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Linearised RSW with a lateral boundary
Simplest configuration : non-dissipative 1-layer RSW
equations in a half-plane with a rectilinear meridional
boundary at x = 0.
Linearised non-dimensional RSW equations :

ut − v + ηx = 0,
vt + u + ηy = 0,
ηt + ux + vy = 0 (1)

Rectlinear meridional west coast : b.c. : u|x=0 = 0.
Inhomogeneity in x , but Fourier-transform in y , t possible :

(u, v , η) = (ū0(x), v̄0(x), h̄0(x))e i(ly−ωt) ⇒

−iωū0 − v̄0 + h̄′0 = 0,
−iωv̄0 + ū0 + il h̄0 = 0,
−iωh̄0 + il v̄0 + ū′0 = 0, (2)
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Reduction to a single equation (ω 6= 1)

h̄′′0 + (ω2 − 1− l2)h̄0 = 0, (3)

while

ū0 = i
l h̄0 − ωh̄′0
ω2 − 1

, (4)

and hence the b. c. is :

l h̄0 − ωh̄′0
∣∣
x=0 = 0. (5)
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Solutions of two different types :

I Free inertia-gravity waves :

ω2 − 1− l2 ≡ k2 > 0, (6)

h̄0 ∝ e±ikx , ω2 = 1 + k2 + l2. (7)

I Trapped at the boundary waves :

ω2 − 1− l2 ≡ −κ2 < 0, (8)

h̄0 ∝ e−κx . (9)

The second type of solution is exponentially growing for
x < 0, this is why it was discarded on the whole plane.
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Trapped solutions - Kelvin waves
Kelvin waves are dispersionless. Boundary condition →

l h̄0 − ωh̄′0
∣∣
x=0 = 0 ⇒ κ = − l

ω
,

⇒ ω2 − 1− l2 +
l2

ω2 = 0, ⇒ ω2 = l2 (ω 6= 1), (10)

and
κ > 0⇒ ω = −l , η ∝ e−x . (11)

Any packet of Kelvin waves :

(u, v , η) = (0,K (y + t),−K (y + t))e−x , (12)

where K - an arbitrary function, is a solution of linearised
RSW equations. Kelvin waves are traveling along the
boundary leaving it on their right. Normal to the boundary
component of the velocity is absent, and the along- boundary
velocity and height anomaly are in quadrature.
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Dispersion diagram of the 2-layer RSW with a
lateral boundary
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Dispersion relation for internal-gravity and Kelvin waves in
the 2-layer RSW model. Baroclinic Kelvin waves are not
shown. Upper surface : barotropic inertia-gravity waves, lower
surface : baroclinic inertia-gravity waves, plane : barotropic
Kelvin waves.
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Propagation of a packet of Kelvin waves

No dispersion → breaking and front formation :
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Reflexion of inertia-gravity waves

Any "free" wave is a sum of incident and reflected waves :

(u, v , η) = (ui , vi , ηi ) + (ur , vr , ηr )

(ui , vi , ηi ) = Ai

(
kω + il

ω2 − 1
,
lω − ik

ω2 − 1
, 1
)
e i(kx+ly−ωt) + c.c.,

(ur , vr , ηr ) = Ar

(
−kω + il

ω2 − 1
,
lω + ik

ω2 − 1
, 1
)
e i(−kx+ly−ωt) + c.c..

Boundary condition :

ui + ur |x=0 = 0, ⇒ Ar = Ai
kω + il

kω − il
, ω2 = 1+k2+l2. (13)

Snell’s law.
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Exercises
I Obtain (3),
I Consider Kelvin waves with the coast at the a) est, b)

north ; determine their propagation direction,
I Demonstrate that Kelvin waves carry no PV anomaly.
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Shallow-water model with a shelf.
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Linearised non-dimensional RSW equations in the
presence of bottom topography :

ut − v + ηx = 0,
vt + u + ηy = 0,

ηt + (Hu)x + (Hv)y = 0. (14)

H - unperturbed depth of the fluid.

I Abrupt shelf : typical scale L << Rd ↔ L
Rd

= ε.
I Shelf with gentle slope : typical scale L ∼ Rd
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Abrupt shelf

Non-dimensional H and boundary conditions are :

H = H
(x
ε

)
, H|x=0 = 0, H|x=∞ = 1.

Looking for wave solutions

(u, v , η) = (ū0(x), v̄0(x), h̄0(x))e i(ly−ωt) + c.c.

we get 
−iωū0 − v̄0 + h̄′0 = 0,
−iωv̄0 + ū0 + il h̄0 = 0,
−iωh̄0 + ilHv̄0 + (Hū0)′ = 0,

(15)

which may be reduced to a single equation :(
Hh̄′0

)′
+ (ω2 − 1− l2H − l

ω
H ′)h̄0 = 0. (16)
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Asymptotic analysis

I "Open-sea" domain :

h̄′′0 + (ω2 − 1− l2)h̄0 = 0. (17)

Solution - trapped wave : h̄(h)
0 = Ae−κx , κ > 0

κ2 = l2 + 1− ω2. (18)

Suppose : κ = κ0 + εκ1 + ..., ω = ω0 + εω1 + ....
I "Coastal" domain :

1
ε2

(
H(ξ)h̄

(c)
0 (ξ)′

)′
+

(
ω2 − 1− l2H(ξ)− 1

ε

l

ω
H ′(ξ)

)
h̄

(c)
0 = 0.

(19)
h̄

(c)
0 (ξ) = η̄(0)(ξ) + εη̄(1)(ξ) + ..., ξ =

x

ε
(20)
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Hierarchy of equations for η̄(n), n = 0, 1, ... :

(
H(ξ)η̄(0)(ξ)′

)′
= 0,(

H(ξ)η̄(1)(ξ)′
)′
− l

ω0
H ′(ξ))η̄(0)(ξ) = 0,

.................................... (21)

Order zero

H(ξ)η̄(0)(ξ)′ = C = const. (22)

C 6= 0,⇒ singularity at x = 0, ⇒ η̄(0) = const.
Matching with the domain (h) à x = εξ :

h̄
(h)
0 = A

(
1− κ0εξ +

1
2
κ2

0(εξ)2 − ε2κ1ξ + ....

)
, ⇒ (23)

η̄(0) = A.
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Order 1(
H(ξ)η̄(1)(ξ)′

)′
− l

ω0
H ′(ξ))A = C1 = const. (24)

Solution regular for ū0, v̄0 C1 = 0⇒

η̄(1) =
l

ω0
Aξ + const. (25)

Matching of η̄(0) + εη̄(1) with h̄
(h)
0 à x = εξ

⇒ l
ω0

= −κ0, const = 0.
Since κ2 = l2 + 1− ω2, ω2 6= 1 ⇒ κ0 = 1.
Kelvin wave. Further corrections → corrections to the
dispersion relation.
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Shelf with gentle slope.
Reduction to a single non-dimensional wave equation (wave
with ω, l ) for the free-surface perturbation h̄0(x) :(

Hh̄′0
)′

+ (ω2 − 1− l2H − l

ω
H ′)h̄0 = 0. (26)

Ball’s model :
H(x) = (1− e−ax). (27)

Change of variables(trapped solutions) x → s = e−ax ,
h̄0 → sph̃0, where p is defined by

ω2 − 1− l2 = −p2 < 0, ⇒ (28)

Hypergeometric equation :

s(1−s)h̃′′0(s)+[γ − (α + β + 1)] h̃′0(s)−αβh̃0(s) = 0, (29)

solutions F (α, β, γ, s) - hypergeometric functions,

γ = 2p+1, α = p+
1
2
−
√
l2 − l

ω
+

1
4
, β = p+

1
2

+

√
l2 − l

ω
+

1
4
.

(30)
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Trapped wave solutions
A regular at x = 0 and decaying at x →∞ solution ⇒
α = −n, n = 0, 1, . . . .. In this case

h̄0 = spF (−n, β, γ, s), n = 0, 1, . . . , (31)

where

F (−n, β, γ, s) =
n∑

m=0

(−n)m(β)m
(γ)mm!

sm, (a)m := a(a+1) . . . (a+m−1)

(32)
α = −n → dispersion relation :

p +
1
2

+ n =

√
l2 − l

ω
+

1
4
, n = 0, 1, . . . . (33)
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Free wave solutions
Solution for propagating (incident and reflected) Poincaré
waves : p → ik in the above-displayed formulas. Solution is
then given in terms of hypergeomeric functions :

h̄0 = A
[
e−ikxF (α∗, β∗, γ∗, s)− re ikxF (α, β, γ, s)

]
, (34)

A is the amplitude of the wave, * means complex
conjugation, r is reflection coefficient :

r =
Γ(α)Γ(β)Γ(α∗ + β∗)

Γ(α∗)Γ(β∗)Γ(α + β)
, Γ− gamma-function. (35)
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Dispersion relation for the coastal waves (n -
number of nodes in the x direction
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General properties of the coastal waves :

I Unique Kelvin wave,
I Discrete spectrum of sub-inertial trapped waves with
ω < f (shelf waves) with unique sense of propagation
(coast at their right)

I Discrete spectrum of supra-inertial trapped waves with
ω > f (edge waves) with double sense of propagation

I Continuous spectrum of incident/reflected supra-inertial
inertia-gravity (Poincaré) waves
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Escarpment topography
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Wave spectrum over escarpment

Same non-dimensional wave equation as before :(
Hh̄′0

)′
+ (ω2 − 1− l2H − l

ω
H ′)h̄0 = 0. (36)

At x → ±∞ depth is constant, albeit different :
H = H± = const. Asymptotics of h̄0± :

H±h̄0
′′
± + (ω2 − 1− l2H±)h̄0± = 0. (37)

Two kinds of solutions, depending on the signs of
p2
± = ω2 − 1− l2H±.
I p2

± > 0 → a wave propagating to or out of escarpment,
I p2

± < 0 → trapped at the escarpment wave.
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Linear escarpment
Wave equation at the escarpment :(

(Hm + x)h̄′0
)′

+ (ω2 − 1− l2(Hm + x)− l

ω
)h̄0 = 0, (38)

where Hm - mean depth. May be explicitly solved in terms of
confluent hypergeometric functions M and U :

h̄0(x) = C1U

(
−−l − ω − lω + ω3

2lω
, 1, 4l + 2l x

)
+ C2M

(
−l − 1ω − lω + ω3

2lω
, 1, 4l + 2l x

)
,(39)

where C1,2 = const.

To be matched to the asymptotics h̄0(x) = C±e
∓
√
−p2
±x for

trapped waves. Continuity of h̄0 and h̄′0 at x = ±1 - four
homogeneous linear algebraic equations for the constants
C±, C1,2, solvability condition → dispersion relation
ω = ω(l).
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Dispersion diagram for topographic waves trapped
by the linear escarpment

Only two lowest modes with, respectively, zero and one node
across the escarpment are shown ⇒ topographic Rossby
waves, PV gradient is produced by topography.
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Phase portrait of the n = 0 mode

Isolines of h for the gravest topographic wave of maximal
frequency over the escarpment region (x ∈ (−1, 1). Trapped
waves can propagate only in the negative direction along the
escarpment, i.e. leaving the shallower region on their right.



Geophysical
Fluid Dynamics 3

V Zeitlin - GFD

Introducing
lateral
boundaries and
topography
Dynamical role of
lateral
boundaries : an
idealized coast
Coast with a shelf

Topography
without lateral
boundary
Topographic
waves
Long-wave
approximation in
RSW model

Mountain waves
Mountain waves
in QG model
Mountain waves
in RSW model

"Long-wave" approximation (rigid lid)
Rigid lid ↔ regime with λ→ 0. Equation for h →

(Hu)x + (Hv)y = 0 ⇒ stream-function ψ : (40)

Hu = −ψy , Hv = +ψx (41)

One-dimensional topography H = H(x)

H = H(x)⇒ ux + vy = −H ′(x)

H(x)
u = D − divergence. (42)

vx − uy =

(
ψx

H(x)

)
x

+
ψyy

H(x)
= ζ − vorticity (43)

Vorticity equation d
dt (ζ + f ) + (ζ + f )D = 0 → evolution

equation for ψ.
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Linearised vorticity equation on the f - plane :

ζt + fD = 0 ↔
[(

ψx

H(x)

)
x

+
ψyy

H(x)

]
t

+ f
H ′(x)

H2(x)
ψy = 0.

(44)

Wave solutions :
ψ = φ(x)e i(ωt−ly) + c.c. :(

φ′

H

)′
− l2

H
φ− f

c

H ′

H2φ = 0, c =
ω

l
. (45)



Geophysical
Fluid Dynamics 3

V Zeitlin - GFD

Introducing
lateral
boundaries and
topography
Dynamical role of
lateral
boundaries : an
idealized coast
Coast with a shelf

Topography
without lateral
boundary
Topographic
waves
Long-wave
approximation in
RSW model

Mountain waves
Mountain waves
in QG model
Mountain waves
in RSW model

Wave spectrum(
φ′

H

)′
−
(
l2

H
+

f

c

H ′

H2

)
φ = 0, (46)

Sturm - Liouville problem for eigenfunctions φn and
eigenvalues cn(l) (où ln(c)) :

I No continuous spectrum.
I Discrete spectrum - trapped waves with number of

nodes n = 0, 1, 2, ....
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Example of the influence of topography :
geostrophic adjustment of a pressure front over
escarpment

A solitary topographic wave is generated and moves along
topography.
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Exercises
Consider topography profile

H(x) = H0e
2Λx , 0 ≤ x <∞, H0 = const.

Show that topographic waves in the long-wave approximation
obey the dispersion relation

c = −2f Λ

k2 + l2 + Λ2 .

Compare these waves with Rossby waves on the beta-plane.
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Potential vorticity in the presence of topography

PV conservation :

d

dt

(
ζ + f

h − b

)
= 0. (47)

Topography of weak amplitude |b| ∼ Ro the QG equation on
the β-plane :

∇2ηt − ηt + ηx + J (η,∇2η + b) = 0. (48)
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Stationary solutions
Stationarity :

J (η,∇2η + b + y) = 0. (49)

General solution :

∇2η + b + y = F(η), (50)

F - arbitrary function. Zonal flow U plus any perturbation :
η = −Uy + ψ,

∇2ψ + b + y = F(ψ − Uy). (51)

Looking for waves generated by localised topgraphy⇒ far
upstream, at x → +∞ for U < 0, and x → −∞ for U > 0,
the perturbation ψ vanishes and (51) becomes

y = F(−Uy), (52)

⇒ F(x) = − x
U ⇒ linear equation for ψ :

U∇2ψ + ψ = −Ub. (53)
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One-dimensional topography

Ridge : b = b(x) ⇒ ψ = ψ(x). Equation (53) becomes

ψ′′(x) +
1
U
ψ(x) = −b(x). (54)

Solution : inversion of the operator, Green’s function :

ψ(x) = −U
∫ +∞

−∞
dx ′G (x − x ′)b(x ′), (55)

G ′′(x − x ′) +
1
U
G (x − x ′) = δ(x − x ′). (56)

Fourier transformation using δ(x) =
∫ +∞
−∞ dk e ikx →

G (x − x ′) =

∫ +∞

−∞
dk

e ik(x−x ′)

k2 − 1
U

(57)
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Green’s function for easterly flow U < 0
Calculation by the method of residues :

G (x − x ′) =

∫ +∞

−∞
dk

e ik(x−x ′)

2iU−
1
2

(
1

k − iU−
1
2
− 1

k + iU−
1
2

)
= π

√
Ue
− |x−x′|√

U , (58)

- decaying at both sides of the "ridge".
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Green’s function for westerly flow U > 0
Integrand is singular Upstream decay → singularity shifted to
the upper half-plane of complex k .

G (x − x ′) =

∫ +∞

−∞
dk

e ik(x−x ′)

2U−
1
2

(
1

k − U−
1
2
− 1

k + U−
1
2

)
=

{
π
√
U sin (x−x ′)√

U
, x − x ′ > 0

0, x − x ′ < 0.
(59)

- oscillating (waves) behind the "ridge".
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Qualitative analysis based on PV conservation of
mountain Rossby waves in the westerly flow in
Southern hemisphere
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Mountain Rossby waves in the westerly flow over
Andes Cordillera
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2-dimensional topography
Green’s function G (x − x ′, y − y ′) :

U∇2G + G = δ(x − x ′)δ(y − y ′); (60)

Bessel Y0 (oscillating), or modified Bessel K0 (decaying)
function, depending on the sign of U. Fourier-transform :
G (x − x ′, y − y ′) → G (k, l),[

−U(k2 + l2) + 1
]
G (k , l) = 1 (61)

G (x − x ′, y − y ′) =

∫ +∞

−∞
dkdl

e i(k(x−x ′)+l(y−y ′))

−U(k2 + l2) + 1

=

∫ +∞

0
|k|d |k|

∫ 2π

0
dθ

e i |k||x−x′| cos θ

−Uk2 + 1

=

∫ +∞

0

|k|d |k|
−Uk2 + 1

∫ 2π

0
dθ cos

(
|k||x− x′| cos θ

)
= 2π

∫ +∞

0

|k|d |k|
−Uk2 + 1

J0
(
|k||x− x′|

)
:= 2πI (62)

J0 - Bessel function
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Calculating I

I U > 0

I = − π

2U
Y0

(
|x− x′|

U

)
(63)

I U < 0

I =
1
|U|

K0

(
|x− x′|
|U|

)
(64)
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Bessel functions
I Bessel function Y0 : oscillating, and weakly decaying

→
inconsistent with b.c. of strong decay upstream - ? ?.

I Modified Bessel function K0 : exponentially decaying

→
localised topography (a mountain) produces
exponentially decaying non-oscillating perturbation
downstream in the easterly flow.
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Recipe for correcting westerly flow result

Solution for westerly flow : to be corrected by a solution of
the homogeneous problem "killing" the oscillations far
upstream. The correction can not be found in closed form,
expressed as a series of Bessel functions∑∞

n=1
1

2n−1J2n−1

(
|x−x′|√

U

)
cos(2n − 1)φ, where φ is the polar

angle on the x − y plane.



Geophysical
Fluid Dynamics 3

V Zeitlin - GFD

Introducing
lateral
boundaries and
topography
Dynamical role of
lateral
boundaries : an
idealized coast
Coast with a shelf

Topography
without lateral
boundary
Topographic
waves
Long-wave
approximation in
RSW model

Mountain waves
Mountain waves
in QG model
Mountain waves
in RSW model

Mountain Rossby waves in the westerly flux
(calculated)
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Exercises

I Derive the equations (47) and (48),
I Analyse the passage of an easterly flow across a

meridional mountain ridge,
I Analyse the passage of easterly and westerly flows across

a meridional mountain ridge in the f - plane
approximation.
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Non-dimensional RSW equations in the presence
of a mean constant zonal flow −U x̂

ut + (u − F )ux + vuy − γ−
1
2 v + hx = 0,

vt + (u − F )vx + vvy + γ−
1
2 u + hy = 0,

ht + ((u − F )(h −Mb))x + (v(h −Mb))y = 0, (65)

h - position of the free surface, b(x , y) - topography.
Typical scales : horizontal - L, vertical - H (non-perturbed
thickness), velocity - c =

√
gH, time - L/c .

Parametres : Froude number F = U
c , non-dimensional height

of the mountain : M = bmax
H , Burger number :

Bu = γ = c2

f 2L2 .
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Linear limit (topography of weak amplitude)

Linearisation → single equation for η, the perturbation of h,
with a stationary source due to topography :(

(∂t − F∂x)2 −∇2 + γ−1) η = M(F 2∂2
x + γ−1)b (66)

Stationary solutions in terms of Green’s function

η(x , y) = M

∫
dx ′dy ′(F 2∂2

x + γ−1)b(x − x ′, y − y ′)G (x ′, y ′)

(67)
Definition of G :(
(−F∂x)2 −∇2 + γ−1)G (x−x ′, y−y ′) = δ(x−x ′)δ(y−y ′)

(68)
2 regimes : "supersonic" F 2 > 1 and "subsonic" F 2 < 1.
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Calculation of Green’s function : Fourier method

G (x − x ′, y − y ′) =

∫ +∞

−∞
dkdl

e i(k(x−x ′)+l(y−y ′))

l2 − (F 2 − 1)k2 + γ−1 (69)

I F 2 < 1 : rescaling of k , polar Fourier coordinates ⇒

G ∝ K0

(
γ−

1
2
√

(x − x ′)2 − (F 2 − 1)(y − y ′)2
√
F 2 − 1

)
(70)

I F 2 > 1 singular denominator ⇒ method of residues ⇒

G ∝ J0

(
γ−

1
2
√

(x − x ′)2 − (F 2 − 1)(y − y ′)2
√
F 2 − 1

)
,

(71)
if x < 0, x2 < (F 2 − 1)y2, and 0 otherwise.
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Green’s function F 2 > 1
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Stationary mountain waves in the rotating tank
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Observed stationary mountain waves : bmax < H
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"Penetrating" topography : bmax > H
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Exercise

I Derive (66) using the given scaling
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