Svtfenv=—YL g
ot P

f - plane: f = const; 3 - plane: f = f 4+ By; f - Coriolis
parameter: f = 2Qsin¢ = 2Qsind

(36)
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Hydrostatics. Stratification Geophysical

Fluid Dynamics 1
V Zeitlin - GFD

The state of rest V = 0 is solution of (36) if hydrostatic
equilibrium holds:

VP
0=——-+¢g
p :oltlatln frame
. . . . . . DASHCH
The continuity equation with time-independent p o N
the tangent plane
dp
+ V-v=0
dr P

is satisfied in a state of rest.
Statically stable states: p = po(z), pp(z) <0 —

P—Polz) = - [ dzgplz)

Dependence of pg on z is called stratification.
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Exercises

Deduce Euler and continuity equations in spherical

coordinates. 555::551:"“
Determine conditions of validity of the tangent plane s

approximation.

By considering displacements of fluid parcels from their
positions in the state of rest, demonstrate qualitatively that
stratifications with pp(z) > 0 are unstable;



Oceanic stratification

Typical density profile:

Increasing Density (g/cm®) —=
1023 1024  1.025 1.026 1.027 1028 10298
B

'

p(X,t) = po + ps(z) + o(x,y,z;t), po>>ps>o. (37)
Hydrostatic approximation for large-scale motions:

gp+0.P=0,=P=Py+ Ps(z) +7(x,y,z;t), (38)
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Approximations. Non-dissipative equations of
motion

Boussinesq approximation
Deviations of density from pg neglected in the horizontal —

__{_\7.6\7,7—{—1(2/\ h:—Tﬂ%_ﬁhqbv (39)

where ¢ = L

i geopotential.

Incompressibility of water
Continuity equation splits in two:

V-v=0, V=

St
+
N>
<

(40)

=
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Vertical boundary conditions Fluid Bynamics 1
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Most often sufficient for our purposes: rigid lid and flat
bottom:

z=0 — W|z:H =0 (42)

Non-trivial bathymetry : fluid parcels follow the bottom

profile

db . = .
Wemb(ey) = g =V Vb

Free surface: fluid parcels move with the surface:

dh Oh _ =
W‘z:h(x,y;t) = E = E +Vv-Vh



Atmosphere: pressure coordinates

Altitude (km)

Low High
Increasing —————»

om0r

Altitude <> Pressure = vertical coordinate.
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Thermodynamics of the dry atmosphere
Equation of state - ideal gas:

P=pRT, cpv =T <§_7_>P , = const, ¢, —c, = R.
| (43)
Entropy:
s=¢cpInT — RInP + const. (44)

Adiabatic process:

R
T P P\ <
s = const :cpd?—R%zo,: T:TS<P> " (45)

Potential temperature :

R
P\ &
0= T(PS> . s = ¢pIn 6 + const. (46)
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Geopotential and hydrostatics

Geopotential variation: work to lift a unit mass against
gravity: d¢ = gdz.

z = z(p) becomes a thermodynamical variable.
Hydrostatic approximation:

56 = —R—F;F(SP N (47)

0p RT 1

g _ T _ 2 4

oP P p (48)
Useful relation for small variations p, P, 6 with respect to
background pg, Pg, 8o:

0 =6 ﬂ P (49)
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Elimination of p in Euler equations

"Triangular" relation :

()., (3).-+-

(3),=~(&).(5),~ (&),

Incompressibility in pressure coordinates

Lagrangian volume element in pressure coordinates:

1
pdxdydz = —dedydP

Mass conservation = Volume conservation in P.

Geophysical
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51)

Atmosphere
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Geophysical

Adiabatic primitive equations Fluid Dynamics 1
V Zeitlin - GFD

Equations of motion

dP

div(V) = V- Vh+ Opw =0, w= = (53)
L/ -
E-I-V'VVh—I—fZ/\Vh:—thf). (54)

de0 4+ V-V = 0. (55)
R Atmosphere
do RT R [(P\@
e p(m) e

Boundary conditions

Bottom: ground = free surface in terms of pressure,
geopotential fixed.

Top: rigid lid = fixed value of pressure, e.g. tropopause.



"Pseudo-height" coordinate

New vertical coordinate:

R

(59)

Geophysical
Fluid Dynamics 1

V Zeitlin - GFD

Reminder: perfect
luid

Dissipative
phenomena
Rotating. frame
Spherical
coordinates.
Approximation of
the tangent plane

Pyttt e
Ocean
Atmosphere
"Pseudo-height"
coordinate
Teentren ey isopyen:
coordonates
Anelastic
equations

Vertically
integrated models

RSW model
Primitive
equations (PE)
What we lose by
supposin
hydrostatics
Pre|i|mif|ary



Mass conservation:

dxdydP = —gr(Z)dxdydz =

r(v \7+8—W +w&
h=7h T 5z 0z

Approximation z < zy:

0z roz. (y-1)z (1 - %)
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Geophysical

Equations of motion Fluid Dynamics 1

V Zeitlin - GFD

Reminder: perfect
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6 R A A — — Rotating. frame

— + V- VVh+ZAVy=—=Vpo, (63) Spherical

ot coordinates.
Approximation of
the tangent plane

Primitive quations
Ocean

Atmosphere
89 = "Pseudo-height"

R + \7‘. Ve = 0, 6 . \7 = 0. (65) coordinate

ot il
. . . . Anelasti
Identical to oceanic equations with o — —#. equarilolni
Vertically
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Isentropic coordinates

Montgomery potential

di

Therefore:

and Z is a

- 0 0
= Vpp -dxXp+ 0:¢0dz — —gdz —gzd—
) )
- 0
= Vpo dxp — gzd—
to
(Vi) = (Vao) : G0 = —&2/%0

new dependent variable.
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Velocity and continuity equations in isentropic

coordinates
Velocity

= (v do N
vV Vh, W = —
h? dt
w = 0 for adiabatic processes
Mass conservation

0z

00

92\ = [(0z.\ _
8t (%) +Vh . (@Vh> =0.

dxdydz = — dxdydf = const —

(69)

(70)

(71)
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Complete equations, adiabatic motions

oV L= L o
a—th+v,,'thh+fz/\vh=—Vh¢,

g8z 0

+ES 4+ =0,

8t - +Vh —~—Vh :O
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Geophysical

Boussinesq approximation for atmosphere Fluid Dynamics 1
Background density po: Ocean - pg = const, Atmosphere: V Zeitlin - GFD
po = po(z); Boussinesq approximation in x, y, z coordinates,

With p = po(Z) + ﬁ, P = Po(Z) + IS, 0= 90(2) + é,
(...) omitted below:

oV, =
% F VNVt F2A Ty = —Vpo, (75)
with geopotential ¢ = £. Vertical motion (non-hydrostatic):
ow = ¢ p Opo p
— Vw=—-———-5——g— 76
ot vV 0z  p3 0z gpo (76)
Equation of state (ideal gas) + (49) — sserdon
8W ad) equations
— =——+b
o TV Vw = o+ (77)

b= ge buoyancy, + V- Vb = 0 for adiabatic motions.
Continmty equation —> anelastlc equation:

V- (po(2)7) = 0.



Conservative form of equations of motion

Full Euler equations + continuity equation —

O:(pu) + O (pu®) + 0y (pvu) + O (pwu) — Fpv = = p, (78)

B (pv) +0x(puv) +0y (pv?) + 8z (pwv) + fpu = =y p, (79)
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Material surfaces

/2
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Vertical integration

Integration between two material surfaces z 5.

By definition of material surface:

dz; .
W‘Zi = d_zt = 0rzj + udxzi + vOyzj, i=1,2. (80)

Leibniz formula:

z Z2
/ dz0,F = 0, / dzF — Bez F,, + ez F,,  (81)
Z z1

1
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Integrated equations

Using (80) and (81) we obtain:

Z Z> Z
3t/ dzpu + 8X/ dzpu® + @,/ dzpuv
71 z1 z1

Z2 z2
— f/ dzpv = (?X/ dzp — Oxz1 p|z1 + Oy 2o p|22 .
z Z1

z> z> z>
3t/ dzpv + 8X/ dzpuv + ay/ dzpv?
71 71 71

Z2 Z2
+ f/ dzpu = —ay/ dzp — Oyz1 pl,, + Oyz2 pl, -
z1 z1
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Geophysical

Continuity equation: Fluid Dynamies 1

V Zeitlin - GFD

z2 z2 Z2
8t/ dzp + 3X/ dzpu + ay/ dzpv = 0. (82)  Rerpinder: perfec
V4 V4 V4

1 1 1 Dissipative
phenomena
Rotating. frame
Spherical
coordinates.
Approximation of

Integrated density: S

Primitive quations

Zo 1 Ocean
p= / dzp == (Pl = Pl2,) (83) [ armms e
V4

1 coordinate
Isentropic/isopyecn:
coordonates
Anelastic
equations

Density-weighted vertical average: Vertically

integrated models

RSW model
Primitive
equations (PE)
What we lose by
supposin
hydrostatics
Prelimi

(F) = % /Z  dzpF. (84)

1




Equations for the averages:

Ox ((u?)) + 8y (uluv)) — frfv) =
z2
ax/ dzp — Oxz1 p|Zl + Ox22 P|z2 , (85)
Z1

Ox ((uv)) + By (u(v?)) + Fr(u) =
Z2
ay/ dzp — 0,z p|Zl + 0y P|22 , (86)
z1

Oep + Ox (1u)) + 9y (ufv)) = 0.
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Hydrostatics and mean-field approximation:

Hydrostatic pressure:
Pressure inside the layer (z1, z2) in terms of pressure at the
lower surface and vertical position:

z

p(X,y,Z, t) = _g/ dZ/p(X,_y,Z/, t) + p|21 : (88)

Z1

Closure hypothesis: mean-field = columnar motion
Weak variations in the vertical, correlations decoupled:

(uv) = (u){v), (u?)

%
—~
<
~
—~
<
~
—~
<

N
~
%
—~
<
~
—~
<
~
—
(00}
©
~
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Approximate equations

Mean density:
Mean density p:

I T g
b= @) / dzp, p=p(z2— z1). (90)
7

Pressure in terms of p:

p(X,y,Z, t)%_gﬁ(z_zl)+p|zl‘ (91)

Hypothesis: 5 = const in what follows.
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Omitting the brackets we obtain for the averages from (85),
(86), (89), (91), with the help of (87), (90):

ﬁ(ZQ — 21)((9ch + vp - V,,v,, +fzZA Vh) =
N\ — Z 2
v, <_gp(221) 4 (22— 2) p|21>
—Vhz1 p|21 + Viyzo p|z2 . (92)

Any variable in this equation is a fonction only of horizontal
coordinates and time. Alternative notation: Vi, = vy,
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Rotating shallow water (RSW), 2 layers

2- layer configuration, rigid lid

Application of general equations (92) to the fluid between the
bottom z; = 0 and the top z3 = H planes. Choose a material
surface z = z(x, y, t) = h(x, y, t) in the fluid interior,

Vi — ﬁ, Vi, — v. Vertical boundaries - material surfaces.
Generalisation to non-trivial topography: z; = b(x, y).

vz

v
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Equations of motion
V1(2), P1(2) - Velocity and density in the inferior (superior)
layer.

1
Ovo +Vvo - Vo + fZAvpy = —ﬁ—V ply (93)
2
1 _
Ovi+v1-Vvi+fzAvy = —ﬁ—V p],_,—gp1 — p2Vh, (94)
1 1
8:h+V - (vih) =0, (95)
O:(H — h) + V - (va(H — h)) = 0, (96)
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Re-interpretation of the equations

2-dimensional Euler equations in each layer with dynamical
boundary condition at the interface:

p1 = (p1 — p2)gh + p2, (97)

Reduced gravity

Remark: g enter equations uniquely in combination g
reduced gravity

P1 Pz_

Exercise
Deduce the equations (93) - (96).
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1-layer rotating shallow water model

(Saint-Venant)
In the limit po — O:

Ov+v-Vv+fzZAv+gVh=0, (98)
8:h+V - (vh) =0, (99)

In the presence of non-trivial topography h — h — b(x,y) in
the second equation.
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Conservation laws, RSW model

Energy

By construction, equations (98), (99) express the local
conservation of the horizontal momentum and mass. Energy

density:
v2 h?
— h— -
e=hy t&5

obeys the conservation equation:

V2
Ore+ V- <vh (2 —|—gh)> =0,

and total energy, E = [ dxdy e, is constant for an
system.

(100)

(101)

isolated
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Potential vorticity, RSW model

Specific Lagrangian conservation law: potential vorticity g

(PV), constructed from the relative vorticity (vertical

component) ¢ = vy — uy, Coriolis le parametre f, and fluid

depth h.
G+ f
=

here { + f -absolute vorticity , f - planetary vorticity.

(102)

Geophysical
Fluid Dynamics 1

V Zeitlin - GFD

Reminder: perfect
luid

Dissipative
phenomena
Rotating. frame
Spherical
coordinates
Approximation of
the tangent plane

Primitive quations
Ocean
Atmosphere

"Pseudo-height"
coordinate
Isentropic/isopyen:
coordonates

Anelastic
equations

Vertically
integrated models

Properties of the

models: waves

and vortices
RSW model
Primitive
equations (PE)
What we lose by
supposin

o e

Preliminary
R I



Lagrangian conservation:

dq

p =(0:t+v-V)g=0,

is obtained by combining equations of vorticity:

d(¢+ 1)

AV -v =
o +(C+ )V -v=0,

and continuity
dh

— +hV-v=0":
dt-l—VvO

d¢+f 1d (+fd

P ol (e h el

(103)

(104)

(105)

(106)
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Eulerian expression:
Conservation of PV leads to independence of time of any
integral:

/ dxdy hF(q), (107)

over the whole flow, with F - arbitrary function.

Qualitative image of the RSW dynamics:

Two-dimensional motion of the fluid columns of variable
depth, each preserving its potential vorticity.
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Spectrum of small perturbations - RSW model

Linearized equations :

Perturbations about state of rest: v =0, h = Hy = const.
Linéarised equations in the approximation f = fy = const:

u—fv+gne = 0,
vi +futgn, = 0, (108)
Nt -+ Ho(ux -+ Vy) 0,

where u, v - 2 components of the velocity perturbation, 7 -
perturbation of the interface.
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Method of Fourier

Solutions - harmonic waves:
(U’ v, 77) = (u07 Vo, nO)ei(wt_k.X) + c.c, (109)

where w and k are frequency and wavenumber, respectively
=
algebraic system for (ug, vo,70):

jw —f —igky Ug
f iw  —igk, vo | =0, (110)
—iHokX —iHoky iw o
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Dispersion equation

Condition of solvability:

iw —f —igky
det f iw —igk, | =0,
—iHoky —iHok,  iw

which gives:
w (w? — gHok® — £%) = 0.

(111)

(112)
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Physical meaning of solutions

3 roots of the equation correspond to

» Stationary solutions w =0

» Propagative waves with the dispersion relation:

w? — gHok® — F2 =0

inertia-gravity waves.

(113)
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Dispersion relation

Dispersion relation for inertia-gravity waves. ¢ = /gHo = 1,
f =1, the part with w < 0 is not presented.
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Geophysical

EXGI’CISG Fluid Dynamics 1

V Zeitlin - GFD

1. Demonstrate (104),

2. Obtain the polarisation relations, i.e. the relations
between wug, vg, 1o for inertia - gravity waves,

3. Calculate phase and group velocity of inertia - gravity
waves,

4. Demonstrate that inertia-gravity waves bear no PV
anomaly (PV anomaly: q — f/Hp),

5. Determine the spectrum of small perturbations in the
2-layer RSW model,

6. Demonstrate that PV of each layer in multi-layer RSW is

Gt diqi

— 1 2 - = 0 114‘ and vortices
9 h,’ ! T dt ( ) Rdsw model

Properties of the
models: waves




Geophysical

Primitive equations, ocean Fluid Dynamies 1

V Zeitlin - GFD

L ¥ .
% FV NV RNy = -~ = Vhp,  (115)
dro + V- Vo + wpl(z) = 0. (116)
o =
88— =— 0, vh'Vh‘i‘azwzoa (117)
Po
Remark
Hydrostatic approximation <+ scaling for mesoscale motions:
U

w
W<U, H<KL, —~—+
H L Properties of the

models: waves
and vortices

where L, H and U, W are horizontal and vertical spatial and
velocity scales, respectively. Glaio o



Absolute vorticity in PE model

Absolute vorticity:

Go = C+2f,

6'5‘;:0,

where relative vorticity under the PE scaling:

C= —0,v& + O,u§ + (Oxv — Dyu)2

Application of VA to PE + "hydrodynamic identity":

(118)

(119)

(120)

(121)
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Lagrangian conservation of potential vorticity

d -
£=0, q=C-Vp, p=potps(z)+o  (122)

Using vector identities:

(4(712) -6 9%
= V- (Von (vAG)) - G-V (7 V)
_ —ﬁ-<7(5~6p>)+6'<é(‘7'6p)>
_ 5.ﬁ(g.vp):_vﬁ@,ﬁp).(125)
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Spectrum of small perturbations - PE model

Linearised equations:

Perturbations about the state of rest: v = 0 with constant
stratification on the f- plane. Linearised equations:

ug — fv + QSX = 0)
vi+fu+¢, = 0, (126)
¢z+£U:O, or+wp., = 0,
Po
uc+vy+w, = 0, (127)

where u, v w - three components of velocity perturbation, ¢
- geopotential perturbation, o - perturbation of the profile of
background density ps, with p. = const.
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Elimination of o and w:

Elimination of o

/
where N? = _% - Brunt - Viisila frequency

Elimination of w:

(bzt + WN2 = 05

ur — fv + ¢
ve + fu+ ¢,

Ux + Vy - N_2¢zzt

(128)
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Geophysical
Fluid Dynamics 1

V Zeitlin - GFD

Method of Fourier

Solutions - harmonic waves:
(u,v,9) = (o, vo, d0)e’ @ *¥) cc.,  (131)

where w et k = (ky, ky, k;) are frequency and wavenumber,
respectively.
Algebraic system for (ug, vo, ¢0):

iw = —iky U
f iw  —ik, w | =0, (132)
—ikye  —iky i%kg no

Properties of the
models: waves
and vortices
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Dispersion equation

Condition of solvability:

iw —f
det f iw

—ike —iky, ixzk2
which gives:
k2 + k2
wlw = [ NZ52L+ ) | =0 (134)
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Physical meaning of solutions

Three roots of this equation correspond to

» Stationary solutions w =0

» Propagative waves with dispersion relation:

Internal inertia-gravity waves: IGW.

= N> Y ke

+ k2
k2

L+ f?

(135)

Remark: at each fixed k, - dispersion relation of RSW

with /gHy — |L

kz|
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Exercise

1. Demonstrate (121)

2. Demonstrate that PV in the PE in isopycnal coordinates:

Oxv —Oyu-+f
g=2Y—yirl

1
Doz (136)

: . dg _
is conserved: 1 = 0.
3. Demonstrate the Eulerian conservation of energy in the

PE, with energy density defined as:

u2+v2

> + pgz, (137)

€ = po

where p = ps + o, z - (Lagrangian) position of the
elementary volumeof fluid.

4. Establish polarisation relations and calculate phase and
groupe velocities of the IGW.
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Euler equations for an incompressible fluid in the
rotating frame without hydrostatic hypothesis:

OV +V-VVi4feAvV=——VP V.v=0. (138)

Linearisation (pg = 1):

u—fv+Py = 0
vit+fu+P, =

we+ P, =0, ux+v,+w, = 0 (139)

Solution: inertial (gyroscopic) waves with dispersion relation:

2
2 2 kz

=f" = (140)
k2 + k2 + k2

w

— sub-inertial.
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Non-hydrostatic Boussinesq equations

I dw )
& 0o T +gﬂo vz
Elimination of b = —gpﬁo and w:

(141)

b=, +we, — (9 +N?)(ux+vy)+ doze = 0= (142)

ur—fv = —ox,
Vi + fu = —(by,
(att + N2) (Ux + Vy) — ¢zzt = 0,
Dispersion relation:
k2 + /2 m2
2 2 2
— N
w [‘*’ < rrsm e

Typically in the atmosphere and ocean

N> f2=f2<w? < N?

(143)
(144)
(145)

-

(146)

(147)
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V Zeitlin - GFD

Two dynamical entities: waves and vortices

Vortices: slow motions related to Lagrangian
conservation of PV; zero frequency in linear
approximation.

Waves: fast motions

Frequencies of wave and vortices are separated by a
spectral gap in hydrostatic approximation.




GFD: vortices, waves, and topography
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