Chapter 5. Instabilities in Geophysical Flows.

Part 1. Plane-parallel flows

V. Zeitlin

Cours GFD M2 MOCIS

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Plan

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows Rayleigh criterion

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model "Hybrid" instabilities -general notions Barotropic instability of a geostrophic jet Baroclinic instability of a geostrophic jet Ageostrophic instabilities of jets

Translationally-invariant instabilities Inertial instbility Symmetric instability

Instabilities of the coastal currents

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Arbitrary dynamical system

$$\dot{\mathcal{U}} = \mathcal{M} \left[\mathcal{U}
ight],$$

 ${\cal U}$ - dynamical variable(s) , ${\cal M}$ - operator defined by the structure of the model. Solutions : trajectoires in the space of ${\cal U}$:

$$\mathcal{U}(t_0) \longrightarrow \mathcal{U}(t)$$

In hydrodynamics $\mathcal{U} = (\mathbf{v}, \rho, p, ...)$. \mathcal{U}_0 : exact solution, for example the state of rest $\mathcal{M}[\mathcal{U}_0] = 0$, or other. Linearisation : $\mathcal{U} = \mathcal{U}_0 + u$, $||u|| << 1 \Rightarrow$ linear equations :

$$\dot{u}=\hat{\mathcal{L}}\left[\mathcal{U}_{0}\right]\circ u,$$

 $\hat{\mathcal{L}}$ - linear operator

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

(1)

(2)

(3)

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

nstabilities of shear flows and ets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Linear and non-linear (Lyapunov) stability

Linear stability

Linearised system \rightarrow Fourier transformation : $u(t) \rightarrow \hat{u}(\omega)e^{i\omega t} \rightarrow$ eigenproblem for eigenvalues $\omega \rightarrow$ spectrum of ω (dispersion relation). Complex eigenvalues, in general : $\omega = \omega_r + i\omega_i$ Linear (in)stability : $\omega_i \ge 0(\omega_i < 0) \leftrightarrow$ exponential growth (decay) of small perturbations of the solution.

Stability according to Lyapunov

$$\forall \epsilon \; \exists \delta : ||u||_{t=0} < \delta \; \Rightarrow \; ||u||_{\forall t>0} < \epsilon.$$

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model "Hybrid" instabilities -general notions Barotropic instability of a

geostrophic jet Baroclinic instability of a

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

(4)

Inertial instbility Symmetric instability

Plane-parallel barotropic incompressible flow

Flow the plane (x, y) (= homogeneity in *z*- direction) : $\mathbf{v} = U(y)\hat{\mathbf{x}}$ - exact solution of the 2D Euler equations (= QG equation on the *f* - plane).

Velocity via streamfunction ψ : $u = \psi_y$, $v = -\psi_x \Rightarrow$

$$\nabla^2 \psi_t + \mathcal{J}(\nabla^2 \psi, \psi) = \mathbf{0}.$$
 (5)

Plane-parallel stationary flow solution :

$$\psi_0 = \int^y dy' \, U(y'). \tag{6}$$

Linearisation : $\psi = \psi_0 + \phi \Rightarrow \nabla^2 \psi = U'(y) + \nabla^2 \phi \rightarrow \psi$

$$\nabla^2 \phi_t + U(\mathbf{y}) \nabla^2 \phi_{\mathbf{x}} - \phi_{\mathbf{x}} U''(\mathbf{y}) = 0.$$
 (7)

Fourier transformation : $\phi(x, y, t) \rightarrow \hat{\phi}(y) e^{ik(x-ct)} \Rightarrow$

$$\hat{\phi}''(y) - \left[k^2 + \frac{U''(y)}{U(y) - c}\right]\hat{\phi}(y) = 0.$$
 (8)

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model "Hybrid" instabilities -general notions Barotropic instability of a geostrophic jet

geostrophic jet Ageostrophic instabilities of

Translationallyinvariant instabilities

nertial instbility Symmetric instability

Boundary conditions :

Channel : $y_1 \le y \le y_2$ with free-slip conditions (no viscosity), or the entire plane $(y_{1,2} \to \infty)$:

$$v|_{y=y_{1,2}} = \phi_x|_{y=y_{1,2}} = 0, \Rightarrow \hat{\phi}|_{y=y_{1,2}} = 0$$

Multiplication by the conjugate solution (*) and integration by y

$$\int_{y_1}^{y_2} dy \left[\hat{\phi}^*(y) \left(\hat{\phi}''(y) - \left[k^2 + \frac{U''(y)}{U(y) - c} \right] \hat{\phi}(y) \right) \right] = 0$$
(9)

Integration by parts + boundary conditions :

$$\int_{y_1}^{y_2} dy \, \left(\hat{\phi}^{*\prime}(y) \hat{\phi}'(y) + \left[k^2 + \frac{U''(y)}{U(y) - c} \right] \hat{\phi}^{*}(y) \hat{\phi}(y) \right) = 0$$
(10)

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model "Hybrid" instabilities

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Imaginary part :

$$c_{i} \int_{y_{1}}^{y_{2}} dy \frac{U''(y)}{|U(y) - c|^{2}} \hat{\phi}^{*}(y) \hat{\phi}(y) = 0 \quad \Rightarrow \\ \int_{y_{1}}^{y_{2}} dy \frac{U''(y)}{|U(y) - c|^{2}} \hat{\phi}^{*}(y) \hat{\phi}(y) = 0 \quad \text{if} \quad c_{i} \neq 0. (11)$$

In the absence of critical layers $(U(y) - c \neq 0)$, if the flow is unstable, then U(y) has an inflexion point $\exists y_0 : U''(y_0) = 0.$ Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

the Phillips model "Hybrid" instabilities

-general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Plane-parallel stratified flow in the vertical plane (x, z) $\mathbf{v} = U(z)\hat{\mathbf{x}}$ - exact solution of the non-hydrostatic primitive equations with pressure $P_0(z)$ and density $\rho_0(z)$ in hydrostatic equilibrium.

Linearisation about this solution :

$$\rho_{0}(z) (u_{t} + U(z)u_{x} + wU'(z)) = -p_{x},$$

$$\rho_{0}(z) (w_{t} + U(z)w_{x}) + g\rho = -p_{z},$$

$$u_{x} + w_{z} = 0, \ \rho_{t} + +U(z)\rho_{x} + w\rho'_{0}(z) = 0.$$
(12)

Streamfunction : $u = \psi_z$, $w = -\psi_x$. Fourier transformation in x, t :

$$\psi \to \phi(z) e^{ik(x-ct)}, \quad \rho \to r(z) e^{ik(x-ct)} \Rightarrow$$
 (13)

$$u \to \phi'(z)e^{ik(x-ct)}, \quad w \to -ik\phi(z)e^{ik(x-ct)}$$
 (14)

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterior

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model "Hybrid" instabilities

-general notions Barotropic instability of a

Baroclinic instability of a

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Elimination of variables

Elimination of *p* by cross - differentiation :

$$(U-c)\rho_{0}(\phi''-k^{2}\phi) - gr + \rho_{0}' [(U-c)\phi' - U'\phi] - \rho_{0}U''\phi = 0 (U-c)r - \rho_{0}'\phi = 0$$
(15)

Elimination of *r* :

$$(U-c)^{2}\rho_{0}(\phi''-k^{2}\phi) - g\rho'_{0}\phi + \rho'_{0}(U-c)\left[(U-c)\phi'-U'\phi\right] - \rho_{0}U''(U-c)\phi = 0$$

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterior

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic iet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Integral form Change of variable :

$$\phi = (\boldsymbol{U} - \boldsymbol{c})^{\frac{1}{2}} \Phi \; \Rightarrow$$

$$\left[\rho_0 (U-c) \Phi' \right]' + \left[-\frac{1}{2} \left(\rho_0 U' \right)' + \rho_0 k^2 (U-c) - \rho_0 \frac{\frac{U'^2}{4} + g \frac{\rho'_0}{\rho_0}}{U-c} \right] \Phi = 0.$$
 (17)

Multiplication by Φ^* and integration (by parts) in *z* with b. c. of the channel type

$$\int_{z_1}^{z_2} dz \, \left[\rho_0(U-c) \left(|\Phi'|^2 + k^2 |\Phi|^2 \right) + \frac{(\rho_0 U')'}{2} |\Phi|^2 + \rho_0 \left(\frac{U'^2}{4} + g \frac{\rho'_0}{\rho_0} \right) (U-c)^* \frac{|\Phi|^2}{|U-c|^2} \right] =$$

Geophysical Fluid Dynamics

V Zeitlin - GFD

efinitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterior

(16)

0.

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

nertial instbility Symmetric instability

Integral estimate and instability criterion Imaginary part :

$$c_{i} \int_{z_{1}}^{z_{2}} dz \left[\rho_{0} \left(|\Phi'|^{2} + k^{2} |\Phi|^{2} \right) - \rho_{0} \left| \frac{\Phi}{U - c} \right|^{2} \left(\frac{U'^{2}}{4} + g \frac{\rho'_{0}}{\rho_{0}} \right) \right] = 0.$$
(18)

Miles-Howard criterion : $Ri < \frac{1}{4}$

$$c_i
eq 0 \Rightarrow rac{U^2}{4} + g rac{
ho_0'}{
ho_0} > 0,$$
 (19)

Brunt - Väisälä frequency : $N^2 = -g \frac{\rho'_0}{\rho_0} \Rightarrow \frac{N^2}{U'^2} < \frac{1}{4} \leftrightarrow Ri < \frac{1}{4}$, where $Ri = \frac{N^2}{U'^2}$ - Richardson number.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterior

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model "Hybrid" instabilities

general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Kelvin -Helmholtz (KH) instability

The model : Non-hydrostatic Euler equations for two layers of incompressible fluid with $\rho_i = \text{const}, i = 1, 2$ without rotation ($Ro \rightarrow \infty$) in the vertical plane x, z.

Equations of motion :

$$u_t^{(i)} + u^{(i)}u_x^{(i)} + w^{(i)}u_z^{(i)} = -\frac{1}{\rho_i}P_x^{(i)},$$

$$w_t^{(i)} + u^{(i)}w_x^{(i)} + w^{(i)}w_z^{(i)} + g = -\frac{1}{\rho_i}P_z^{(i)},$$

$$u_x^{(i)} + w_z^{(i)} = 0.$$

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Instabilities of the coastal currents

(20)

Boundary conditions :

Dynamic b.c. :

$$\left. \mathcal{P}^{(1)} \right|_{z=\eta} = \left. \mathcal{P}^{(2)} \right|_{z=\eta},$$

Kinematic b.c. :

$$\eta + u^{(i)}\eta_x = w^{(i)}\Big|_{z=\eta}, \quad i = 1, 2.$$
 (22)

where $\eta(x, t)$ - position of the interface between the layers 1 (superior) and 2 (inferior).

Stationary solution :

$$w^{(i)} = 0; \ u^{(i)} = U_i = \text{const}; \ \eta = 0; \ P_Z^{(i)} = -g\rho_i, \ i = 1, 2.$$
(23)

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

(21)

Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Linearisation about this solution :

Equations for perturbations :

$$u_t^{(i)} + U_i u_x^{(i)} = -\frac{1}{\rho_i} p_x^{(i)},$$
$$w_t^{(i)} + U_i w_x^{(i)} = -\frac{1}{\rho_i} p_z^{(i)},$$
$$u_x^{(i)} + w_z^{(i)} = 0 \Rightarrow \nabla^2 p^{(i)} = 0.$$

Boundary conditions :

$$p^{1}\Big|_{z=0} - p^{2}\Big|_{z=0} = g(\rho_{1} - \rho_{2})\eta.$$
 (25)

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

(24)

Ageostrophic instabilities in the Phillips model "Hybrid" instabilities

Barotropic instability of a geostrophic jet

Baroclinic instability of a

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Solution of the Laplace equation :

$$p^{(1)} = \bar{p}_1 e^{-kz} e^{i(kx-\omega t)}, \ p^{(2)} = \bar{p}_2 e^{+kz} e^{i(kx-\omega t)}$$
 (26)

Separation of variables in $w^{(i)}$:

$$w^{(i)} = \bar{w}_i(z)e^{i(kx-\omega t)} \Rightarrow$$
(27)
$$\bar{w}_1 = -i\frac{k\bar{p}_1e^{-kz}}{\rho_1(kU_1 - \omega)}, \ \bar{w}_2 = i\frac{k\bar{p}_2e^{kz}}{\rho_2(kU_2 - \omega)}.$$
(28)

$$\eta = \bar{\eta} e^{i(kx-\omega t)} \Rightarrow -i(\omega - kU_i)\bar{\eta} = \bar{w}_i|_{z=0}, \Rightarrow$$
(29)
$$\bar{p}_1 = -\frac{\bar{\eta}}{k}\rho_1(\omega - kU_1)^2, \quad \bar{p}_2 = +\frac{\bar{\eta}}{k}\rho_2(\omega - kU_2)^2$$
(30)

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Symmetric instability

Dynamic b.c. :

$$\rho_{2}(\omega-kU_{2})^{2}+\rho_{1}(\omega-kU_{1})^{2}=kg(\rho_{2}-\rho_{1})\equiv kg\Delta\rho, \quad \Delta\rho>0. \Rightarrow \begin{array}{c} \text{Classical} \\ \text{(instability} \\ \text{(31)} \end{array}$$

Dispersion relation :

$$(\rho_1 + \rho_2)\omega^2 - 2k(U_1\rho_1 + U_2\rho_2)\omega + \left[k^2(\rho_1 U_1^2 + \rho_2 U_2^2) - kg\Delta\rho\right] =$$
(32)

Solution in the moving frame $U_2 = 0, U_1 = U$:

$$c = \frac{\omega}{k} = \frac{U\rho_1 \pm \sqrt{(\rho_1 + \rho_2)\frac{g\Delta\rho}{k} - \rho_1\rho_2 U^2}}{\rho_1 + \rho_2}$$

Geophysical Fluid Dvnamics

V Zeitlin - GFD

Spear and Kelvin

iets

(33)

Instability of short waves :

$$k > rac{g\Delta
ho}{U^2}\left(rac{1}{
ho_1}+rac{1}{
ho_2}
ight).$$

Shear instability :

Particular case g = 0:

$$c = rac{\omega}{k} = U rac{
ho_1 \pm i \sqrt{
ho_1
ho_2}}{
ho_1 +
ho_2} \Rightarrow$$

always unstable

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

(34)

(35)

Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Example of KH instability

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model "Hybrid" instabilities -general notions Barotrophic instability of a geostrophic jet Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities Inertial instbility

Exercise :

Analyse the KH instability in the two-layer RSW model without rotation, with layers of non-perturbed depths $H_{1,2}$, with flat bottom and the rigid lid. Demonstrate that the instability threshold corresponds to the critical shear :

$$U_{c} = \frac{1}{2} \sqrt{g \Delta \rho \left(\frac{H_{2}}{\rho_{2}} + \frac{H_{1}}{\rho_{1}}\right)}$$

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion fo

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

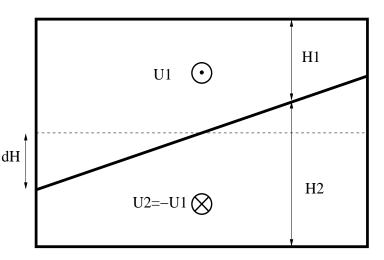
(36)

Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet


Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Phillips model

-Ymax

Ymax

Definitions. General concepts.

Geophysical Fluid

Dynamics V Zeitlin - GFD

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

2-layer RSW with rigid lid on the *f*-plane

$$\partial_t \mathbf{v}_j + \mathbf{v}_j \cdot \nabla \mathbf{v}_j + f \hat{\mathbf{z}} \wedge \mathbf{v}_j = -\frac{1}{\rho_j} \nabla \pi_j$$

$$\partial_t h_j + \nabla \cdot (\mathbf{v}_j h_j) = 0, \quad h_1 + h_2 = H$$

$$\pi_2 - \pi_1 = g(\rho_2 - \rho_1)\eta, \quad (37)$$

where $\mathbf{v}_j = (u_j, v_j), j = 1, 2$, there is no summation over repeating index, and $\eta(x, y, t)$ is the deviation of the interface.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Linearisation about the mean shear flow Mean flow : geostrophic equilibrium in y

$$h_j = H_j(y), \quad u_j = U_j(y) = -\frac{1}{\rho_j f} \partial_y \Pi_j, \quad v_j \equiv 0.$$
 (38)

Linearisation about this flow $h_i = H_i(y) + (-1)^j \eta(x, y, t), \ \pi_i \to \Pi_i(y) + \pi_i(x, y, t).$ $\partial_t u_j + U_j \partial_x u_j + v_j \partial_y U_j - f v_j = -\frac{1}{\rho_j} \partial_x \pi_j$ $\partial_t \mathbf{v}_j + \mathbf{U}_j \partial_x \mathbf{v}_j + \mathbf{f} \mathbf{u}_j = -\frac{1}{\rho_i} \partial_y \pi_j$ $\partial_t \eta + U_i \partial_x \eta = (-1)^{j+1} (H_i \partial_x u_j + \partial_y (H_j v_j))$ $\pi_2 - \pi_1 = g(\rho_2 - \rho_1)\eta.$

Phillips model : $U_i = \text{const}, H_i(y)$ is linear function of y.

Geophysical Fluid Dvnamics

V Zeitlin - GFD

Ageostrophic instabilities in the Phillips model

(39)

Non-dimensionalised linearised system

Mean flow : $U_1 = -U_2 \equiv U_0$ Scaling : time-scale f^{-1} , vertical scale $H_0 = H_2(0)$, horizontal scale $R_d = \frac{(g'H_0)^{\frac{1}{2}}}{f}$ - baroclinic deformation radius, where $g' = \frac{\rho_2 - \rho_1}{\rho_2 + \rho_1}$ - reduced gravity, velocity scale U_0 , pressure scales $\rho_i f U_0 R_d$. Width of the channel *L*, Burger number $Bu = R_d^2/L^2$. Weak stratification limit $\rho_2 \rightarrow \rho_1$.

$$\partial_{t} u_{j} + F(-1)^{j+1} \partial_{x} u_{j} - v_{j} = -\partial_{x} \pi_{j}$$

$$\partial_{t} v_{j} + F(-1)^{j+1} \partial_{x} v_{j} + u_{j} = -\partial_{y} \pi_{j}$$

$$\partial_{t} \eta + F(-1)^{j+1} \partial_{x} \eta = (-1)^{j+1} \left(H_{j} \partial_{x} u_{j} + \partial_{y} (H_{j} v_{j}) \right)$$

$$\pi_{2} - \pi_{1} = \frac{2}{F} \eta, \qquad (40)$$

where $F = \frac{U_0}{fR_d}$ - Froude (\equiv Rossby) number.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Wiles - Howard criterion for stratified flows

Instabilities of shear flows and ets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic iet

Ageostrophic instabilities of jets

Translationally invariant instabilities

Inertial instbility Symmetric instability

Processing the linearised system

Difficulty : The linearised system has coefficients depending on y (even for constant U_i , H_i contain y).

Method :

1. Fourier-transform in "good" variables :

 $(u_j, v_j, \pi_j)(x, y, t) = (\hat{u}_j, \hat{v}_j, \hat{\pi}_j)(y)e^{i(kx-\omega t)} \rightarrow$

a system of linear first-order ordinary differential equations for $(\hat{u}_j, \hat{v}_j, \hat{\pi}_j)(y)$,

- 2. Discretisation of this system on a regular or, better, Chebyshev, grid (collocation).
- 3. Numerical solution of the resulting algebraic system for eigenvalues ω for each fixed *k*.

Result : eigenvalues ω and corresponding eigenfunctions $(\hat{u}_j, \hat{v}_j, \hat{\pi}_j)(y)$ as functions of $k \Rightarrow$ stability diagram for $\Re\omega(k)$ (dispersion relation) and $\Im\omega(k)$ (growth rate)

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

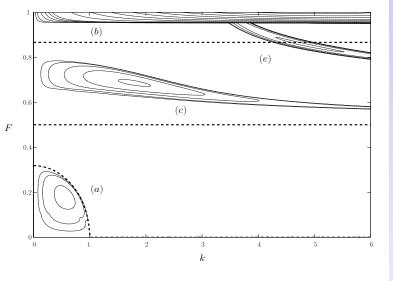
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Stability diagram in the F - k plane

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Miles - Howard criterion for stratified flows.

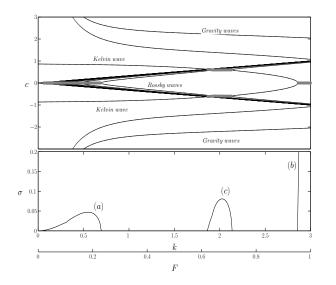
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Phase velocity (top) and growth rate bottom) of eigenmodes

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows

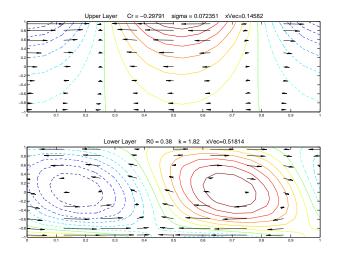
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Structure of the unstable Rossby-Kelvin mode

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Résumé

Co-existence of geostrophic and ageostrophic instabilities of the balanced flow :

- Classical geostrophic baroclinic instability : $Ro \rightarrow 0$ et $k \rightarrow 0$
- Strongly ageostrophic KH-type instability : Ro → ∞, all k
- New ageostrophic hybrid (Rossby-Kelvin) instability : Ro ~ 1

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Heuristic analysis of instabilities in the 2-layer model

Dispersion relations layerwise :

 $D_{1,2}(\omega, k) = 0$ – no coupling

Two curves close in the vicinity of a point k^* :

$$D_1(\omega^*, k^*) = 0, \ \ D_2(\omega^* + \delta, k^*) = 0, \ |\delta| << \omega^*.$$
 (42)

Weak coupling :

$$D_1(\omega, k)D_2(\omega, k) = \epsilon \tag{43}$$

At point k^* the eigenfrequencies become $\omega^* + \Delta$ and $\omega^* + \delta + \Delta$, $|\Delta| << \omega^*$.

(41)

Miles - Howard criterion for stratified flows.

Geophysical Fluid

Dvnamics

V Zeitlin - GFD

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet Baroclinic instability of a geostrophic jet Ageostrophic instabilities of jets

Translationally invariant instabilities

Inertial instbility Symmetric instability

Taylor series at point k^* :

$$\left[D_{1}(\omega^{*},k^{*})+\frac{\partial D_{1}}{\partial \omega}\Delta+\ldots\right]\left[D_{2}(\omega^{*},k^{*})+\frac{\partial D_{2}}{\partial \omega}(\delta+\Delta)+\ldots\right]$$
(44)

Quadratic equation for Δ :

$$\Delta^2 - \delta \Delta - \epsilon \left(\frac{\partial D_1}{\partial \omega}\right)^{-1} \left(\frac{\partial D_2}{\partial \omega}\right)^{-1} = 0.$$
 (45)

Instability : $Im(\Delta) \neq 0$:

• δ small enough and/or ϵ strong enough,

•
$$\epsilon \left(\frac{\partial D_1}{\partial \omega}\right)^{-1} \left(\frac{\partial D_2}{\partial \omega}\right)^{-1} < 0$$

2-layer systems : the waves should propagate in the opposite directions, with close absolute frequencies (resonance)

Geophysical Fluid Dynamics

V Zeitlin - GFD

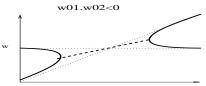
Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

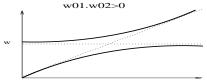
Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

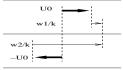

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet Baroclinic instability of a geostrophic jet Ageostrophic instabilities of jets


Translationallyinvariant instabilities

Inertial instbility Symmetric instability


Conditions of resonance



w1

w1

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

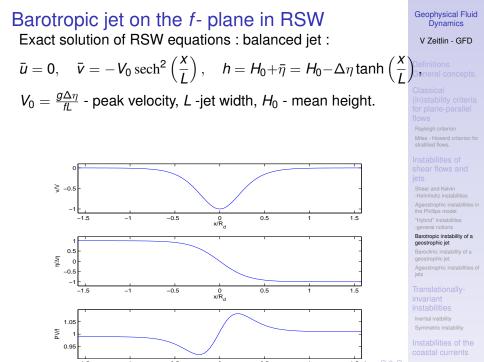
Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities


Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet Baroclinic instability of a geostrophic jet Ageostrophic instabilities o jets

Translationally invariant instabilities

Inertial instbility Symmetric instability

Non-dimensional linearised equations

Small perturbations :

$$u \to u, \ v \to \bar{v} + v, \ \eta \to \bar{\eta} + \eta$$

$$\begin{cases} Ro \left(\partial_t u + \bar{v} \partial_y u\right) - v + \partial_x \eta = 0, \\ Ro \left(\partial_t v + u \partial_x \bar{v} + \bar{v} \partial_y v\right) + u + \partial_y \eta = 0, \\ Ro \left(\partial_t \eta + \partial_x (u\bar{\eta}) + \bar{v} \partial_y \eta + \bar{\eta} \partial_y v\right) + Bu \left(\partial_x u + \partial_y v\right) = 0. \end{cases}$$
(46)

Here $Ro = \frac{V_0}{fL}$, $Bu = \frac{H_d^2}{L^2} = \frac{gH_0}{f^2L^2}$ and standard geostrophic scaling is used.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Reduction to a system of ODEs

Fourier-transform in stream-wise direction

$$(u, v, \eta) = (ik\hat{u}, \hat{v}, \hat{\eta}) \exp\{i(ky - \omega t)\} + \text{c.c.} \rightarrow 0$$

eigenvalue problem : $\mathcal{M}\boldsymbol{a} = \boldsymbol{c} \, \boldsymbol{a}$, with $\boldsymbol{a} = (\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}, \hat{\eta})$ and

$$\mathcal{M} = \begin{pmatrix} \bar{\mathbf{v}} & \frac{1}{Rok^2} & -\frac{1}{Rok^2}\partial_x \\ \frac{1}{Ro} + \partial_x \bar{\mathbf{v}} & \bar{\mathbf{v}} & 1 \\ (\partial_x \bar{\eta} + \bar{\eta}\partial_x) + \frac{Bu}{Ro}\partial_x & \bar{\eta} + \frac{Bu}{Ro} & \bar{\mathbf{v}} \end{pmatrix}.$$
(47)

Solution by discretisation using Chebyshev collocation method.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

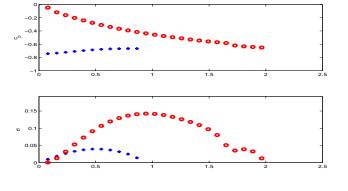
Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities -general notions


Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet Ageostrophic instabilities of jets

Translationally invariant instabilities

Inertial instbility Symmetric instability

Stability diagram for a geostrophic jet with Ro = 01, Bu = 10

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

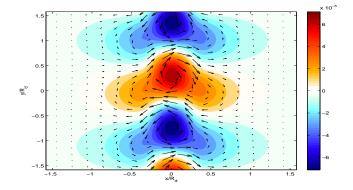
Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities general notions


Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

The most unstable mode

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

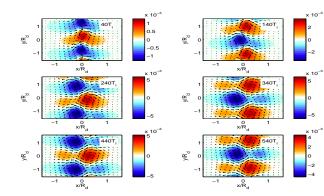
Rayleigh criterion Miles - Howard criterion fo

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities general notions


Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Evolution of the anomaly of H

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

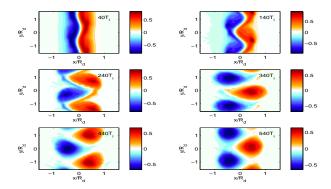
Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities general notions


Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Evolution of the relative vorticity : formation of secondary vortices

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Baroclinic Bickley jet

Upper-layer jet in geostrophic equilibrium on the *f*- plane - exact solution of the 2-layer RSW equations with a free surface : Profiles of velocity and geopotential :

$$\bar{u}_1 = 0, \quad \bar{\eta}_1 = \frac{1}{\alpha - 1} \tanh(y),$$

 $\bar{u}_2 = \operatorname{sech}^2(y), \quad \bar{\eta}_2 = \frac{-1}{\alpha - 1} \tanh(y).$

No deviation of the free surface : $\bar{\eta}_1 + \bar{\eta}_2 = 0$. Parametres : Ro = 0.1, Bu = 10 - typical for the atmospheric jets.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

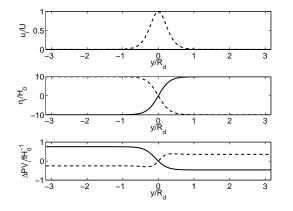
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationally invariant instabilities

Inertial instbility Symmetric instability

Upper-layer Bickley jet

Zonal velocity \bar{u}_i , deviation of thickness $\bar{\eta}_i$, PV anomaly. Lower (upper) layer : continuous (dashed).

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows

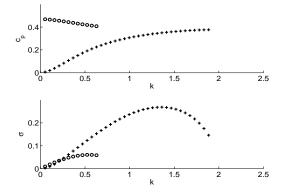
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Linear stability diagram

Phase velocity (top) and growth rate (bottom) of the unstable modes.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Hayleign criterion Miles - Howard criterion for stratified flows

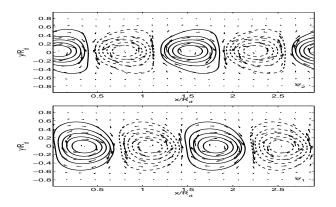
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationally invariant instabilities

Inertial instbility Symmetric instability

The most unstable mode :

The most unstable mode of the upper-layer Bickley jet. Geostrophic streamfunctions and velocities in the upper and lower layers.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows

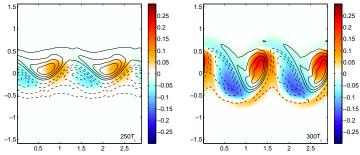
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Non-linear saturation

Relative vorticity in the lower (colours) and upper (contours) layers.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows Rayleigh criterion

Miles - Howard criterion for stratified flows.

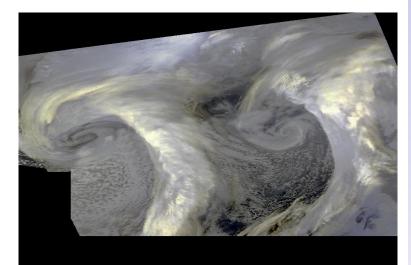
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationally invariant instabilities

Inertial instbility Symmetric instability

Baroclinic instability in Nature

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

nertial instbility Symmetric instability

Barotropic Bickley jet in 2-layer system

Jet in geostrophic equilibrium on the *f*- plane with the same velocity in both layers - another exact solution of the 2-layer RSW equations with the free surface.

$$\begin{cases} h_{1} = H_{1}(x) = H_{10} \\ h_{2} = H_{2}(x) = H_{20} + \delta \tanh\left(\frac{x}{L}\right) \end{cases}, \begin{cases} U_{1}(x) = U_{2}(x) = 0 \\ V_{1,2}(x) = V(x) \\ \frac{g\delta}{fL} \left(1 - \tanh^{2}\left(\frac{x}{L}\right)\right) \\ (48) \end{cases}$$

Parametres and scaling :

 $H_{10}, H_{20} = const, L \text{ and } \delta$ - width and intensity of the jet, $V_0 = \frac{g\delta}{fL}$ - max. velocity, $Bu = \frac{gH_0}{f^2L^2}, Ro = \frac{g\delta}{(fL)^2}, d = \frac{H_{20}}{H_{10}}, r$, $H_0 = H_{10} + H_{20}$. Scaling - standard geostrophic.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

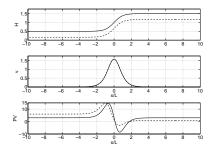
Rayleigh criterion Miles - Howard criterion for stratified flows.

nstabilities of hear flows and ets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Barotropic Bickley jet

Profiles of thickness, velocity, and PV of the jet as functions of x/L for $\frac{\delta}{L} = \sqrt{\frac{5}{2}}$; continuous : layer 1; dashed : layer 2.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows

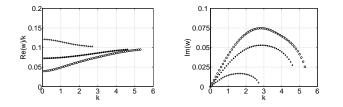
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Stability diagram of the barotropic jet at small *Ro*

Left : phase velocity $Re(\omega)/k$ as a function of k; *Right :* Growth rate $Im(\omega)$ as a function of k. Quasi-geostrophic jet : $H_0 = 1$, Bu = 10, Ro = 0.5, d = 2, r = 0.5.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion fo

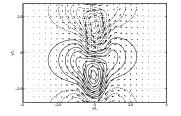
Instabilities of shear flows and jets

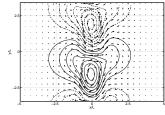
Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet


Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

2D structure of the most unstable mode

Left (Right) : upper (lower) layer. Layer-wise identical \Rightarrow barotropic instability.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion

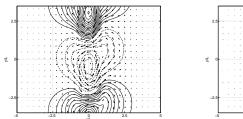
Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

2D structure of the most unstable mode on branch 2

Motions in the layers are opposite \rightarrow baroclinic instability

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion

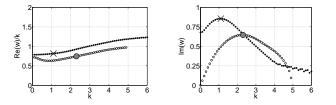
Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

nertial instbility Symmetric instability

Stability diagram of the barotropic jet at large *Ro*

Strongly ageostrophic jet : $H_0 = 1, Bu = 10, Ro = 5, d = 2, r = 0.5$. Non-zero limit of the growth rate at $k \rightarrow 0 \rightarrow$ symmetric instability (with respect to translations) \equiv inertial instability.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion fo

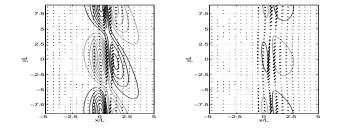
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationally invariant instabilities

Inertial instbility Symmetric instability

2D structure of the most unstable mode

Baroclinic, concentrated in the anticyclonic part of the jet.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Exercise :

- Write down the 2-layer RSW equations with a free surface
- Demonstrate that baroclinic and barotropic jet configurations considered above are exact solutions
- Linearise the equations about these solutions

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

2-layer RSW model with rigid lid in "1.5" dimensions ("symmetric", no dependence on *y*)

$$\partial_{t}u_{1} + u_{1}\partial_{x}u_{1} - fv_{1} + \rho_{1}^{-1}\partial_{x}\pi = 0, \quad (49a)$$

$$\partial_{t}v_{1} + u_{1}(f + \partial_{x}v_{1}) = 0, \quad (49b)$$

$$\partial_{t}u_{2} + u_{2}\partial_{x}u_{2} - fv_{2} + \rho_{2}^{-1}\partial_{x}\pi + g'\partial_{x}\eta = 0, \quad (49c)$$

$$\partial_{t}v_{2} + u_{2}(f + \partial_{x}v_{2}) = 0, \quad (49d)$$

$$\partial_{t}(H_{1} - \eta) + \partial_{x}((H_{1} - \eta)u_{1}) = 0, \quad (49e)$$

$$\partial_{t}(H_{2} + \eta) + \partial_{x}((H_{2} + \eta)u_{2}) = 0, \quad (49f)$$

where (u_1, v_1) , (u_2, v_2) are components of velocity in superior and inferior layers; π -barotropic pressure; η displacement of the interface, H_1 and H_2 - layers' thicknesses at rest; $H = H_1 + H_2 = const$, g' - reduced gravity: $g' = g(\rho_2 - \rho_1)/\rho_2$.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion fo

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model "Hybrid" instabilities -general notions Barotropic instability of a geostrophic jet Barotopic instability of a

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Exact solution : geostrophic equilibrium

$$V_{1g} = \frac{1}{f\rho_1} \partial_x \Pi_g ,$$

$$V_{2g} = \frac{1}{f\rho_2} \partial_x \Pi_g + \frac{g'}{f} \partial_x h_{2g} .$$

Non-dimensionalising (bar notation for non-dimensional variables) :

$$\bar{V}_{1g} = \partial_x \bar{\Pi}_g ,$$

$$\bar{V}_{2g} = r \,\partial_x \bar{\Pi}_g + Bu \,\partial_x \bar{h}_{2g} .$$
(51a)
(51b)

where $r = \frac{\rho_1}{\rho_2}$ and the Burger number : $Bu = \frac{g' H_2}{f^2 L^2}$.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

(50a)

(50b)

Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Linearisation :

$$\partial_t u_1 - v_1 + \partial_x \pi = 0 ,$$

$$\partial_t v_1 + u_1 (1 + \partial_x \bar{V}_{1g}) = 0 ,$$

$$\partial_t u_2 - v_2 + r \partial_x \pi + B u \partial_x \eta = 0 ,$$

$$\partial_t v_2 + u_2 (1 + \partial_x \bar{V}_{2g}) = 0 ,$$

$$\partial_t \eta - \partial_x (\bar{h}_{1g} u_1) = 0 ,$$

$$\partial_t \eta + \partial_x (\bar{h}_{2g} u_2) = 0 .$$

 π , η are non-dimensional perturbations of pressure and free surface with respect to the geostrophic balance (51a), (51b).

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion

(52a) (52b) (52c) (52d) (52e) (52e)

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model "Hybrid" instabilities -general notions Barotropic instability of a

Baroclinic instability of a

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Reduction to a single equation (bars omitted) : Constraint of rigid lid :

$$((H_1 - \eta)u_1) + ((H_2 + \eta)u_2) = HU_b(t).$$
 (53)

 U_b - barotropic velocity in *x*-direction. Absence of global mass flux in $x \Rightarrow U_b = 0$. New variable $U = h_{2g}u_2 = -h_{1g}u_1 \Rightarrow$ single equation :

$$Bu \partial_{xx}^{2} U - \left[\frac{rh_{2g} + h_{1g}}{h_{1g}h_{2g}} (\partial_{tt}^{2} + 1) + \frac{r \partial_{xx}^{2} \Pi_{g}}{h_{1g}h_{2g}} + Bu \frac{\partial_{xx}^{2} h_{2g}}{h_{2g}} \right] U = 0.$$
(54)

Trapped/unstable modes :

If the anti-cyclonic shear of the mean flow is sufficiently strong \Rightarrow sub-inertial trapped modes and symmetric instability.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Demonstration:

Fourier transformation : $U(x,t) = \int d\omega \tilde{U}(\omega, x) e^{-i\omega t} + c.c.$ Auxiliary functions :

$$F(x) = \frac{rh_{2g} + h_{1g}}{h_{1g}h_{2g}},$$

$$G(x) = \frac{r}{h_{1g}h_{2g}} + Bu \frac{\partial_{xx}h_{2g}}{h_{2g}}.$$

Equation for $\tilde{U}(\omega, x)$:

$$Bu \partial_{xx}^2 \tilde{U} - \left((1 - \omega^2) F(x) + G(x) \right) \tilde{U} = 0.$$
 (57)

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion

(55)

(56)

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model "Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet

geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Demonstration, continued :

Multiplication by \tilde{U}^* and integration in *x* supposing that the modes are localised :

$$\omega^2 = 1 + \frac{Bu \int |\partial_x \tilde{U}|^2 dx + \int G(x) |U|^2 dx}{\int F(x) |\tilde{U}|^2 dx} .$$

F is by definition positive, but *G* may be negative, particularly in the anticyclonic regions where $\partial_{xx}^2 \Pi_g < 0$ $\Rightarrow \exists \omega^2 < 1$, even $\omega^2 < 0 \Rightarrow$ instability.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

(58)

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Example : barotropic jet with $\eta = 0$.

Equation for U :

$$Bu \,\partial_{xx}^2 U - \left[\left(\partial_{tt}^2 + 1 \right) \, H_e^{-1} + r \partial_{xx}^2 \Pi_g \, \left(H_1 H_2 \right)^{-1} \right] \, U = 0 \, .$$
(59)

Solutions in the form $\tilde{U}e^{i\omega t} + c.c.$:

$$\partial_{xx}^{2}\tilde{U} + \frac{1}{Bu} \left[\omega^{2}H_{e}^{-1} - (H_{e}^{-1} + (H_{1}H_{2})^{-1}r\partial_{xx}^{2}\Pi_{g}) \right] \tilde{U} = 0.$$
(60)

where
$$H_e = \frac{H_1 H_2}{H_1 + H_2}$$
.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion fo

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

This is the Shrödinger equation of quantum mechanics :

$$\partial_{xx}^2 \psi + (E - V(x))\psi = 0 \tag{61}$$

for a particle with the energy

$${\sf E}=\omega^2({\it H_e}\,{\it Bu})^{-1}$$

moving in the potential

$$V(x) = Bu^{-1} (H_e^{-1} + (H_1 H_2)^{-1} r \partial_{xx}^2 \Pi_g).$$

Potential well sufficiently deep (anti-cyclonic shear sufficiently strong) \Rightarrow trapped modes. Well even deeper \Rightarrow eigenvalues $< -1 \Rightarrow \omega^2 < 0 \Rightarrow$ symmetric (inertial) instability.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities

the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Ageostrophic Eady model Zonally symmetric non-hydrostatic primitive equations on the *f*- plane

$$(\partial_t + v\partial_y + w\partial_z) u - fv = 0$$

$$(\partial_t + v\partial_y + w\partial_z) v + fu + \partial_y \phi = 0$$

$$(\partial_t + v\partial_y + w\partial_z) b = 0$$

$$(\partial_t + v\partial_y + w\partial_z) w - b + \partial_z \phi = 0$$

$$\partial_y v + \partial_z w = 0.$$
 (62)

$$b = -g \frac{\rho}{\rho_0}$$
 - buoyancy.
Exact solution - zonal thermal wind with linear vertical shear :

$$\overline{v} = \overline{w} = 0, \quad \overline{u} = -\frac{M^2}{f}z, \quad \overline{b} = M^2 y + N^2 z$$
 (63)

Brunt - Väisälä frequency N^2 is constant, as well as M^2

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities Inertial instbility Symmetric instability

Scaling and inearisation

Scaling

Vertical scale *H*, horizontal scale *L*, time-scale $T \sim f^{-1}$, horizontal and vertical velocity scales, *U* and *W*, such that $\frac{H}{L} \sim \frac{W}{U}$. The natural horizontal velocity scale in the Eady model is $U \sim \frac{M^2H}{f}$, the natural geopotential scale is $\Phi \sim N^2 H^2$, and the natural buoyancy scale is $B \sim N^2 H$.

Non-dimensional parameters

- Aspect ratio $\delta = \frac{H}{L}$,
- Rossby number $Ro = \frac{M^2}{f^2}\delta$,
- Richardson number $Ri = \frac{f^2 N^2}{M^4}$,

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities Inertial instbility Symmetric instability

Linearisation

Linearisation about (63) :

$$\partial_t u - Ro w - v = 0$$

$$\partial_t v + u + Ri Ro \partial_y \phi = 0$$

 $Ri \partial_t b + v + Ri Ro w = 0$

$$\delta^2 \partial_t w - Ri Ro b + Ri Ro \partial_z \phi = 0$$

$$\partial_y v + \partial_z w = 0.$$

Streamfunction :

$$\mathbf{v} = \partial_{\mathbf{z}} \psi, \quad \mathbf{w} = -\partial_{\mathbf{y}} \psi,$$

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

"Hybrid" instabilities -general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities Inertial instbility Symmetric instability

Instabilities of the coastal currents

(64)

Reduction to a single equation, Fourier-transform and dispersion relation

Elimination of *b* and *u* :

$$\partial_t^2 \left(\delta^2 \partial_{yy}^2 \psi + \partial_{zz}^2 \psi \right) + \partial_{zz}^2 \psi - 2Ro \partial_{yz}^2 \psi + RiRo^2 \partial_{yy}^2 \psi = 0.$$
(65)

Normal-mode solutions : $\psi \propto e^{i(ly+mz)+\sigma t}$. Real and positive σ correspond to unstable modes. Dispersion relation :

$$\sigma = \pm \sqrt{\frac{2Ro\,\alpha - RiRo^2\alpha^2 - 1}{1 + \delta^2\alpha^2}},\tag{66}$$

where $\alpha = \frac{1}{m}$ is the slope of the wave-vector of the eigenmodes in the y - z plane.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion fo

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model "Hybrid" instabilities -general notions Beostensis instability of a

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet Ageostrophic instabilities of

jets

Translationallyinvariant instabilities Inertial instbility

Symmetric instability

Analysis of the dispersion relation

Ri is positive-definite \rightarrow numerator of the square root in (66) represents a downward oriented quadratic parabola, in terms of *Ro* α . The parabola extends to the upper half-plane, and hence corresponds to instability, only in the limited range of *Ro* α :

$$\frac{1-\sqrt{1-Ri}}{Ri} < Ro\,\alpha < \frac{1+\sqrt{1-Ri}}{Ri}.$$
 (67)

Instability exists at Ri < 1 for any Ro, with a well-defined maximum of the growth rate and the most unstable mode corresponding to $Ro \alpha = 1/Ri$. Orientation of the unstable wavenumbers is correlated with the sign of Ro(i.e. with the sign of horizontal relative vorticity of the background flow : anticyclonic for positive M^2 , and cyclonic for negative M^2). Non-hydrostatic effects, when $\delta \neq 0$, diminish the hydrostatic growth rate.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

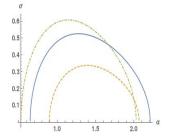
Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions


Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities Inertial instbility Symmetric instability

Stability diagram

Non-dissipative non-hydrostatic growth rates as functions of $Ro \alpha$ (blue solid) $\frac{\delta^2}{Bo} = 0.3$, Ri = 0.7.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Rhilling model

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities Inertial instbility

Symmetric instability

Exercise

- Derive equation (65)
- Introduce viscous terms in the equations (62) and analyse how they affect the instability.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

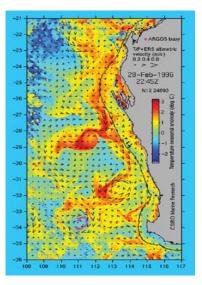
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

"Hybrid" instabilities

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet


Ageostrophic instabilities of jets

Translationallyinvariant instabilities Inertial instbility

Symmetric instability

Instability of a coastal current

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

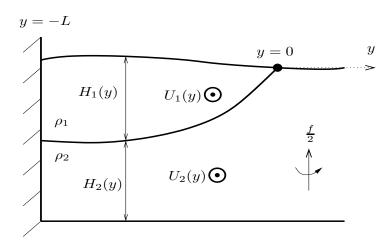
Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

the Phillips model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Idealised configuration of the coastal current

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion

Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

"Hybrid" instabilities

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

RSW equations with a coast and outcropping (layer 2 passive $H_2 \rightarrow \infty$)

Equations of motion :

$$u_{t} + uu_{x} + vu_{y} - fv + gH_{x} = 0,$$

$$v_{t} + uv_{x} + vv_{y} + fu + gH_{y} = 0,$$

$$H_{t} + (Hu)_{x} + (Hv)_{y} = 0.$$

(68)

Boundary conditions :

$$H(x, y, t) = 0, \quad D_t Y_0 = v \qquad y = Y_0 ,$$
 (69)

where $Y_0(x, t)$ is the position of the free streamline, D_t -Lagrangian derivative.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion fe

Instabilities of shear flows and jets

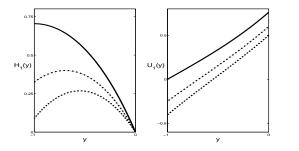
Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model "Hybrid" instabilities

general notions

geostrophic instability of a

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets


Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Flows in geostrophic equilibrium : u = U(y), v = 0, and H = H(y),

$$U(y) = -rac{g}{f}H_y(y)$$

- stationary exact solution .

Examples of profiles of depth (left) and velocity (right) for currents with constant PV, $U_0 = -sinh(-1)/cosh(-1)$ (bold), $U_0 = 1/2$ (dashed).

Geophysical Fluid Dynamics

V Zeitlin - GFD

efinitions. eneral concepts.

(70)

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Linearised non-dimensional system :

$$u_{t} + Uu_{x} + vU_{y} - v = -h_{x}, v_{t} + Uv_{x} + u = -h_{y}, h_{t} + Uh_{x} = -(Hu_{x} + (Hv)_{y}).$$
(71)

linearised b.c. :

1

$$Y_0 = -\frac{h}{H_y}\Big|_{y=0},$$

• continuity equation evaluated at y = 0.

The only constraint is regularity of solutions at y = 0.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

'Hybrid" instabilities general notions

(72)

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

PV of the mean flow :

$$Q(y)=\frac{1-U_y}{H(y)},$$

Geostrophic equilibrium \Rightarrow

$$H_{yy}(y) - Q(y)H(y) + 1 = 0, \text{ with } \begin{cases} H(0) = 0\\ H_y(0) = -U_0, \end{cases}$$
(74)

 $U(0) = U_0$ is the current velocity at the front.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

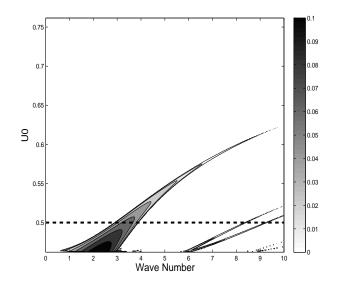
(73)

Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Phillips model

'Hybrid" instabilities general notions


Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Stability diagram in the plane $\left(\frac{U_0}{fL}, k\right)$ for a current with constant PV. Values of the growth rate - right bar.

Geophysical Fluid Dynamics

V Zeitlin - GFD

efinitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion fe

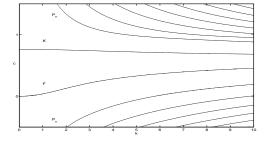
stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Dispersion diagramd : stable current

Dispersion diagram for $U_0 = -sinh(-1)/cosh(-1)$ et $Q_0 = 1$.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

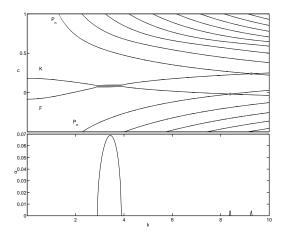
Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

the Phillips model "Hybrid" instabilities

Barotropic instability of a


Baroclinic instability of a

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Dispersion diagram : unstable current

Dispersion diagram for $U_0 = 0.5$ and $Q_0 = 1$. Crossings of the dispersion curves on top correspond to instability zones at the bottom.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

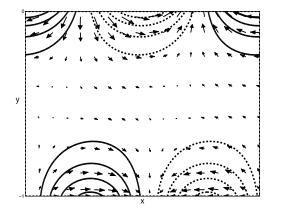
Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Rhilling model

'Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

The most unstable mode : resonance Kelvin wave-Frontal wave

Anomalies of the thickness and velocity for the unstable mode k = 3.5.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

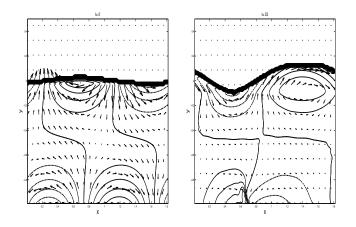
Rayleigh criterion Miles - Howard criterion for stratified flows

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

"Hybrid" instabilities

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Saturation of the instability : initial stage

Depth and velocity of the perturbation at t = 0 (left) and t = 30 (right). Kelvin front is visible on the right.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

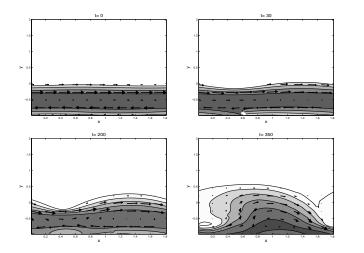
Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in the Rhilling model

Hybrid" instabilities general notions

Barotropic instability of a geostrophic jet


Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Saturation of the instability

Evolution of PV : *t* = 0, *t* = 30, *t* = 200, *t* = 350.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities in

the Phillips model

general notions

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

Exercise

- Obtain the equations (71) et (72)
- Starting from (74) obtain the profiles of the costal currents with constant PV

Geophysical Fluid Dynamics

V Zeitlin - GFD

Definitions. General concepts.

Classical (in)stability criteria for plane-parallel flows

Rayleigh criterion Miles - Howard criterion for stratified flows.

Instabilities of shear flows and jets

Shear and Kelvin -Helmholtz instabilities Ageostrophic instabilities ir

"Hybrid" instabilities

Barotropic instability of a geostrophic jet

Baroclinic instability of a geostrophic jet

Ageostrophic instabilities of jets

Translationallyinvariant instabilities

Inertial instbility Symmetric instability

