Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

Chapter 5. Instabilities in Geophysical Flows. Part 2. Circular flows

V. Zeitlin

Cours GFD M2 MOCIS

・ロト・西ト・山田・山田・山下

Plan

Instabilities of vortices

Barotropic instability of vortices Baroclinic instability of vortices Ageostrophic centrifugal instability Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

Geophysical Fluid Dynamics

V Zeitlin - GFD

nstabilities of /ortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

・ロト・四ト・ヨト・ヨー もくの

Vortex solutions in 1-layer RSW

RSW in polar coordinates (r, θ) in terms of radial and azimuthal components of velocity $\mathbf{v} = u \hat{r} + v \hat{\theta}$

$$\begin{cases} \frac{du}{dt} - \frac{v^2}{r} - fv = -g\partial_r h, \\ \frac{dv}{dt} + \frac{uv}{r} + fu = -g\frac{1}{r}\partial_\theta h, \\ \partial_t h + \frac{1}{r}\partial_r(hru) + \frac{1}{r}\partial_\theta(hv) = 0. \end{cases}$$
(1)

where $\frac{d}{dt} = \partial_t + u\partial_r + \frac{v}{r}\partial_{\theta}$. Any axisymmetric flow with velocity u = 0, v = V(r) and thickness h = H(r) in cyclo-geostrophic equilibrium

$$\left(\frac{V}{r}+f\right)V=g\partial_r H \tag{2}$$

is an exact solution. Isolated vortex : zero circulation at infinity.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal nstability

nstabilities of tropical cyclones

Scaling and vortex profile

Scaling :

 $\sqrt{gH_0}$ for velocity, $R_d = \frac{\sqrt{gH_0}}{f}$ for *r*, and 1/f for time, where H_0 is the non-perturbed thickness of the layer. Non-dimensional variables denoted by *.

Example of vortex profile

Alpha-Gaussian isolated vortices :

$$V^*(r^*) = \pm \epsilon r^* \frac{\alpha}{2} e^{\frac{(-r^{*\alpha}+1)}{2}}, \quad \alpha \ge 1.$$
 (3)

Positive sign - cyclones, negative sign - anticyclones. The corresponding profile of $H(r^*)$ is given by the primitive of the l.h.s. of (2) calculated with (3). Parameters α and ϵ control the steepness of the azimuthal velocity profile and the amplitude of the velocity, respectively.

Geophysical Fluid Dynamics

V Zeitlin - GFD

instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

nstabilities of tropical cyclones

Linearised system

Small perturbation of the axisymmetric background flow :

$$\begin{cases} u(r,\theta,t) = u'(r,\theta,t), \\ v(r,\theta,t) = V(r) + v'(r,\theta,t), \\ h(r,\theta,t) = H(r) + h'(r,\theta,t). \end{cases}$$

Linearised non-dimensional equations :

$$\begin{cases} (\partial_{t^{*}} + \frac{V^{*}}{r^{*}} \partial_{\theta^{*}}) u^{*} - (1 + \frac{2V^{*}}{r^{*}}) v^{*} = -\partial_{r^{*}} \eta^{*}, \\ (\partial_{r^{*}} V^{*} + 1 + \frac{V^{*}}{r^{*}}) u^{*} + (\partial_{t^{*}} + \frac{V^{*}}{r^{*}} \partial_{\theta^{*}}) v^{*} = -\frac{1}{r^{*}} \partial_{\theta^{*}} \eta^{*}, \\ (\partial_{t^{*}} + \frac{V^{*}}{r^{*}} \partial_{\theta^{*}}) \eta^{*} + \left[H^{*} \partial_{r^{*}} + (\frac{1}{r^{*}} \partial_{r^{*}} r^{*} H^{*}) \right] u^{*} + \frac{1}{r^{*}} H^{*} \partial_{\theta^{*}} v^{*} = 0. \end{cases}$$

$$\tag{5}$$

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal nstability

Instabilities of tropical cyclones

(4)

Instabilities in the laboratory experiments with 2-layer fluids

・ロト・西ト・モート ヨー うへの

Linear stability problem

Normal-mode solutions : harmonic dependence on time and polar angle

$$(\boldsymbol{u}^*, \boldsymbol{v}^*, \boldsymbol{\eta}^*)(\boldsymbol{r}^*, \boldsymbol{\theta}^*, \boldsymbol{t}^*) = \boldsymbol{R}\boldsymbol{e}[(i\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{v}}, \tilde{\boldsymbol{\eta}})(\boldsymbol{r}^*)\boldsymbol{e}^{i(l\boldsymbol{\theta}^* - \omega\boldsymbol{t}^*)}], \quad (6)$$

where I and ω are azimuthal wavenumber and frequency. Resulting eigen-problem :

$$\begin{bmatrix} \frac{lV^{*}}{r^{*}} & (1+\frac{2V^{*}}{r^{*}}) & -D_{r^{*}}\\ (1+\frac{V^{*}r^{*}}{r^{*}}+D_{r^{*}}V^{*}) & \frac{lV^{*}}{r^{*}} & \frac{l}{r^{*}}\\ H^{*}D_{r^{*}}+\frac{1}{r^{*}}D_{r^{*}}(r^{*}H^{*}) & \frac{lH^{*}}{r^{*}} & \frac{lV^{*}}{r^{*}} \end{bmatrix} \times \begin{bmatrix} \tilde{u}\\ \tilde{v}\\ \tilde{\eta} \end{bmatrix} = \omega \begin{bmatrix} \tilde{u}\\ \tilde{v}\\ \tilde{\eta} \end{bmatrix}$$
(7)

Solved numerically by pseudo-spectral collocation method, D_{r^*} Chebyshev differentiation. Complex eigenvalues $\omega = \omega_r + i\omega_I$ with $(\omega_I > 0) \Leftrightarrow$ instabilities with linear growth rate $\sigma = \omega_I$. Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of ortices

Ageostrophic centrifugal nstability

nstabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − のへぐ

Most unstable mode of a localised cyclone

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

cyclones

Nonlinear evolution of the geostrophic instability with l = 2

Evolution of PV anomaly of the cyclonic vortex with $\alpha = 4, \epsilon = 0.1061$ with superimposed unstable mode with azimuthal wavenumber l = 2.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability Instabilities of tropical

cyclones

2-layer RSW in polar coordinates and vortex solutions

$$\begin{cases} \frac{\partial \boldsymbol{v}_i}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v}_i + \left(f + \frac{v_i}{r}\right) \hat{\boldsymbol{z}} \wedge \boldsymbol{v}_i + g \nabla (s^{i-1}h_1 + h_2) = 0, \\ \frac{\partial h_i}{\partial t} + \nabla \cdot (h_i \boldsymbol{v}_i) = 0, \quad i = 1, 2. \end{cases}$$
(8)

 $\mathbf{v}_i = (u_i, v_i)$ is velocity in layer *i* counted from the top, h_i is thickness of the layer *i*, $\mathbf{s} = \rho_1/\rho_2 < 1$, $d = H_1/H_2$, and H_i - thickness of the layer *i* at rest. Scaling is the same as in the one-layer case, with $H_0 = H_1 + H_2$. Stationary solutions (non-dimensional, same scaling as before) : cyclo-geostrophic equilibria layer-wise :

$$V_i\left(\frac{V_i}{r}+1\right) = -\partial_r(s^{i-1}H_1+H_2), \quad i=1,2.$$
 (9)

Below an upper layer vortex with quiescent lower layer will be considered.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability Instabilities of tropical cyclones

Linearised system

Geophysical Fluid Dynamics

V Zeitlin - GFD

nstabilities of /ortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability Instabilities of tropical cyclones

Instabilities in the aboratory experiments with 2-layer fluids

$$\begin{cases} \left(\partial_{t} + \frac{V_{i}}{r}\partial_{\theta}\right)u_{i} - \left(1 + 2\frac{V_{i}}{r}\right)v_{i} + \partial_{r}(s^{i-1}\eta_{1} + \eta_{2}) = 0, \\ \left(\partial_{t} + \frac{V_{i}}{r}\partial_{\theta}\right)v_{i} + \left(1 + \frac{V_{i}}{r} + \partial_{r}V_{i}\right)u_{i} + \frac{1}{r}\partial_{\theta}(s^{i-1}\eta_{1} + \eta_{2}) = 0, \\ \left(\partial_{t} + \frac{V_{i}}{r}\partial_{\theta}\right)\eta_{i} + \left[H_{i}\partial_{r} + \frac{\partial_{r}(rH_{i})}{r}\right]u_{i} + \frac{H_{i}}{r}\partial_{\theta}v_{i} = 0, i = 1, 2. \end{cases}$$

$$(10)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Solutions, as above, are sought in the harmonic form : $(u_i, v_i, \eta_i)(r, \theta, t) = (i\tilde{u}_i, \tilde{v}_i, \tilde{\eta}_i)(r)e^{i(l\theta - \omega t)}$, where *I* is the discrete azimuthal wavenumber.

Instability of an upper-layer cyclone

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

Most unstable mode of an upper-layer cyclone with $\alpha = 4$, $H_2/H_1 = 0.6$, l = 2, $\epsilon = 0.08$, s = 1.37. Top : *left (right)* - pressure and velocity, upper (lower) layer. Bottom : *left* - $H_i(r)$, *right* - radial structure of the mode.

Nonlinear saturation of the I = 3 mode

Evolution of PV anomaly (top) and pressure and velocity (bottom) during the saturation of the baroclinic instability with most unstable mode I = 3.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability Instabilities of tropical cyclones

Integral estimate for azimuthally symmetric trapped modes

Azimuthally symmetric system (10) is reduced, by elimination of variables, to

$$(-\omega^{2} + \overline{\Phi}) \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix} = \partial_{r} \left(\frac{\partial_{r}}{r} \begin{pmatrix} rH_{1}u_{1} + rH_{2}u_{2} \\ rsH_{1}u_{1} + rH_{2}u_{2} \end{pmatrix} \right). \quad (11)$$

Here $\overline{\Phi} = 2\overline{L}_a\overline{\zeta}_a/r^2$, $\overline{L}_a = r^2/2 + rV$ and $\overline{\zeta}_a = 1 + \partial_r(rV)/r$ - non-dimensional absolute angular momentum density and vorticity of the vortex. Integral estimate for trapped modes :

$\omega^{2} = \frac{\int \overline{\Phi} \cdot H_{eq} |u_{b}|^{2} dr}{\int H_{eq} |u_{b}|^{2} dr} + (1-s) \left[\frac{\int \left[|\partial_{r}(H_{eq} u_{b})|^{2} + \frac{|H_{eq} u_{b}|^{2}}{4r^{2}} \right] dr}{\int H_{eq} |u_{b}|^{2} dr} - \frac{\int H_{eq} u_{b}^{*} \partial_{r} \left(\frac{\partial_{r}(rH_{1} u_{b})}{r} \right) dr}{\int H_{eq} |u_{b}|^{2} dr} \right].$ (12)

$$u_B = \frac{H_1 u_1 + H_2 u_2}{H_1 + H_2}, \ u_b = u_1 - u_2, \ H_{eq} = \frac{H_1 H_2}{H_1 + H_2}$$

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Qualitative analysis of the integral estimate

- ► The sign of Φ defines the sign of the first term in the r.h.s. of this relation
- The second term is positive-definite.
- The third term is not sign-definite, but it is the only one containing the barotropic velocity u_B, and thus vanishes for purely baroclinic modes

Hence, we infer that for sufficiently large negative values of $\overline{\Phi}$ there exist trapped baroclinic modes with imaginary eigenfrequencies. \Rightarrow classical Rayleigh criterion for the centrifugal instability :

$$\overline{L}_a \overline{\zeta}_a < \mathbf{0},$$

where the last product is called Rayleigh discriminant.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Exercise

- Obtain the expression for absolute angular momentum density $\overline{L}_a = r^2/2 + rV$ from the definition of angular momentum
- Obtain (11) from the axisymmetric version of primitive equations in polar coordinates
- Derive (12)

Geophysical Fluid Dynamics

V Zeitlin - GFD

nstabilities of ortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

< □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の < ⊙

Tropical cyclone - essentially ageostrophic vortex

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Hydrodynamic characteristics of TC

- Radius of max wind (RMW) : 20 50km
- Max velocity V_{max} : 40 60m/s
- ► Typical value of f (at 20°N) : 5 · 10⁻⁵
- Relative vorticity ζ : up to 100*f*, typical Rossby numbers : 10 – 40
- Vertical wind distribution : \approx barotropic
- Barotropic Froude number :

$$Fr = rac{V_{max}}{\sqrt{gH_0}} = Ro/\sqrt{Bu} = \mathcal{O}(10^{-1})$$

► Radial wind profile : U-shape in the core, decreasing as 1/r in the outer region → ≈ constant vorticity core surrounded by higher vorticity ring, zero vorticity in the outer region.

V Zeitlin - GFD

nstabilities of ortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Typical category 3 cyclone's profile : RSW modeling

Left panel : azimuthal velocity and thickness (dashed). *Right panel :* relative vorticity. Parameters : ratio of relative vorticities ring/core $\frac{\zeta_r}{\zeta_c} = 105/7$, $Ro_{loc} = \frac{\zeta_r}{f} = 105$, $Ro = V_{max}/fL = 32$, Fr = 0.3.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

The most unstable mode

1.5 1.5 0.5 0.5 -0.5 -0.5 -1.5 -1.5 -1 0.5 15 -15 -1-0.5 0.5 1 15

Geophysical Fluid Dynamics

V Zeitlin - GFD

nstabilities of ortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

Left panel : velocity and pressure anomalies. Right panel : relative vorticity anomaly \Rightarrow Ageostrophic barotropic instability

Evolution of the unstable mode and formation of secondary mesovortices

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the aboratory experiments with 2-layer fluids

・ロト・日本・日本・日本・日本

Mesovortices as observed in the hurricane Isabel

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

・ロト・日本・日本・日本・日本・

Sketch of classical experiments on baroclinic instability

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Preliminaries : 1-layer RSW in the rotating annulus

RSW in cylindrical geometry, annulus $r_1 \le r \le r_2$:

$$Du - (f + \frac{v}{r})v = -g\partial_r h,$$

$$Dv + (f + \frac{v}{r})u = -\frac{g}{r}\partial_{\theta}h,$$
 (13)

$$Dh + h(\partial_r u + \partial_{\theta}v/r + u/r) = 0.$$

B.c. : free-slip : u = 0 at $r = r_1, r_2$; $D = \partial_t + u\partial_r + \frac{v}{r}\partial_{\theta}$. Exact solution : cyclo-geostrophic equilibrium with profiles of the thickness and velocity H(r), V(r) :

$$fV + \frac{V^2}{r} = g\partial_r H. \tag{14}$$

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Linearisation

$\partial_{t}u + \frac{V}{r}\partial_{\theta}u - v - 2\frac{Vv}{r} = -Bu\partial_{r}h, \\ \partial_{t}v + u\partial_{r}V + \frac{V}{r}\partial_{\theta}v + u + \frac{Vu}{r} = -Bu\frac{\partial_{\theta}h}{r},$ (15) $\partial_{t}h + \frac{1}{r}(rHu)_{r} + \frac{1}{r}H\partial_{\theta}v + \frac{V}{r}\partial_{\theta}h = 0,$

where
$$Bu = (R_d/r_0)^2$$
 is the Burger number,
 $R_d = (gH_0)^{\frac{1}{2}}/(\Omega r_0)$ is the deformation radius, $r_0 = r_2 - r_1$
Solution \rightarrow eigenmodes and eigenvalues (dispersion
diagram).

Geophysical Fluid Dynamics

V Zeitlin - GFD

nstabilities of ortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

nstabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Dispersion diagram

Dispersion diagram c = c(k). (a) Poincaré modes, (b) and (d) Kelvin modes, (c) Rossby modes. Fast Poincaré and Kelvin modes are separated from the slow Rossby modes ; only the values $k \in \mathbf{N}$ correspond to realisable solutions.

Geophysical Fluid Dynamics

V Zeitlin - GFD

nstabilities of ortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

nstabilities of tropical cyclones

Kelvin modes

Pressure and velocity for the Kelvin modes propagating along the exterior (left) and interior (right) walls with k = 2. These modes correspond to (b) and (d), respectively.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

nstabilities of tropical cyclones

Rossby and Poincaré modes

Pressure and velocity of the Rossby (left) and Poincaré (right) modes with n = 1 and k = 2. These modes

correspond to (c) and (a), respectively.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Exercise

- Consider a parabolic profile of H(r) in (47), find the corresponding profile of V(r),
- Reduce the equations (47) to a single differential equation for the propagating wave solutions

 e^{i(ωt-nθ)}, solve it and find the structure in *r* of different types of waves

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal nstability

nstabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

▲□▶▲□▶▲□▶▲□▶ = のへぐ

2-layer RSW in the annulus with a rigid lid

$$D_{j}u_{j} - (f + \frac{v_{j}}{r})v_{j} = -\partial_{r}\Pi_{j},$$

$$D_{j}v_{j} + (f + \frac{v_{j}}{r})u_{i} = -\frac{1}{r}\partial_{\theta}\Pi_{i},$$
 (16)

$$D_{j}h_{j} + h_{j}(\partial_{r}u_{j} + \partial_{\theta}v_{j}/r + u_{j}/r) = 0,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 Π_i - geopotentials, D_i - Lagrangian derivative per layer.

cyclones Instabilities in the laboratory experiments with

experiments wit 2-layer fluids

Geophysical Fluid Dynamics

V Zeitlin - GFD

Linearisation about a stationary state with constant azimuthal velocities $V_1 \neq V_2$

$$\partial_{t} u_{j} + \frac{V_{j}}{r} \partial_{\theta} u_{j} - v_{j} - 2 \frac{V_{j} v_{j}}{r} = -B u \partial_{r} \pi_{j} ,$$

$$\partial_{t} v_{j} + u_{j} \partial_{r} V_{j} + \frac{V_{j}}{r} \partial_{\theta} v_{j} + u_{j} + \frac{V_{j} u_{j}}{r} = -B u \frac{\partial_{\theta} \pi_{j}}{r} ,$$

$$\partial_{t} h_{j} + \frac{1}{r} (rH_{j} u_{j})_{r} + \frac{1}{r} H_{j} \partial_{\theta} v_{j} + \frac{V_{j}}{r} \partial_{\theta} h_{j} = 0 ,$$
(17)

Pressure perturbations π_j are coupled via perturbation of the interface :

$$\pi_2 - \pi_1 + s(\pi_2 + \pi_1) = B u \eta , \qquad (18)$$

Geophysical Fluid Dynamics

V Zeitlin - GFD

nstabilities of /ortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

▲□▶▲□▶▲□▶▲□▶ = のへぐ

Baroclinic instability : RR resonance

Dispersion iagram (top) and growth rates (bottom) for Ro = 0.15 and F = 2.75. Yellow line marks the RR resonance and instability.

Geophysical Fluid Dynamics

V Zeitlin - GFD

nstabilities of /ortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

nstabilities of tropical cyclones

Baroclinic instability : unstable mode

Structure of the unstable mode with k = 2, pressure and velocity in the superior (left) and inferior (right). Solid - positive values , dashed - negative values . Note the balanced character of the mode.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

nstabilities of tropical cyclones

Baroclinic instability : deviation of the interface

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Rossby-Kelvin instability : RK resonance

Geophysical Fluid Dynamics

V Zeitlin - GFD

nstabilities of /ortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

Dispersion diagram (top) and growth rates (bottom) at Ro = 1.9 and F = 0.1. Yellow lines mark the RK et RP resonances and respective instabilities .

Rossby-Kelvin instability : structure of the unstable mode

Structure of the unstable RK mode at k = 5, pressure and velocity in the superior (left) and inferieor (right). Solid - positive values , dashed - negative values.

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Rossby-Kelvin Instabiliti : deviation of the interface

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Instabilities in the laboratory experiments with 2-layer fluids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Scheme of the classical experiments with gravity currents on the rotating turntable

・ロト・西ト・ヨト・ヨー うくぐ

Geophysical Fluid Dynamics

V Zeitlin - GFD

Instabilities of vortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

Instabilities of tropical cyclones

Comparison theory/experiment

Deviation of the interface for the most unstable mode, as follows from the linear stability analysisin 2-layer RSW (left), and development of the instability in the experiment by Griffiths and Linden (1982)

Geophysical Fluid Dynamics

V Zeitlin - GFD

nstabilities of /ortices

Barotropic instability of vortices

Baroclinic instability of vortices

Ageostrophic centrifugal instability

nstabilities of tropical cyclones