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Linearised RSW with a lateral boundary Geophysical

Fluid Dynamics 3
Simplest configuration : non-dissipative 1-layer RSW V Zeitlin - GFD
equations in a half-plane with a rectilinear meridional

boundary at x = 0.

Linearised non-dimensional RSW equations :

Dynamical role of
latera

Ur — V + 1 0, TR g
Vt+u+77y — 0,
nt+uxt+vy, = 0 (1)

Rectlinear meridional west coast : b.c. : u|,_, = 0.
Inhomogeneity in x, but Fourier-transform in y, t possible :

(u, v,m) = (To(x), To(x), Fo(x))e'® ") =
—iwlg — Vo + hy =

—iwi + o + ilho 0,
_iwf_lo + il + Ué) = 0, (2)



Reduction to a single equation (w # 1)

hy + (w? —1—1?)ho = 0,
while _ -
_ 1hg — whj
to = lﬁ’

and hence the b. c. is :

lho — w%‘x:o = 0.
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Geophysical
Fluid Dynamics 3

. . V Zeitlin - GFD
Solutions of two different types :

> Free inertia-gravity waves :

Dynamical role of

w2 - 1 - /2 = k2 > 0, (6) E::E:dlazlies: an

ho oc e W =14 k% + 2, (7)

» Trapped at the boundary waves :
wWw—1-1P=-k2<0, (8)
hg oc e, 9)

The second type of solution is exponentially growing for
x < 0, this is why it was discarded on the whole plane.



Trapped solutions - Kelvin waves

Kelvin waves are dispersionless. Boundary condition —

- _ /
lhg — wh =0 = = ——=
0 WO‘X:O k w7
/2
S 1Py Lm0 5w = P, (1)
and
k>0=w=—/, noxe™ (11)

Any packet of Kelvin waves :
(u,v,m) = (0,K(y +t),—K(y +t)e™,  (12)

where K - an arbitrary function, is a solution of linearised
RSW equations. Kelvin waves are traveling along the
boundary leaving it on their right. Normal to the boundary
component of the velocity is absent, and the along- boundary
velocity and height anomaly are in quadrature.
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Dispersion diagram of the 2-layer RSW with a Fluia Dynamics 3
lateral boundary V Zeitin - GFD
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Dispersion relation for internal-gravity and Kelvin waves in
the 2-layer RSW model. Baroclinic Kelvin waves are not
shown. Upper surface : barotropic inertia-gravity waves, lower
surface : baroclinic inertia-gravity waves, plane : barotropic
Kelvin waves.



Propagation of a packet of Kelvin waves

No dispersion — breaking and front formation :
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Reflexion of inertia-gravity waves Geophysical

Fluid Dynamics 3
V Zeitlin - GFD

Any "free" wave is a sum of incident and reflected waves :

(u7 V7 77) = (u’7 Vi? nl) + (ur7 Vr7 77[‘) IDynamical role of
l:::::iaries : an
idealized coast

w2—1"w2-1
A —kw + il lw + ik
"L w2—-1 w21

k il lw — ik .
(Ui, Vi,’l7,‘) _ A,‘ < w+1l lw—1 ’1> e:(kx+/y—wt) +c.c.,

(Ura Vr, "7r) =

’1) ei(—kx+ly—wt) +cec.
Boundary condition :

kw + il
ui + Ur|X:0 = 0, = AI’ = Aim, (JJ2 = 1+k2+/2 (13)

Snell’s law.



Exercises
» Obtain (3),

» Consider Kelvin waves with the coast at the a) est, b)
north ; determine their propagation direction,

» Demonstrate that Kelvin waves carry no PV anomaly.
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Shallow-water model with a shelf.
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Geophysical
Fluid Dynamics 3

V Zeitlin - GFD
Linearised non-dimensional RSW equations in the
presence of bottom topography :

us—v + Nx = 0, Coast with a shelf
Vt + u + ’r’y — O,
ne + (Hu)x + (Hv), = 0. (14)

H - unperturbed depth of the fluid.

» Abrupt shelf : typical scale L << Ry < Rid =e.
» Shelf with gentle slope : typical scale L ~ Ry



Abrupt shelf

Non-dimensional H and boundary conditions are :
H:He),Fmﬂ:Q H|,_. =1
Looking for wave solutions
(u, v, n) = (T@o(x), To(x), ho(x))e" =D + c.c.
we get _
—iwly — Vo + hy =0,

—iw¥y + o + ilhg = 0,
—iwhy + ilH% 4+ (Hdp)' = 0,

which may be reduced to a single equation :

_ / _
(HR) + (w? —1—1PH — —H')hy = 0.
w
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Asymptotic analysis e

Fluid Dynamics 3

V Zeitlin - GFD

» "Open-sea" domain :

hy + (w? —1—1?)hy = 0. (17)
Solution - trapped wave : /_1(()h) =Ae ™ k>0 Coast with/alshelf
K2 =P 41— (18)

Suppose : k = Kg + €K1 F ..., W = Wo + €w1 + ...
» "Coastal" domain :

eiz (H(g)E(()C)(g)/),‘f‘ <UJ2 —-1- /2H(§) — iLH/(€)> Eéc) -0
(19)
© =i+ +... €= (20)



Hierarchy of equations for (", n=0,1, ... : S e

V Zeitlin - GFD

(H&r®ey) = o

(HET(@E)) ~ T = o
0
.................................... (21)  Coast with a shelf
Order zero
H(€)7® (€)' = C = const. (22)

C #0,= singularity at x =0, = 7(9) = const.
Matching with the domain (h) a x = € :

- 1
h(()h) =A (1 — ko€l + §’€3(65)2 — R+ > , = (23)

70 = A.



Order 1

(HE ) -

Solution regular for g, vg C; =0=

wo

/
ﬁ(l) = —A¢ + const.
wo
Matching of 7(® + e7(!) with I_1(()h) ax=¢€€
= w—lo = —Kg, const = 0.
Since k2=1P+1—-w? w?#1 = kg=1

Kelvin wave. Further corrections — corrections to the

dispersion relation.

—H'(£))A = (1 = const.
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Shelf with gentle slope. Fluid Dynamis 3
Reduction to a single non-dimensional wave equation (wave V Zeitlin - GFD
with w, I') for the free-surface perturbation ho(x) :

A 2 2 [ ng
(Hhy)" + (w —1—/H—;H)h0:O. (26)
Ball's model :
H(X) — (1 _ efax)‘ (27) Coast with a shelf

Change of variables(trapped solutions) x — s = ™%,
ho — sPhg, where p is defined by
Ww—1-P=-p’<0, = (28)
Hypergeometric equation :
s(1=s)hg(s)+ [y — (a+ B + 1) Fig(s) — aBho(s) = 0, (29)

solutions F(a, 3,7, s) - hypergeometric functions,

/ [ 1 1 I 1
Y p+1l, « p—|-2 w+4’ B p+2+ w—|-4

(30)

—



Geophysical
Fluid Dynamics 3

Trapped wave solutions V Zeitlin - GFD
A regular at x = 0 and decaying at x — oo solution =
a=-—n, n=0,1,..... In this case
ho = sPF(—n,B,v,s), n=0,1,..., (31)
Coast with a shelf
where

. (=m)m(B)m _m

F(—n,B,7,s) = ) s™, (@)m = a(a+1)...(a+m—1)

m=0
(32)
« = —n — dispersion relation :

1 1
protn=[P— =+ n=01... (33)
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Free wave solutions

Solution for propagating (incident and reflected) Poincaré
waves : p — ik in the above-displayed formulas. Solution is
then given in terms of hypergeomeric functions :

Coast with a shelf

hg = A e_ikXF(Oé*75*,7*75)_reikXF(O"ﬁv%s) , (34)

A is the amplitude of the wave, * means complex
conjugation, r is reflection coefficient :

@O’ + )
Mo (5) (o + B)’

I — gamma-function.  (35)
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General properties of the coastal waves : Fluid Dynamics 3

V Zeitlin - GFD

v

Unique Kelvin wave,

v

Discrete spectrum of sub-inertial trapped waves with Coast with a shelf
w < f (shelf waves) with unique sense of propagation
(coast at their right)

v

Discrete spectrum of supra-inertial trapped waves with
w > f (edge waves) with double sense of propagation

» Continuous spectrum of incident/reflected supra-inertial
inertia-gravity (Poincaré) waves



Escarpment topography
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Wave spectrum over escarpment

Same non-dimensional wave equation as before :

|

(HRY) + (w? =1 — I*H — —H')hy = 0.

At x — £oo depth is constant, altleit different :
H = Hi = const. Asymptotics of hg :

H:tilog: + (w2 —1- /2H:t)f_70:|: =0.

Two kinds of solutions, depending on the signs of
p: =w?—1-I°Hy.

(37)

» p2 >0 — a wave propagating to or out of escarpment,

» p3 < 0 — trapped at the escarpment wave.
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Linear escarpment
Wave equation at the escarpment :

(Hm + x)R0) + (0? =1 = PP(Hm + x) — £)50 =0, (38)

where H,, - mean depth. May be explicitly solved in terms of
confluent hypergeometric functions M and U :

_ —w— w4 B

Po(x) = C1U<— ”2Iw°"+” ,1,4/+2/x>

— — 1w — lw+ w3
2w

+ GM ( , 1,41+ 2/x) {(39)

where C; > = const.

. - _ 2
To be matched to the asymptotics hg(x) = Cre™V PEX for
trapped waves. Continuity of hg and hj at x = £1 - four
homogeneous linear algebraic equations for the constants

C4, G2, solvability condition — dispersion relation
w=w(l).
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Dispersion diagram for topographic waves trapped
by the linear escarpment

—0.10

—0.14

—0.16

— 0.8 [

—0.22

—0.24

Only two lowest modes with, respectively, zero and one node
across the escarpment are shown = topographic Rossby
waves, PV gradient is produced by topography.
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Geophysical

Phase portrait of the n = 0 mode Fluid Dynamics 3

V Zeitlin - GFD

s
T
n
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Isolines of h for the gravest topographic wave of maximal
frequency over the escarpment region (x € (—1,1). Trapped
waves can propagate only in the negative direction along the
escarpment, i.e. leaving the shallower region on their right.



"Long-wave" approximation (rigid lid)
Rigid lid <> regime with A — 0. Equation for h —

(Hu), + (Hv), =0 = stream-function+:  (40)

Hu = —I/Jy, Hv =+ (41)

One-dimensional topography H = H(x)

H'(x)
H(x)

Vg — Uy = <H¢E;)>x + Izp(y;/) = ( — vorticity (43)

H=H(x)= uc+v, =— u = D — divergence. (42)

Vorticity equation %(C +f)+ ((+ f)D = 0 — evolution
equation for ).
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Linearised vorticity equation on the f- plane :

G+ D=0 [<H1/Ej<)>x+ ﬁ{i)]t+fll_;l;(()3¢y:0.
(44)

Wave solutions :
Y = p(x)e Wt fcc.

AN 2 !
(%) ~Fo-fpo=0 =% @)
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Wave spectrum

AN /2 fH
() - (5 + e ) o= (46)

Sturm - Liouville problem for eigenfunctions ¢, and
eigenvalues c,(/) (ou /5(c)) :

Long-wave

» No continuous spectrum. spproximation in

» Discrete spectrum - trapped waves with number of
nodes n=10,1,2,....



Example of the influence of topography :
geostrophic adjustment of a pressure front over
escarpment
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Exercises
Consider topography profile

H(x) = Hoe®™, 0< x < o0, Hy= const.

Show that topographic waves in the long-wave approximation
obey the dispersion relation

Long-wave
approximation in
/\ RSW model

=-2f 0.
‘ k2 4+ 12 + N2

Compare these waves with Rossby waves on the beta-plane.



Potential vorticity in the presence of topography

PV conservation :

d (C+F\
dt<h—b)_0'

(47)

Topography of weak amplitude |b| ~ Ro the QG equation on

the B-plane :

V20 — ne + 1%+ T (0, VP + b) = 0.

(48)
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Stationary solutions
Stationarity :

T,V 4+ b+y)=0. (49)
General solution :

V2n+b+y = F(n), (50)

F - arbitrary function. Zonal flow U plus any perturbation :

V2% +b+y=F(— Uy). (51)

Looking for waves generated by localised topgraphy=- far
upstream, at x — +oo for U < 0, and x — —oo for U > 0,
the perturbation ¢ vanishes and (51) becomes

Yy = f(_Uy)a (52)
= F(x) = —{ = linear equation for ¢ :

UV?t +1p = —Ub. (53)
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Geophysical

One-dimensional topography Fluid Dynamics 3

V Zeitlin - GFD

Ridge : b = b(x) = 1 = 1(x). Equation (53) becomes

1
Y(x) + G0x) = —b(x). (54)
Solution : inversion of the operator, Green's function :
+o0
P(x) = —U/ dx'G(x — x")b(x'), (55)
—0o0
1
G'(x —x')+ UG(X—X') =§(x —x). (56)

in QG model

Fourier transformation using d(x) = fj;o dk e —

, +oo efk(x=x")
G(X—x):/ dk 21 (57)
—00 7




Green's function for easterly flow U < 0
Calculation by the method of residues :

G(x —x')

- decaying at both sides of the "ridge".

iUy k+iU3

Geophysical
Fluid Dynamics 3

V Zeitlin - GFD

Dynamical role of
lateral

boundaries : an
idealized coast
Coast with a shelf

Topographic
waves
Long-wave
approximation in

RSW model

Mountain waves
in QG model
Mountain waves
in RSW model



Green's function for westerly flow U > 0

Integrand is singular Upstream decay — singularity shifted to

the upper half-plane of complex k.

400 ik(x—x")
G(x —x) = / dk & ( 1 1)
-0 2072 k—U"2 k+4+U"2
B mv Usin (X\;f,), x—x">0 (59)
0, x—x" <0.

- oscillating (waves) behind the "ridge".
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Qualitative analysis based on PV conservation of
mountain Rossby waves in the westerly flow in
Southern hemisphere

stable

generation of generation of

anticyclonic cyclonic
vorticity vorticity
30°5—
Rossby N
~
; wave
c =
Fo =] o
P = «a
>
40°S —

Fig 12.K.4 The formation of a trough in the lee of a mountain range in the southern
hemisphere. The top figure is a vertical cross section, and the bottom one is a plan
view. The mountain ridge is at the same location in both figures.
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Mountain Rossby waves in the westerly flow over e

Fluid Dynamics 3

Andes Cordillera V Zeitlin - GFD

Mountain waves
in QG model

Fig 12.K.5 The effect of the Andes on the upper westerly winds, in terms of the isobar pattern {in hPa)
on 4 June 1995, The small arrows show the direction and speed of surface winds, and the bold wavy band
iz the jet stream. There is a ridge in the 300hPa flow near the mountains and a lee trough to the east,
which promote 8 Rossby wave whose northward swing cradles a low on the right of the diagram.



2-dimensional topography Fluid Dynamis 3
Green's function G(x —x",y — y/) : V Zeitlin - GFD
UV?G + G =6(x — x)o(y = y'); (60)

Bessel Yp (oscillating), or modified Bessel Ky (decaying)
function, depending on the sign of U. Fourier-transform :
G(X - X/ay - y,) - G(ka /)'

[—U(K*+ ) +1] G(k, 1) =1 (61)
G ! ! o dkdl e/t H=)
bemxy=y) = /oo Ukt )+ 1
+oo 2 ellkl[x—x'| cos 6
= k d k de - i'\:ouat:i.lvae‘
| e [ o s

+00 |k|d‘k‘ 27
/0 —Uk2+1/0 df cos (|k||x — x'| cos §)

oo Jk|dlk|

Jo - Bessel function



Calculating Z

» U>0

» U<O0 ) | |
X —X

£ o (5
U] |U|
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Bessel functions

» Bessel function Yy : oscillating, and weakly decaying

.5

%

inconsistent with b.c. of strong decay upstream -77.
» Modified Bessel function Kp : exponentially decaying

2.5

2.0

1.5 |

1.0}

0.5

S 5 % : 5

localised topography (a mountain) produces
exponentially decaying non-oscillating perturbation
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Recipe for correcting westerly flow result Fluid Dynamics 3

V Zeitlin - GFD

Solution for westerly flow : to be corrected by a solution of
the homogeneous problem "killing" the oscillations far
upstream. The correction can not be found in closed form,
expressed as a series of Bessel functions

o Sy S X=X cos(2n — 1 , where ¢ is the polar
n=1 2n—1 VU
angle on the x — y plane.

Mountain waves
in QG model



Mountain Rossby waves in the westerly flux
(calculated)
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EXGI’CISGS Fluid Dynamics 3

V Zeitlin - GFD

» Derive the equations (47) and (48),

» Analyse the passage of an easterly flow across a
meridional mountain ridge,

» Analyse the passage of easterly and westerly flows across
a meridional mountain ridge in the f- plane
approximation.

Mountain waves
in QG model
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Non-dimensional RSW equations in the presence  ruid Bynamics 3
of a mean constant zonal flow —UX% V Zeitlin - GFD

ut—l—(u—F)ux—i-vuy—fy’%v%-hx =0
vt—|—(u—F)vX—|—vvy—|—7_%u—|—hy = 0,
he + ((u = F)(h = Mb)), + (v(h— Mb)), = 0

h - position of the free surface, b(x, y) - topography.

Typical scales : horizontal - L, vertical - H (non-perturbed

thickness), velocity - ¢ = v/gH, time - L/c. in QG medel
Parametres : Froude number F = ¥, non-dimensional height ™™™
of the mountain : M = bLHaX, Burger number :

2
Bu=1v=#p



Geophysical

Linear limit (topography of weak amplitude) Fluid Dynamies 3

V Zeitlin - GFD

Linearisation — single equation for 7, the perturbation of h,
with a stationary source due to topography :

((Or — FOX)? = V2 + 4N = M(F?92+~ )b (66)

Stationary solutions in terms of Green's function

n(x,y) = M / dx'dy! (F202 +~4~1)b(x — X',y — y')G(x, )
(67)
Definition of G :

i'\r,llRSWmodeI
(=F0)? = V2 +77) G(x—x",y =y') = d(x=x")o(y =)
(68)
2 regimes : "supersonic" F2 > 1 and "subsonic" F? < 1.



Geophysical

Calculation of Green's function : Fourier method Fluld Dyramies 3

V Zeitlin - GFD

+oo k] ei(k(x=x")+I(y—y"))
2 (F2 _1)k? 4 1

Gtx—x'y—y) = [

—00

(69)

» F2 <1 : rescaling of k, polar Fourier coordinates =

G o Ko (7‘5\/(X — x> —(FP-1)(y - y’)2> (70)

F2—1
» F2 > 1 singular denominator = method of residues =

Gah(f@JW—%F—U?—DW—MV>,

Mountain waves
in RSW model

F2_1

ifx < 0,x% < (F? —1)y?, and 0 otherwise.



Green's function F? > 1

i

¥
=]

<

a

L1 ]
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Stationary mountain waves in the rotating tank

Dot i e

= J. @ Baler, 0. J. Aump, ond E. R. Jokneon

thesange ¥ —11 — 15, and the nondimensiansl mounksin height & Af —0.5. Fr bhe vobaling
sxtperiment bhe peviod i8 T — 130s, corvenponding b an inveme Burgs number 5 0.8, In sach

e cankrs of khe obebacls e masked By bhe '+ ak bhe crigin, Solid conburs show regions
where bhe inkerfacs vies (ooaske, mavled ) and dashed cinbouse depremed vegione {boughs,
marked 1. Adapted from Johnson et of. (2008, ses their Fig. 5).
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Observed stationary mountain waves : Bpmax < H i teemics s
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"Penetrating" topography : b > H Fluid Dynamics 3
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Exercise

» Derive (66) using the given scaling
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