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Vortex solutions in 1-layer RSW e

RSW in polar coordinates (r, #) in terms of radial and V eitin - GFD
azimuthal components of velocity v = uf + v 6

Barotropic instability of

2 vortices
d‘; - V7 ~fv=—gdh,
v uv 1
A4 — _gs 1
R + fi gragh, (1)

1 1
oth + 78r(hru) + 789(hv) =0.
where & = 0; + ud, + L.
Any axisymmetric flow with velocity u =0, v = V(r) and
thickness h = H(r) in cyclo-geostrophic equilibrium

<‘r/ + f) V = go,H 2)

is an exact solution. Isolated vortex : zero circulation at
infinity.



Scaling and vortex profile

Scaling :

v/ gH,
v/ gHy for velocity, Ry = gf % for r, and 1/f for time,

where Hj is the non-perturbed thickness of the layer.
Non-dimensional variables denoted by *.

Example of vortex profile
Alpha-Gaussian isolated vortices :

o (=r°+1)
V*(r) = ter*2e 2 , a>1. (3)

Positive sign - cyclones, negative sign - anticyclones. The
corresponding profile of H(r*) is given by the primitive of
the L.h.s. of (2) calculated with (3). Parameters o and ¢
control the steepness of the azimuthal velocity profile and
the amplitude of the velocity, respectively.
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Linearised system Gacphy sl il
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Small perturbation of the axisymmetric background flow :

Bar tp instability of
vvvvvvv

u'(r,0,t),
V(r)+v/(r.0,1), (4)

u(r,o,t)
{ v(r,0,t) ,0,
h(r,0,t) = H(r)+ H(r,0,1).

Linearised non-dimensional equations :

2V

v*
O + O )u = (1 — V" = =0p1y",
v* v* 1
(8r* V¥ 41+ F) (81* + Fag*)v* = —Fag*n*,

Vv 1 1
(at* + Fae*)n* + H*ar* + (Far*r*H*) ut+ FH*QO* v =0.
(5)



Linear stability problem

Normal-mode solutions : harmonic dependence on time
and polar angle

(U™, v, 0*)(r*, 6%, ) = Rel(iti, 7, 7)(r")e" ~], (6)

where /and w are azimuthal wavenumber and frequency.
Resulting eigen-problem :

% 2V*
* (1 + * ) _Dr* 7
v+’ vt I u
(1+F+Dr*v*) lr:; 5 X 4 = w
* * 77
H*Dr* + lDr*(r*H*) / /

(7)
Solved numerically by pseudo-spectral collocation
method, D, Chebyshev differentiation. Complex
eigenvalues w = wy + iw; with (w; > 0) < instabilities with
linear growth rate o = wy.
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Most unstable mode of a localised cyclone CEeL R

1 4 V Zeitlin - GFD
— Real Part 0.3
2 ——- Imaginary Part
4 ; : I
0 1 2 3 4 5 6 2 e
0.1 Barotropic instability of
1 T vortices
R = e 0 0
4 ; i i ; H ;
0 1 2 3 4 5 6 0.1
-2
: 0.2
Fo SIEE
r [ i -0.3
0 1 2 3 4 5 6 -4
¢ -4 -2 0 2 4
0.15 T T T 0.4 11 T
— Veloclty Profile ) + Chebyshev Grid
= Vorticity i
Y 105 Hir
2 02 1
s >
T 2 =
> 2 o /
il S g
9 > F
2o 09"
0.85
" ] o | i i i
N : 0 1 2 3 4 5 6
r
:

Upper left - radial profile (u, v,n)(r), of the unstable

P . 1



Nonlinear evolution of the geostrophic
instability with / = 2

Evolution of PV anomaly of the cyclonic vortex with
a =4, e¢=0.1061 with superimposed unstable mode with
azimuthal wavenumber / = 2.
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2-layer RSW in polar coordinates and vortex

solutions
aV,'
a&t
ﬁ+v-(h-v-)—o i=1,2
8t vir) — ) - 9 .

(8)

v; = (uj, v;) is velocity in layer i counted from the top, h; is
thickness of the layer i, s = py1/p2 < 1, d = Hy/H», and H;

- thickness of the layer i at rest. Scaling is the same as in
the one-layer case, with Hy = H; + Ho.

Stationary solutions (non-dimensional, same scaling as
before) : cyclo-geostrophic equilibria layer-wise :

V. .
V(Y1) = ottt =12 (@)

Below an upper layer vortex with quiescent lower layer
will be considered.

—+v'Vv,-+(H%)%/\VWQV(SHM +h2) =0,
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Baroclinic instability of
vortices

O+ Y ) uj — (1 + 2%) Vi + 0r(s" T +1m2) = 0,
O+ L0y ) vi + (1 + %40 Vi) Ui+ 19p(s" 'y +12) = 0,
Ot + %8@ ni + [H,'ar—l— M} ui + %8@% =0,i=1,2.
(10)
Solutions, as above, are sought in the harmonic form :
(u;, vi,ni)(r, 0, t) = (id;, Vi, 5;)(r)€'0=<1, where I is the
discrete azimuthal wavenumber.



Instability of an upper-layer cyclone
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Most unstable mode of an upper-layer cyclone with
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a=4, Hy/H; =06,/=2,¢6=0.08,s=1.37.Top : left

(right) - pressure and velocity, upper (lower) layer.
Bottom : left - H;(r), right - radial structure of the mode.
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Nonlinear saturation of the / = 3 mode

“Time.=g0 . i Time.= 150 .
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Evolution of PV anomaly (top) and pressure and velocity
(bottom) during the saturation of the baroclinic instability
with most unstable mode / = 3.
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Integral estimate for azimuthally symmetric e
trapped modes V Zeitlin - GFD

Azimuthally symmetric system (10) is reduced, by
elimination of variables, to

-~ uy @ rHyuqy + rH>us -
(-4 @) <u2> = ( r <rsH1 Uy + rHs u2>> SRUEN

Here & = 2L,(,/r?, La=r?/2 +rV and
(,=1+0,(rV)/r - non-dimensional absolute angular
momentum density and vorticity of the vortex.

Integral estimate for trapped modes :

_ HagUs|?
> [ @ Heglup|?dr J Dar(""equb)\2 + %] dr

1—s
fHeq’Ub|2dr ( ) fHeq‘Uder
f Hequzgar (7&“’;’1 uB)) ar 15
_ HiuitHu, Hi Ho

Up HiLtH, Up = Uy — Uz, Heq —~ H, IH; "
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» The sign of ® defines the sign of the first term in the

r.h.s. of this relation
» The second term is positive-definite. JUS—
» The third term is not sign-definite, but it is the only

one containing the barotropic velocity ug, and thus

vanishes for purely baroclinic modes

Hence, we infer that for sufficiently large negative values
of ® there exist trapped baroclinic modes with imaginary
eigenfrequencies. = classical Rayleigh criterion for the
centrifugal instability :

ZaZa < 07

where the last product is called Rayleigh discriminant.



Exercise e
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Ageostrophic centrifugal

» Obtain the expression for absolute angular
momentum density L, = r?/2 + rV from the
definition of angular momentum

» Obtain (11) from the axisymmetric version of
primitive equations in polar coordinates

» Derive (12)



Tropical cyclone - essentially ageostrophic
vortex
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Hydrodynamic characteristics of TC

» Radius of max wind (RMW) : 20 — 50km

» Max velocity Vipax : 40 —60m/s

» Typical value of f (at 20°N) : 5-10°

» Relative vorticity ¢ : up to 1007, typical Rossby
numbers : 10 — 40

» Vertical wind distribution : ~ barotropic

» Barotropic Froude number :

— Vmax _ — —1
Fr = Y = Ro/v/Bu = 0(107")

» Radial wind profile : U-shape in the core, decreasing
as 1/r in the outer region — =~ constant vorticity core
surrounded by higher vorticity ring, zero vorticity in
the outer region.
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Typical category 3 cyclone’s profile : RSW e
modeling V Zeitlin - GFD

Instabilities of tropical
cyclones

aaaaaa

Left panel : azimuthal velocity and thickness (dashed).
Right panel : relative vorticity. Parameters : ratio of
relative vorticities ring/core & = 105/7, Rojoc = = 105,
Ro = Vpmax/fL =32, Fr = 0.3.



The most unstable mode
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Ageostrophic barotropic instability



Evolution of the unstable mode and formation

of secondary mesovortices
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Mesovortices as observed in the hurricane
Isabel
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Preliminaries : 1-layer RSW in the rotating
annulus

RSW in cylindrical geometry, annulus r{ < r < r:

Du—(f+$)v = —gorh,
Dv+(f+¥u = —99h, (13)
Dh+ h(o,u+ 0pv/r+ujr) = 0.

B.c.:free-slip:u=0atr=ry,ra; D=0+ udr + 70p.
Exact solution : cyclo-geostrophic equilibrium with profiles
of the thickness and velocity H(r), V(r) :

V2
v + — = gorH. (14)
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Linearisation S
V Zeitlin - GFD
ou+ Yopu—v—-2% = —Buoh,
orv + uoyV + %89V + U+ # = —Bua%h ) (1 5) Instabilities in the
(%h + %(rHU)r + %Hagv + ¥8gh =0 5 l;(tigﬁ:ﬁ;yms with
2-layer fluids

where Bu = (Ry/ry)? is the Burger number,

Ry = (gHo)%/(Qro) is the deformation radius, rp = r> — ry.
Solution — eigenmodes and eigenvalues (dispersion
diagram).
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Dispersion diagram by
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. o) Instabilties in the
= = laboratory
o (D | experiments with
L 2-layer fluids

Dispersion diagram ¢ = c(k). (a) Poincaré modes, (b)
and (d) Kelvin modes, (c) Rossby modes. Fast Poincaré
and Kelvin modes are separated from the slow Rossby
modes ; only the values k € N correspond to realisable
solutions.



Kelvin modes e
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Pressure and velocity for the Kelvin modes propagating
along the exterior (left) and interior (right) walls with

k = 2. These modes correspond to (b) and (d),
respectively.



Rossby and Poincaré modes e
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Pressure and velocity of the Rossby (left) and Poincaré
(right) modes with n =1 and k = 2. These modes
correspond to (c) and (a), respectively.



Exercise

» Consider a parabolic profile of H(r) in (47), find the
corresponding profile of V/(r),

» Reducee the equations (47) to a single differential
equation for the propagating wave solutions
x e'@t=) ‘solve it and find the structure in r of
different types of waves
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2-layer RSW in the annulus with a rigid lid

DjUj—(f+%)\/j = —8rn/' ,
Dyv; + (f + 2)u; —100N;,  (16)
Djhj+hj(8,u,-+89vj/r+ Uj/l’) = 0,

M; - geopotentials, D; - Lagrangian derivative per layer.
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Linearisation about a stationary state with
constant azimuthal velocities Vi # Vs

OrU; + Logu; — “:,Vf = —Budj,
Otv,+u,8rV+V89v,+u,+ . ~Bu™™

8th + ,(rHU/)r"’ ,,Hag\/j—i- ragh 0,

(17)
Pressure perturbations 7; are coupled via perturbation of
the interface :

T — 7 + S(m2 +m) = Bun, (18)
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Baroclinic instability : RR resonance P
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Phase speed

Instabilities in the
laboratory
experiments with
2-layer fluids

Dispersion iagram (top) and growth rates (bottom) for
Ro =0.15and F =2.75 . Yellow line marks the RR
resonance and instability.



Baroclinic instability : unstable mode o ymamcs
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Structure of the unstable mode with k = 2, pressure and
velocity in the superior (left) and inferior (right). Solid -
positive values , dashed - negative values . Note the
balanced character of the mode.



Baroclinic instability : deviation of the
interface
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Rossby-Kelvin instability : RK resonance P
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Phase speed

Dispersion diagram (top) and growth rates (bottom) at
Ro =1.9and F = 0.1. Yellow lines mark the RK et RP
resonances and respective instabilities .
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Growth Rate
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Structure of the unstable RK mode at k = 5, pressure
and velocity in the superior (left) and inferieor (right).
Solid - positive values , dashed - negative values.



Rossby-Kelvin Instabiliti : deviation of the
interface
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Scheme of the classical experiments with
gravity currents on the rotating turntable
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Comparison theory/experiment o ymamcs
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Deviation of the interface for the most unstable mode, as
follows from the linear stability analysisin 2-layer RSW
(left), and development of the instability in the experiment
by Griffiths and Linden (1982)
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