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General properties of 1.5d RSW

Equations of the model
"Dimension 1.5": no dependence on y :

∂tu + u∂xu − fv + g∂xh = 0 , (1)
∂tv + u∂xv + fu = 0 ,

∂th + u∂xh + h∂xu = 0 .

Frontal configurations: localised distributions of
v(x), h(x) with common compact support in x of v , ∂xh.
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Lagrangian invariants

I Potential Vorticity:

Q = (∂xv + f )/h, (2)

.
I Geostrophic momentum:

M = v + fx (3)

(∂t + u∂x )M = 0, (∂t + u∂x )Q = 0. (4)

Inertia - gravity waves
Linearisation with respect to the rest state H = const :
zero mode (slow motions) and inertia- gravity waves (fast
motions ) with standard dispersion relation:

ω = ±(c2
0k2 + f 2)

1
2 , c0 =

√
gH. (5)
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Geostrophic equilibrium
exact solution of the equations of motion:

fv = g∂xh, u = 0 , (6)

Slow motions. Vorticity is entierely determined by the
perturbation of h and vice verse:

Q(g) =

(
f + g

f ∂
2
xxh

h

)
. (7)

Geostrophic adjustment
Adjustment→ Relaxation towards equilibrium state.
Equilibrium↔ minimum of energy⇒ necessity to
evacuate energy. The only energy sink in the absence of
dissipation: émission of inertia - gravity waves.
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Equations of motion in Lagrangian
coordinates
Lagrangian coordinates
Trajectories of "fluid parcels" x → X (x , t), where x is a
position of the parcel at t = 0. Ẋ = u(X , t), notation:
X ′ = ∂X

∂x .

Momentum equations

Ẍ − fv + g∂X h = 0 ,
v̇ + f Ẋ = 0 , (8)

where v is considered as a function of x and t .

Conservation of mass:

h(X , t) dX = hI(x) dx , ⇒ h(X , t) = hI(x)∂X x . (9)
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Reduction to a single equation

Integration of the equation for v :

v(x , t) + fX (x , t) = M(x) . (10)

Determination of M from b.c.:

M(x) = fx + vI(x). (11)

Chain differentiation:

∂X h = ∂X (hI(x)∂xX ) = h′I
(
X ′
)−2−hI(x)X ′′

(
X ′
)−3

, (12)

Closed equation for X :

Ẍ + f 2X + gh′I
(
X ′
)−2

+
ghI

2

[(
X ′
)−2
]′

= fM . (13)
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Re-writing in terms of deviations of parcels from their
initial positions: X (x , t) = x + φ(x , t):

φ̈+f 2φ+gh′I

(
1

(1 + φ′)2

)
+

ghI

2

(
1

(1 + φ′)−2

)′
= fvI . (14)

To be solved with b.c.:

φ(x ,0) = 0, φ̇(x ,0) = uI(x),

where uI is the initial velocity in x direction.
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Exercises:

I Demonstrate the equivalence of (9) with the standard
continuity equation in RSW,

I Linearise (14) and find solutions - inertia-gravity
waves,

I Demonstrate that geostrophic equilibria are exact
solutions of (14).



Geophysical Fluid
Dynamics

V Zeitlin - GFDII

Fronts in the RSW
model
RSW model in dimension
1.5

Lagrangian approach to
1.5d RSW

Geostrophic Adjustment

Mechanism of breaking.

Hyperbolic systems.
Method of characteristics.

Fronts/density
currents in the
RSW model
Double density fronts

Fronts and
frontogenesis in
the PE model
PE model in 2.5 dimensions

Lagrangian approach in EP
2.5d

Geostrophic adjustment
and frontogenesis

Example of direct simulation with
MATHEMATICA of the 1.5d adjustment

Initial configuration :

hI(x) = 1+e−x2
, vI(x) = −2(x+0.2 sin(x)) e−x2

, uI(x) = 0.1e−x2
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Archetype model of breaking: "simple" wave

Non-dispersive one-dimensional wave with
advective non-linearity:

ut + εuux + ux = 0. (15)

Constant phase speed= 1, solution of the linearised
system: u(x , t) = U(x − t).

Changing the reference frame, introducing slow
time:

UT + UUx = 0 (16)
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Lagrangian description:

U = Ẋ , ⇒ Ẍ = 0, ⇒ Ẋ = UI(x), ⇒ X (x ,T ) = x +UI(x)t .
(17)

where UI - initial distribution of U.

Breaking:

∀x1, x2 : x2 > x1, UI(x2) < UI(x1), (18)

intersection of Lagrangian trajectories ≡ breaking.
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1d quasi-linear systems

Definition:

∂tVi(x , t)+
N∑

j=1

Aij

(
~V
)
∂xVj(x , t) = Bi

(
~V
)
, i = 1,2, ...,N.

(19)

Eigenvectors and eigenvalues:
Let~l(a) - left eigenvectors and ξ(a) - corresponding
eigenvalues, a = 1,2, ...:

~l(a) · A = ξ(a)~l(a), ⇒ (20)

~l(a) ·
(
∂t ~V + A ◦ ∂x ~V

)
=~l(a) ·

(
∂t ~V + ξ(a)∂x ~V

)
. (21)
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Characteristics:

dx
dt

= ξ(a) (22)

Advection along a characteristic:

~̇V ≡ d ~V
dt

=
(
∂t + ξ(a)∂x

)
~V . (23)

~l(a) · ~̇V =~l(a) · ~B (24)

- ordinary differential equations (easy to integrate).
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Hyperbolic systems:
N real and different eigenvalues ξ(a).

Riemann invariants :
If~l(a) = const (or integrating multiplier exists) - Riemann
variables (invariants if ~B = 0):

r (a) =~l(a) · ~V :,
dr (a)

dt
=~l(a) · ~B (25)

Shocks:
Intersection of characteristics↔ derivatives of Riemann
invariants become infinite in finite time.
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Example: SW

Quasi - linear form of the SW equations:

∂t

(
u
h

)
+

(
u 1
h u

)
∂x

(
u
h

)
= 0, (26)

Eigenvectors and eigenvalues:

~l± = (±
√

h,1), ξ± = u ±
√

h. (27)

Riemann invariants:

r± = u ± 2
√

h,
dr±

dt±
= 0,

d
dt±
≡ ∂t + ξ±∂x . (28)
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Wave-breaking in SW

Equation for derivatives of Riemann invariants:
D± ≡ ∂x r±

dD±

dt±
+ ∂xξ

±D± = 0, ξ± =
3
4

r± +
1
4

r∓, ⇒ (29)

dD±

dt±
+

3
4
(
D±
)2

+
1
4

D±D∓ = 0. (30)

Suppose one of the invariants is identically zero⇒
Riccatti equation along the characteristic for remaining D:

dD
dt

+
3
4

(D)2 = 0, → D = (D−1
I +

3
4

t)−1 (31)

⇒ singularity in finite time, if initial D is negative.
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Exercises:

I Demonstrate that 1.5d RSW model in Lagrangian
variables is a hyperbolic quasi-linear system.

I Determine the characteristics and Riemann variables
for this system.

I Analyse the evolution of the derivatives of the
Riemann variables and conditions of breaking.
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Example: adjustment of a "wind blow"
(Rossby, 1936)

I.c.: jet out of equilibrium: hI = H = const, vI 6= 0.
Notation J = ∂X/∂x = H/h(X , t).

g ∂X h = ∂xP, P = gH/(2J2)− Lagrangian pressure

Lagrangian equations:

u̇ − fv + ∂xP = 0, (32)

v̇ + fu = 0, (33)

J̇ − ∂xu = 0. (34)
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Equivalent to a single equation for J:

J̈ + f 2J + ∂2
xxP = fHQ . (35)

where

Q(x) =
1
H

(∂xv(x , t) + fJ(x , t)) =
1
H

(∂xvI(x) + fJI(x)) .

Adjusted stationary solution:

f 2J + ∂2
xxP = fHQ (36)

- completely determined by Q



Geophysical Fluid
Dynamics

V Zeitlin - GFDII

Fronts in the RSW
model
RSW model in dimension
1.5

Lagrangian approach to
1.5d RSW

Geostrophic Adjustment

Mechanism of breaking.

Hyperbolic systems.
Method of characteristics.

Fronts/density
currents in the
RSW model
Double density fronts

Fronts and
frontogenesis in
the PE model
PE model in 2.5 dimensions

Lagrangian approach in EP
2.5d

Geostrophic adjustment
and frontogenesis

High-resolution simulations of the Rossby
adjustment

Finite-volume code (calculating fluxes in each cell of the
grid).

Adjustment process

ï10 ï5 0 5 10

height h; Ro=1 and Bu=0.25

x/Rd

h

t/Tf = 0.0 

t/Tf = 0.2 

t/Tf = 0.4
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Initial and quasi- adjusted states
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RSW equations (no bathymetry)

Equations of motion :

ut + uux + vuy − fv + ghx = 0,
vt + uvx + vvy + fu + ghy = 0,

ht + (hu)x + (hv)y = 0. (37)

Boundary conditions:

H(y) + h(x , y , t) = 0, DtY0 = v at y = Y0 , (38)

where Y0(x , t) - position of the "free" streamline, Dt
Lagrangian derivative .
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Classical example: balanced double front with parabolic
profile of h.

h = H =

{ H0
2

(
1− (x

L )2), |x | ≤ L
0, |x | > L

u = 0

v = V =

{ g
f Hx = −gH0

fL2 x , |x | ≤ L
0, |x | > L

(39)
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Instabilities (ageostrophic) of a double front
Real and imaginary (growth rate) parts of the
perturbations of the parabolic front :
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Non-linear evolution of the principal instability
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Exercises:

I Demonstrate that (39) verifies equation (14),
I Consider solutions of (14) in a form (separation of

variables): φ = f (x)ξ(t) and demonstrate that
oscillations of finite amplitude ("pulsons") of the
parabolic front exist.
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General properties of 2.5d PE

Équations of the model
"Dimension 2.5": no dependence of y :

Du
Dt
− fv + φx = 0 , (40)

Dv
Dt

+ fu = 0 , (41)

φz = g
θ

θr
, (42)

ux + wz = 0 , (43)
Dθ
Dt

= 0 , (44)

D
Dt

= ∂t + u∂x + w∂z (45)
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Lagrangian invariants

I Potential temperature θ,
I Potential vorticity:

Q = (∂xv + f )θz − vzθx , (46)

I Geostrophic momentum

M = v + fx (47)

D
Dt

(θ, M, Q) = 0. (48)

Expression of Q in terms of M:

Q =
∂(M, θ)

∂(x , z)
. (49)
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Inertia - gravity waves
Linearisation about state of rest with N = const : zero
mode (slow motions) and inertia- gravity waves (fast
motions ) with standard dispersion relation:

ω = ±(N2 k2

m2 + f 2)
1
2 , (50)

where wavenumber in (x , z) space is:

k = k x̂ + mẑ. (51)
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Thermal wind
Stationary states

u = w = 0, fv = φx , g
θ

θr
= φz . (52)

Elimination of φ, use of M:

f
∂M
∂z

=
g
θr

∂θ

∂x
, (53)

⇒ a " potential" Φ may be introduced for equilibrium
states:

M = f−1∂Φ

∂x
, (54a)

θ =
θr

g
∂Φ

∂z
. (54b)
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Equations of motion in Lagrangian
coordinates

Lagrangian coordinates
Trajectories of fluid "parcels"
(x , z)→ (X (x , z, t), Z (x , z, t)), where (x , z) is a position
of a parcel at t = 0⇒ (Ẋ , Ż ) = (u(X ,Z , t),w(X ,Z , t)).

Incompressibility equation - conservation of volume:

∂(X ,Z )

∂(x , z)
= 1 . (55)

Hydrostatic equation

∂Zφ ≡
∂(X , φ)

∂(x , z)
= g

θI

θr
. (56)
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Horizontal momentum equations

Ẍ − fv + ∂Xφ = 0 ,
v̇ + f Ẋ = 0 , (57)

Elimination of v :
Conservation of M and b. c.:

M(x) = v + fX = fx + vI(x). (58)

Elimination of φ by cross-differentiation:

∂(X , Ẍ − fvI − f 2x)

∂(x , z)
+

g
θ0

∂(θI ,Z )

∂(x , z)
= 0 (59)
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Stationary adjusted states:

∂(X ,−fvI − f 2x)

∂(x , z)
+

g
θ0

∂(θI ,Z )

∂(x , z)
= 0 (60)

∂(X ,Z )

∂(x , z)
= 1 (61)

These equations can be solved analytically for
configurations with constant PV, for example for a layer of
the fluid between a flat bottom (at z = 0) and a rigid lid (at
z = H = 1), with b. c.:

Z (x ,0) = 0 ,Z (x ,1) = 1 . (62)

Localised fronts/jets correspond to X |x→±∞ = x .
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Example: zero PV
Initial configuration:
Gradient of potential temperature (density) θ - purely
horizontal, no vertical shear in v :

θI = θI(x), vI = vI(x). (63)

Horizontal momentum equation:

∂X
∂z

f (v ′I + f ) +
∂Z
∂z

gθ′I
θ0

= 0 , (64)

where prime denotes differentiation with respect to x .

Integration in z:

X =
F(x)

fv ′I + f 2 −
gθ′I/θ0

fv ′I + f 2 Z . (65)

with F(x) - integration "constant" .
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Using the incompressibility equation:

Z 2
(

gθ′I/θ0

fv ′I + f 2

)′
− 2

(
F

fv ′I + f 2

)′
Z + 2(G(x) + z) = 0 ,

(66)

where G(x) - another integration "constant" after
integration in z.

Applying b. c.

G(x) = 0, (67)(
F

fv ′I + f 2

)′
= 1 +

1
2

(
gθ′I/θ0

fv ′I + f 2

)′
≡ 1 +

1
2
A′(x).(68)
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Explicit form of stationary solutions:

Xs = x +A(x)

(
1
2
− Z

)
, A =

gθ′I/θ0

fv ′I + f 2 (69)

Zs =
1
A′(x)

1 +
1
2
A′(x)−

√(
1 +

1
2
A′(x)

)2

− 2zA′(x)

 ,
(70)

This mapping (x , z)→ (Xs,Zs) can be singular ≡ not
bijective, if ∃(x , z) : ∂Xs

∂x = 0.
Singularity appears at the boundaries⇒ criterion:
1± A′

2 = 0, or:

g
fθ0

(
gθ′I/θ0

f + v ′I

)′
= ±2 . (71)
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Illustrations: zero PV, localised anomaly of θ
without initial jet vI ≡ 0.

Initial configuration
Profiles of θI = tanh(x) (dashed), of A′ (continuous), and
discontinuity thresholds A′ = ±2 (dotted):
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Illustrations: zero PV, localised anomaly of θ
with an initial jet vI = 0.55e−x2.

Initial configuration
Profiles of θI = tanh(x) (dashed) and of A′ (continuous),
and discontinuity thresholds A′ = ±2 (dotted):
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Beyond the singularity:

Configuration with vI = 0, isentropes:
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Exercises:

I Linearise the primitive equations (40) - (44) about a
stationary state v = V (x) (barotropic jet ) with
constant stratification N2 = const. Decompose the
solutions in vertical modes (b.c.: flat bottom, rigid
lid), and demonstrate the existence of symmetric
inertial instability for sufficiently strong shears V ′(x).
Analyse the instability at various vertical
wavenumbers.

I What is the necessary condition for existence of this
instability? What is a link between existence of the
instability and frontogenesis?
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