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Arbitrary dynamical system

U=MIu, (1)

U - dynamical variable(s) , M - operator defined by the
structure of the model. Solutions : trajectoires in the
space of U/ :

U(ty) — U(1) (2)

In hydrodynamics U = (v, p, p, ...).
Uy : exact solution, for example the state of rest
M [Up] = 0, or other.
Linearisation : U = Uy + u, ||u|]| << 1 = linear
equations :
U= LU ou, (3)

~

L - linear operator
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Geophysical Fluid

Linear and non-linear (Lyapunov) stability P

V Zeitlin - GFD

Definitions.
General concepts.

Linear stability

Linearised system — Fourier transformation :

u(t) — b(w)e“t — eigenproblem for eigenvalues w —
spectrum of w (dispersion relation).

Complex eigenvalues, in general : w = wr + iw;

Linear (in)stability : w; > 0(w; < 0) +» exponential growth
(decay) of small perturbations of the solution.

Stability according to Lyapunov

Ve 30 :||ulli=0 < 6 = ||Ulvt>0 <€ (4)



Plane-parallel barotropic incompressible flow
Flow the plane (x, y)(= homogeneity in z- direction) :
v = U(y)X - exact solution of the 2D Euler equations (=
QG equation on the f - plane).
Velocity via streamfunction ¢ : u =y, v = =)y =

V2 + T (V2 9) = 0. (5)

Plane-parallel stationary flow solution :

y
w= [ oy U, ©)
Linearisation : ¢ = ¢ + ¢ = V2 = U'(y) + V?¢ —
V2 + U(y)vzébx —oxU"(y)=0. (7)
Fourier transformation : ¢(x, y, t) — ¢(y)ek(x—¢t) =
o U”(y) :| 2
— | K4 T =0. 8
O ®
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iy Geophysical Fluid
Boundary conditions : g

Channel : y; <y < y» with free-slip conditions (no VA =ED
viscosity), or the entire plane (y1 2 — o) :

V‘y:ytz = ¢X‘y:y1,2 = 07 = ¢ Y=V 2 = O

Multiplication by the conjugate solution (*) and
integration by y

/y y ay |50 (800~ K+ 5 2] )| =

(9)

Integration by parts + boundary conditions :

/ y @y (7w + K+ g i) -

(10)
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Imaginary part :
2 YW g
Ci d.y 7¢* .y ¢ y = 0 = Rayleigh criterion
'y, @00 - g )

e U(y)

g dqub*(y)cé(y):O if ¢ #0.(11)

In the absence of critical layers (U(y) — ¢ # 0), if the flow
is unstable, then U(y) has an inflexion point

Jyo : U"(y0) = 0.



Plane-parallel stratified flow in the vertical
plane (x, z)
v = U(z)X - exact solution of the non-hydrostatic primitive

equations with pressure Py(z) and density pg(z) in
hydrostatic equilibrium.

Linearisation about this solution :

po(z) (Ut + U(z)ux + wU'(2)) = —px,
po(z) (W + U(2)wx) +gp = —pz,
Uy +w; =0, pr ++U(2)px + wpp(z) = 0. (12)

Streamfunction : u = ¢, w = —1)x.
Fourier transformation in x, t :

w_>¢( ) IkX Ct) p_>r(z)eik(x—ct) - (13)

u— ¢'(z2)e* = w— —ikg(z)ekx—ct) (14)
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Elimination of variables e

V Zeitlin - GFD

Elimination of p by cross - differentiation :

(U B C)p0(¢/1 ) k2¢) S Miles - Howard criterion for
IO6 [(U - C)(b, - Ul¢:| — Po U//¢ =0 stratiied flows.
(U=—c)r—pp¢ = 0 (15)

Elimination of r :

(U—c)Ppo(¢” — K2¢) — gphp +
po(U=c)[(U=c)¢ —U¢| —poU'(U-c)p = 0



Integral form

Geophysical Fluid
Dynamics

Change of variable : V Zeitiin - GFD

p=(U-c)id = (16)
Al 1 Y
(U= 8] + [~ (wU) +
Ul2 p/o ratified flows.

pok?(U =) —po—p—>| ® = 0. (17)

Multiplication by ®* and integration (by parts) in z with b.
c. of the channel type

2> Uy
/ dz |:pO(U C) (|¢,|2+k2‘¢|2) + (p02 )
Z1

U/2

[ AV ]
”°<4 *gp())(“ Viu=cp

o2+




Integral estimate and instability criterion o ymamcs

Imaginary part : V Zeitlin - GFD

cr [z [po (10 + K¥10F)

2 2 / Miles - Howard criterion for
U ¢ stratified flows.
<4 +gzg)] - 0 (18)

Po

U-c

Miles-Howard criterion : Ri < %

12 /
6 40— g% oo (19)
4 Po

s apa / 2
Brunt - Vaisala frequency : N2 = —g20 = [ < 1 &
N2

gz - Richardson number.

Ri < 1, where Ri =



Kelvin -Helmholtz (KH) instability Geophysical Flid

Dynamics
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The model :

Non-hydrostatic Euler equations for two layers of
incompressible fluid with p; = const, i = 1,2 without
rotation (Ro — o0) in the vertical plane x, z.

Equations of motion :

Shear and Kelvin
-Helmholtz instabilities

u + O+ why) = —;P)((i),
I
I

u)((i)+wzi) = 0. (20)



Boundary conditions :

» Dynamic b.c. :

» Kinematic b.c. :

n+ulp,=wll | i=12 (22)

zZ=n

where 7(x, t) - position of the interface between the layers
1 (superior) and 2 (inferior).

Stationary solution :

w) =0; u) = U; = const; n=0; P{) = —gp;, i =1,2.
(23)
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Linearisation about this solution :
» Equations for perturbations :

U U = ——p,
Pi

) = Ll
]

U)((i) + Wzi) — 0 = vzp(’) — 0 (24) -S:;;rrzrz}i(nesh{:l‘mlities

» Boundary conditions :

2

o = 9(p1 = p2)n. (25)



Solution of the Laplace equation :
) = pyekegilh—wt)  p(2) _ p,gthz gilkx—wt)

Separation of variables in w() :

W) — w(z)el—et)

_ . kpy ek _ , kﬁ_)gekz

[—————— W= ——————.
p1(kUy —w) 2 pa(kUs — )

Kinematic b.c. :

n=qe = o i — kUi = W,_y, =

p1 = —%01 (w—KkUy)?, P2 = +%Pz(w — kUs)?
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Dynamic b.c. : V Zeitiin - GFD

po(w—kUs)?+p1(w—kUy )2 = kg(po—p1) = kghp, Dp > 0. =
(31)

Dispersion relation :

(p14p2)w?—2k(Uy p1+Uspo)w+ [kz(m U2 + ppU3) — kgAp} S ) cha
(32)

Solution in the moving frame U, =0, U; = U :

w Upix \/(p1 + p2) 922 — p1p2 U2
c=-—= (33)
k p1+ p2




Instability of short waves :

U2

k>gAp<1+1>.

P p2

Shear instability :
Particular case g = 0:

c=—
k p1+ p2

always unstable

+i
W _ P P1p2

Geophysical Fluid

Dynamics
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(34)

Rayleigh ¢

Miles - Howard cr f

stratified flow

Shear and Kelvin

-Helmholtz instabilities

A lities i
(35)




Example of KH instability
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Exercise :
Analyse the KH instability in the two-layer RSW model

without rotation, with layers of non-perturbed depths H; ,
with flat bottom and the rigid lid. Demonstrate that the
instability threshold corresponds to the critical shear :

Shear and Kelvin

1 H H -Helmholtz instabilities
Us = ¢9Ap (2 ; 1) (36)
2 P2 p1




Phillips model

dH

-Ymax

Ymax

u2:—u1®

H2
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2-layer RSW with rigid lid on the f-plane

81Vj+Vj-VVj+f2/\Vj

athj +V- (thj)

To — Ty

1
——V;

Pj
0, hi+h=H

9(p2 — p1)n,

(37)

where v; = (u;, ), j = 1,2, there is no summation over
repeating index, and n(x, y, t) is the deviation of the

interface.
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Ageostrophic instabilities in
the Phillips model



Linearisation about the mean shear flow R
Mean flow : geostrophic equilibrium in y V Zeitin - GFD

hi=Hi(y), u=Uy)= Byﬂ,, vi=0. (38)

pf

Linearisation abQut this flow
hj = I-Ij(y) + (_1)/77(X7.y7 t): T — rlj(.y) + Wj(xayy t)

1 the Pnlnghmoa'\b“ "
Oty + Udxty +vioy Uy =y = =20
]
]
O+ Upoxvy 1y = =20y
]
Om+ Udxn = (—1YT1 (Hidxu; + 3y (Hv)))
mp—m = g(p2—p1)n. (39)

Phillips model : U; = const, H;(y) is linear function of y.



Non-dimensionalised linearised system

Mean flow : U; = —U> = Uy
Scaling : time-scale f~', vertical scale Hy = Ha(0),

.
. ! 2 . . .
horizontal scale Ry = M - baroclinic deformation

radius, where g’ = % - reduced gravity, velocity scale

U, pressure scales p;fUyRy. Width of the channel L,
Burger number Bu = R2/L2. Weak stratification limit

P2 = P1-

8,u,- + F(—1)/+18Xu,- -V, = —8,(77,-
v+ F(—1yTowvi+u = —9ym
om+ F(=1YTom = (=1 (Hoxu; + 0y (Hv)))
2
T2 — T4 = an

7 - Froude (= Rossby) number.

where F =

(40)
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Processing the linearised system Geophysial lid

Difficulty : The linearised system has coefficients V Zeitlin - GFD
depending on y (even for constant U;, H; contain y).
Method :

1. Fourier-transform in “good” variables :

(Uj, v, 7Tj)(X,y, t) = (017 ‘A/j7 7?-j)(y)ei(kxiwt) —
a system of linear first-order ordinary differential
equations for (&, ¥, 7;)(y),

2. Discretisation of this system on a regular or, better,
Chebysheyv, grid (collocation).

Ageostrophic instabilities in
the Phillips model

3. Numerical solution of the resulting algebraic system
for eigenvalues w for each fixed k.

Result : eigenvalues w and corresponding eigenfunctions
(U, v, #j)(y) as functions of k = stability diagram for
Rw(k) (dispersion relation) and Sw(k) (growth rate)



Stability diagram in the F — k plane

Geophysical Fluid
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Ageostrophic instabilities in
the Phillips model



Phase velocity (top) and growth rate bottom)

of eigenmodes

Gravity waves

Rosshy waves

=
ol
Gravity waves
0.2 T
b
0.5 (®)
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Structure of the unstable Rossby-Kelvin e
mode V Zeitiin - GFD

Upper Layer  Cr=-0.29791 sigma =0.072351 xVec=0.14582

= = T e <
i Rayleigh
Miles - How terion for
L B S flows
-4l - i
. - - - - - - - 4
08— - -~ - = - - - -
= | = I I E L= L= =
o 01 02 03 04 05 06 07 08 09 1
Shear and Kelvin
Helmholtz instabilities
Lower Layer R0=0.38 k=1.82 xVec=0.51814 QQES:SFPNC IVéSl‘abllllleS in
4 —T — T =T — T——F —T= — e Phillips model

Inertial instbility

Symmetric instability



Résumé Geophysical Fluid

Dynamics
V Zeitlin - GFD
Co-existence of geostrophic and ageostrophic instabilities
of the balanced flow :
» Classical geostrophic baroclinic instability : Ro — 0
etk —0
» Strongly ageostrophic KH-type instability : Ro — oo,
all k Agecsroptic nsabes n

» New ageostrophic hybrid (Rossby-Kelvin) instability :
Ro ~ 1



Heuristic analysis of instabilities in the 2-layer
model

Dispersion relations layerwise :

Dj o(w, k) = 0 — no coupling (41)

Two curves close in the vicinity of a point k* :

Dy(w*, k*) =0, Do(w* +6,k*) =0, |§| <<w®. (42)

Weak coupling :

D; (w, k) Da(w, k) = ¢ (43)

At point k* the eigenfrequencies become w* + A and
w0+ A, |A] << w*.
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Taylor series at point k* : e
V Zeitlin - GFD
oD oD
Dy (w*, K*) + =LA + ] [Dg(w*, K)+ 226+ A) + .| =
w Ow
(44)

Quadratic equation for A :

—1 —1
p2_gn—c (2D 902\ _ o, (45)
Ow ow

Instability : Im(A) # 0 : e
» ¢ small enough and/or e strong enough,
—1 —1
oD oD
-e(®) (%) <o
2-layer systems : the waves should propagate in the

opposite directions, with close absolute frequencies
(resonance)



Conditions of resonance Casp s

V Zeitlin - GFD
wOl1l.wO02<0
UO i |
| i
ol wil/k —=——
w S !
_____ . i
----C w2/k ——|
Lt I I
. —UO
w1l
wO1l.w02=0
uo | !
i
| i
wi/k | — "Hybrid" instabillies
w | ' -general notions
! '
|
w2/k =
| |
—UO

wil



Barotropic jet on the f- plane in RSW e Dmamcs
Exact solution of RSW equations : balanced jet : V Zeitiin - GFD
U—0 v=_ 2 (X — Hotf = Ho— X
u=0, v=-—Vysech (L), h= Hy+7 = Hy Antanh(L>,

Vo = 927 - peak velocity, L -jet width, Ho - mean height.

vV
-
o @ o
LT T
L
O <
I I

Barotropic instability of a

T T T T T T T
B 1 geostrophic jet
05 i
-0.51 i
-0, L L L L L

nisn
°




Non-dimensional linearised equations e

V Zeitlin - GFD

Small perturbations :

u—u, v>v+v,n—in+n

Ro (0tv + udxVv + voyv) + u+0yn =0,
Ro (0in + Ox(uf) + voyn + 70y v) + Bu (0xu + dyv) = 0.
(46)
H R _ W B _ H¢21 _ gHO d t d d t h Barotropic instabily of a
ere Ro = 7, Bu = 7§ = g7z and standard geostrophic e
scaling is used.

{ Ro (0tu + voyu) — v+ 0xn =0,



Reduction to a system of ODEs Geoptysical Fuid

V Zeitlin - GFD

Fourier-transform in stream-wise direction

(u,v,n) = (ikt, v,7) exp{i(ky — wt)} +c.c. —

A

eigenvalue problem : Ma = ca, with a = (&, ¥, 1) and

y 1
v R R
M= A5+ OxV v 1 :
(

8)(77 + ﬁax) + %(‘9)( ﬁ + % V Barotropic instability of a
(47)  Souemem
Solution by discretisation using Chebyshev collocation
method.



Stability diagram for a geostrophic jet with
Ro =01, Bu=10
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The mOSt unstable mOde Geophysical Fluid

Dynamics
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Rayleigh criterion

- Miles - Howard criterion for
x 10 stratified flows.
1sf - = =. > b5 |
- e = S 6
a S . .
A N
AL . h . 4
o Ny 4
- . .
C Shear and Kelvin
o - S - Helmholtz instabilities
0.5 ° o o o - - - q >
B Eaec o o o Ageostrophic instabilities in
= N . . the Phillips model
o= e ” \ N "Hybrid" instabilities
< o N N ' Y 7 ° -general notions
PN y .
N ~ % . . Barotropic instability of a
L. . N > . . R geostrophic jet
0.5 S - - - ] Baroclinic instability of a
- - = : ~ N N . geostrophic jet
P ~ _a Ageostrophic instabilities of
1k L R . . ° B jets
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Evolution of the anomaly of H

-5
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Geophysical Fluid

Evolution of the relative vorticity : formation of = *%james
secondary vortices V Zeiin - GFD

Rayleigh criterion
Miles - Howard criterion for
stratified flows.

1 ADT‘ 05 1 140TI 0.5
£ o ° & o ° Shear and Kelvin
= = Helmholtz instabilities
-1 -0.5 -1 o5 Ageostrophic instabilities in
the Phillips model
1 ) 1 -1 o 1
X/Rd >(/Rd "Hybrid" ins lities

~general notior
1 2407, 05 1 - 3407, o5 Barotropic instabilty of a
- - geostrophic jet

« o

£ o  J o g o° - © Baroclinic instability of a

geostrophic jet

-0.5 "
ostrophic instabilities of
jets
0.5
o
Inertial instbility
-0.5

Symmetric instability




Baroclinic Bickley jet Geophysical Fiuid

Dynamics

V Zeitlin - GFD

Upper-layer jet in geostrophic equilibrium on the f- plane -
exact solution of the 2-layer RSW equations with a free
surface : Profiles of velocity and geopotential :

1 ~tanh(y),

Op = sech®(y), 7z = 7 tanh(y).

No deviation of the free surface : 7y + 772 = 0.
Parametres : Ro = 0.1, Bu = 10 - typical for the et
atmospheric jets.



Upper-layer Bickley jet e

V Zeitlin - GFD

Baroclinic instability of a
geostrophic jet

Zonal velocity u;, deviation of thickness 7;, PV anomaly.
Lower (upper) layer : continuous (dashed).



Linear stability diagram

©000,
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Phase velocity (top) and growth rate (bottom ) of the
unstable modes.
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The most unstable mode :

The most unstable mode of the upper-layer Bickley jet.
Geostrophic streamfunctions and velocities in the upper
and lower layers.

Geophysical Fluid
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Baroclinic instability of a
geostrophic jet



Non-linear saturation

0.5 1 15 2 25 0.5 1 15 2 25
Relative vorticity in the lower (colours) and upper
(contours) layers.

0.25
0.2
0.15
0.1
0.05

-0.05
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-0.15
-0.2
-0.25
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Baroclinic instability in Nature
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Barotropic Bickley jet in 2-layer system S
V Zeitlin - GFD
Jet in geostrophic equilibrium on the f- plane with the

same velocity in both layers - another exact solution of
the 2-layer RSW equations with the free surface.

{ hy = Hi(x) = Hio . Via(x) = V(x) =

ho = Ho(x) = Hpp+dtanh(7) 7

> = Ha(x) 20 (%) 9 (1 _ tanh? (%))
(48)

Parametres and scaling :

Hig, Hop = const, L and § - width and mtensﬂy of the Jet

5
Vo = & - max. velocity, Bu = )%L%,RO* (i)z,d = H1o’ r,

Ho = Hio + Hsg. Scaling - standard geostrophic.

Ageostrophic instabilities of
jets



Barotropic Bickley jet

Profiles of thickness, velocity, and PV of the jet as

functions of x/L for % = \/g; continuous : layer 1;
dashed : layer 2.
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Stability diagram of the barotropic jet at small  “gme™
Ro V Zeitlin - GFD

0.2 0.1

0.075

B
< 005

0.025f &

Left : phase velocity Re(w)/k as a function of k ; Right :
Growth rate Im(w) as a function of k. Quasi-geostrophic
jet:Hy=1,Bu=10,Ro=05,d=2,r=0.5.

Ageostrophic instabilities of
jets



2D structure of the most unstable mode

Left (Right) : upper (lower) layer. Layer-wise identical =
barotropic instability.
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2D structure of the most unstable mode on e
branch 2 V Zeitlin - GFD

Ageostrophic instabilities of
jets




Stability diagram of the barotropic jet at large  *%rames
Ro

V Zeitlin - GFD

1
e,
0.75}
< _ "
B 5 y
g g 05
-2 = & s,
025 & |
% 0
1 2 3 4 5 & T
k k

Strongly ageostrophic jet :

Ho =1,Bu=10,Ro=5,d =2,r = 0.5. Non-zero limit of

the growth rate at kK — 0 — symmetric instability (with o ropne neebltes o
respect to translations) = inertial instability.



2D structure of the most unstable mode o e

V Zeitlin - GFD

Baroclinic, concentrated in the anticyclonic part of the jet. gsosmptiabebltios



Exercise :

» Write down the 2-layer RSW equations with a free
surface

» Demonstrate that baroclinic and barotropic jet
configurations considered above are exact solutions

» Linearise the equations about these solutions

Geophysical Fluid
Dynamics

V Zeitlin - GFD

Ageostrophic instabilities of
jets



2-layer RSW model with rigid lid in "1.5" CERIEE I
dimensions ("symmetric", no dependence on = VZiin-cr
Y)

OpUy + uydxuy — fvy + py ok =0, (
Otvy + uq(f + 0xvy) =0, (
Otlz + UpOyUp — o + py 'Oy + g'Oxn =0, (49¢
OtVo + Up(f 4+ Oxvo) =0, (
Ot(Hy —n) + Ox((H1 — n)uy (
O1(Ha +n) + Ox((Hz + )tz

0
=0,
=0
where (uq, vq), (U2, Vo) are components of velocity in
superior and inferior layers ; 7 -barotropic pressure ; n -
displacement of the interface, Hy and H. - layers’
thicknesses at rest; H = H; + H, = const, g’ - reduced

gravity : g’ = g(p2 — p1)/ pa-

Inertial instoility



Exact solution : geostrophic equilibrium

1

V1g == fp1 8)(”9 5
1 /
Vag =, Mg + %axhzg .

Non-dimensionalising (bar notation for
non-dimensional variables) :

‘_/19 - axlzlg B

where r = /’j—; and the Burger number : Bu =

(50a)

(50b)

Geophysical Fluid
Dynamics
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Geophysical Fluid
Dynamics

. . . V Zeitlin - GFD
Linearisation :

Oty —vi +0xm =0, ( )

Otvi + uy(1+ 0xVig) =0, (52b)
Otlo — Vo + roxm + Budyn =0 (52¢)
OtVa + Up(1 + Oy Vog) =0 , (52d)

Om — Ox(higus) =0, (52e)

Om + Ox(hagp) = 0. (52f)

m, n are non-dimensional perturbations of pressure and
free surface with respect to the geostrophic balance
(51a), (51b).

Inertial instbility



Reduction to a single equation (bars omitted) : Geophysical Fluid

Dynamics

Constraint of rigid lid : V Zeitiin - GFD
((Hi —n)ur) + ((Hz + n)tz) = HUy(1). (53)

Uy, - barotropic velocity in x-direction. Absence of global
mass flux in x = Up = 0. New variable
U = hogur = —hyguy = single equation :

Bu 92,U
h h 2 I 2. h
| et g gz 4 4y T O0lla g Tula |y
hygheg highag hag
(54)

Trapped/unstable modes :

If the anti-cyclonic shear of the mean flow is sufficiently
strong = sub-inertial trapped modes and symmetric
instability.

Inertial instbility



Demonstration :
Fourier transformation :

U(x, t) = [ dwl(w, x)e~™! + c.c.. Auxiliary functions :

rh h
Flo = 20 e,
hyghog hog

Equation for U(w, x) :

Bu 2,0 — ((1 — W) F(x) + G(x)) U=0.

(55)

(56)

(57)

Geophysical Fluid
Dynamics

V Zeitlin - GFD

Inertial instoility



Geophysical Fluid
Dynamics

V Zeitlin - GFD

Demonstration, continued :
Multiplication by U* and integration in x supposing that
the modes are localised :

Bu [10xUPP dx + [ G(x)|UJ? dx

2=1+ £
“ [ F(x)| D ox

(58)

F is by definition positive, but G may be negative,
particularly in the anticyclonic regions where 8,2(XI'Ig <0
= Jw? < 1, even w? < 0 = instability.

Inertial instoility



Example : barotropic jet with n = O. Geophysical Fluid

V Zeitlin - GFD

Equation for U :

Bu 3U — (0 +1) Hy' + ro2 g (HiHp) ™' U=0.
(59)

Solutions in the form U et + c.c. :
LA N
U+ 5 [&Hj — (Hz" + (HiHo) ™ raﬁxng)] U=o0.
(60)

Hi Hp
Hi+Hs "

where He =

Inertial instoility



Geophysical Fluid
Dynamics

This is the Shrodinger equation of quantum mechanics : v zetlin-GFD

Do) + (E = V(X)) =0 (61)
for a particle with the energy
E = w?(He Bu)™!
moving in the potential
V(x) = Bu™" (Hy' + (HiH2) ' roZ,Ny).

Potential well sufficiently deep (anti-cyclonic shear
sufficiently strong) = trapped modes. Well even deeper
= eigenvalues < —1 = w? < 0 = symmetric (inertial)
instability.

Inertial instoility



Ageostrophic Eady model e
Zonally symmetric non-hydrostatic primitive V Zeitiin - GFD
equations on the f- plane

(Or+VvOy+wo)u—1fv =

(Ot +VvOy +wo)v+Tfu+0yp =
(Ot +voy,+wo;)b =

(Or+VvOy +wo)w —b+ 029 =
oyv+0ow =

© o oo o

(62)

b= —g% - buoyancy.
Exact solution - zonal thermal wind with linear vertical
shear :

V=w=0, U=-—2z b=My+Nz (63)

Symmetric instability

Brunt - Vaiséla frequency N2 is constant, as well as M?



Scaling and inearisation Casp s

V Zeitlin - GFD

Scaling

Vertical scale H, horizontal scale L, time-scale T ~ f~ ',
horizontal and vertical velocity scales, U and W, such
that  ~ . The natural horizontal velocity scale in the

Eady model is U ~ MH the natural geopotential scale is
® ~ N2H?, and the natural buoyancy scale is B ~ N2H.

Non-dimensional parameters

» Aspect ratio § = L,

» Rossby humber Ro = "f/’—;&,

f2N?

» Richardson number Ri = ~7-,

Symmetric instability



Geophysical Fluid

Linearisation Dyhamics

V Zeitlin - GFD

Linearisation about (63) :

oiu— Row —v =

Ov+u+ RiRodyp =
Riotb+v+ RiRow =
520w — RiRob+ RiRod,¢ =
OyVv + 0w =

© o oo o

Streamfunction :

V=0mb W= -y, (64)

Symmetric instability



Geophysical Fluid

Reduction to a single equation, gl
Fourier-transform and dispersion relation v Zeitin - GFD

Elimination of band v :

07 (528}%y¢ + 3?21/’) + 050 — 2R08521/’ + RiROza)%yw =0.

(65)
Normal-mode solutions : ¢) « e/(¥+mz)+ot,
Real and positive o correspond to unstable modes.
Dispersion relation :
2Ro a — RiRo?a2 — 1
g = :i:\/ 1 T 52a2 ) (66)

where o = % is the slope of the wave-vector of the
eigenmodes in the y — z plane.

Symmetric instability



Geophysical Fluid

Analysis of the dispersion relation by
V Zeitlin - GFD
Ri is positive-definite — numerator of the square root in

(66) represents a downward oriented quadratic parabola,
in terms of Ro a. The parabola extends to the upper
half-plane, and hence corresponds to instability, only in
the limited range of Ro« :

1—-VI—Ri 1+VI—Ri
7.I<R0a<¥.

Ri Ri (67)

Instability exists at Ri < 1 for any Ro, with a well-defined

maximum of the growth rate and the most unstable mode
corresponding to Roa = 1/Ri. Orientation of the

unstable wavenumbers is correlated with the sign of Ro

(i.e. with the sign of horizontal relative vorticity of the

background flow : anticyclonic for positive M?, and

cyclonic for negative M?). Non-hydrostatic effects, when

0 # 0, diminish the hydrostatic growth rate. BB



Stability diagram S Bpramce

V Zeitlin - GFD

06
05
04
03}/
02}/

01

Non-dissipative non-hydrostatic growth rates as functions
of Ro« (blue solid) & = 0.3, Ri = 0.7.

Symmetric instability



Exercise e

V Zeitlin - GFD

» Derive equation (65)

» Introduce viscous terms in the equations (62) and
analyse how they affect the instability.

Symmetric instability



Instability of a coastal current

Geophysical Fluid
Dynamics

V Zeitlin - GFD

Definitions.
General concepts.

Classical
(in)stability criteria
for plane-parallel
flows

Rayleigh criterion

Miles - Howard criterion for
stratified flows.

Instabilities of
shear flows and
jets
Shear and Kelvin
-Helmholtz instabilities

Ageostrophic instabilities in
the Phillips model

"Hybrid" instabilties
~general notions

Barotropic instability of a
geostrophic jet

Baroclinic instability of a
geostrophic jet

Ageostrophic instabilities of
jets
Translationally-
invariant
instabilities
Inertial instbility
Symmetric instabilty

Instabilities of the
coastal currents



Idealised configuration of the coastal current  *Eeme™

V Zeitlin - GFD

s
Ha(y) U2(y)® ﬁ/

Instabilities of the
coastal currents



RSW equations with a coast and outcropping  “Bame
(|ayer 2 paSSive H2 — oo) V Zeitlin - GFD

Equations of motion :

Ur +uuy +vuy —fv+gHy = 0,
Vi+uvy +vwy,+fu+gH, = 0,
H; + (Hu), + (Hv)y = 0. (68)

Boundary conditions :

H(x,y,t)=0, DiYo=v y=Yp, (69)
where Yy(x, t) is the position of the free streamline, D; -
Lagrangian derivative.

Instabilities of the
coastal currents



Flows in geostrophic equilibrium :
u=U(y),v=0,and H = H(y),

uy) = - JH,y) (70)

- stationary exact solution .

H, [SHY)

y ) y

Examples of profiles of depth (left) and velocity (right) for
currents with constant PV, Uy = —sinh(—1)/cosh(—1)
(bold), Uy = 1/2 (dashed).

Geophysical Fluid
Dynamics

V Zeitlin - GFD

Instabilities of the
coastal currents



Linearised non-dimensional system :

ur+Uuxy +vUy, —v = — hy,
vi+Uvw+u = —hy,
linearised b.c. :
g h
YO = T P
H,V y=0

» continuity equation evaluated at y = 0.

The only constraint is regularity of solutions at y = 0.

Geophysical Fluid
Dynamics

V Zeitlin - GFD

(71)

Instabilities of the
coastal currents



PV of the mean flow : S e

V Zeitlin - GFD

Geostrophic equilibrium =

H(0) =0

Hyy(y) = Q(y)H(y) +1 =0, with {Hy(o) = —U,

(74)

U(0) = U is the current velocity at the front.

Instabilities of the
coastal currents



Geophysical Fluid

Dynamics
0.1
0.751 E V Zeitlin - GFD
0.09
0.7F E 0.08
0.07
0.65 R
0.06
% 0.05
0.6-
0.04
0551 10.03
40.02
05 m = = - --
-0.01
md .

4 5
Wave Number

Stability diagram in the plane (%, k) for a current with
constant PV. Values of the growth rate - right bar.

Instabilities of the
coastal currents



Dispersion diagramd : stable current Geophysical Flid

V Zeitlin - GFD

Dispersion diagram for Uy = —sinh(—1)/cosh(—1) et
Q =1.

Symmetric instability

Instabilities of the
coastal currents



Dispersion diagram : unstable current

1

Dispersion diagram for Uy = 0.5 and @y = 1. Crossings
of the dispersion curves on top correspond to instability
zones at the bottom.

Geophysical Fluid
Dynamics

V Zeitlin - GFD

Instabilities of the
coastal currents



The most unstable mode : resonance Kelvin  “Baes
wave-Frontal wave i
= "’—-.w'ﬂ/ Y3 <
1 { }.' :3*«»»”1 A E
,’ t oy X %

L T T T I |

Anomalies of the thickness and velocity for the unstable
Instabilities of the
mode k = 3.5. coastal currents



Saturation of the instability : initial stage S

V Zeitlin - GFD

N

> | \\W//l/l [

\\\\\\\

P A RN L

| m\\\\ | p
N\ [

Depth and velocity of the perturbation at t = 0 (left) and
t = 30 (right). Kelvin front is visible on the right.

Instabilities of the
coastal currents



Saturation of the instability

=0 =30
> osf > osf

Evolution of PV : t =0, t = 30, t = 200, t = 350.

Geophysical Fluid
Dynamics

V Zeitlin - GFD

Rayleigh criterion
Miles - Howard criterion for
stratified flows.

Shear and Kelvin
Helmholtz instabilities
Ageostrophic instabilities in
the Phillips model

"Hybrid
~general notior

Baroclinic instability of a
geostrophic jet

Ageostrophic instabilities of
jets

Instabilities of the
coastal currents



Exercise

» Obtain the equations (71) et (72)

» Starting from (74) obtain the profiles of the costal
currents with constant PV

Geophysical Fluid
Dynamics

V Zeitlin - GFD

Instabilities of the
coastal currents
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