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Does the tracer gradient vector align with the strain eigenvectors
in 2D turbulence?
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This paper investigates the dynamics of tracer gradient for a two-dimensional flow. More precisely,
the alignment of the tracer gradient vector with the eigenvectors of the strain-rate tensor is studied
theoretically and numerically. We show that the basic mechanism of the gradient dynamics is the
competition between the effects due to strain and an effective rotation due to both the vorticity and
to the rotation of the principal axes of the strain-rate tensor. A nondimensional criterion is derived
to partition the flow into different regimes: In the strain dominated regions, the tracer gradient vector
aligns with a direction different from the strain axes and the gradient magnitude grows exponentially
in time. In the strain-effective rotation compensated regions, the tracer gradient vector aligns with
the bisector of the strain axes and its growth is only algebraic in time. In the effective rotation
dominated regions, the tracer gradient vector is rotating but is often close to the bisector of the strain
axes. A numerical simulation of 2Rwo-dimensional turbulence clearly confirms the theoretical
preferential directions in strain and effective rotation dominated regions. Effective rotation can be
dominated by the rotation rate of the strain axes, and moreover, proves to be larger than strain rate
on the periphery of vortices. Taking into account this term allows us to improve significantly the
Okubo—Weiss criterion. Our criterion gives the correct behavior of the growth of the tracer gradient
norm for the case of axisymmetric vortices for which the Okubo—Weiss criterion fails19€9
American Institute of Physic§S1070-663(99)01312-4

I. INTRODUCTION tory. However counter-examples, such as the point-vortex
flow, show that a criterion involving only these eigenvalues
The study of 2D turbulence is known to be pertinent tojs not sufficient. Subsequent studi@have shown that the
the understanding of large-scale geophysical flows of thcceleration gradient tenstor the pressure Hessigwhich
extra-tropical atmosphere or ocean. These large-scale flowgoverns the second-order time derivative of the tracer gradi-
are characterized by coherent vortices where most of the ermt vector is also an important quantity to consider, thus
strophy is concentrated. The process of filamentation creatggyalidating the assumptions of Okubo and Weiss.
very sharp gradients of vorticity at the edge of the vortices  aAn alternative approach in the study of the enstrophy
and produces small-scale filaments-like structdrdhese cascade, noted by McWillianfsis to examine the exponen-
filaments are stretched and folded by the velocity field beyjg) growth rate of the vorticity gradient norm. This growth
tween the large-scale vortices. Thi.s process is thg manifgstaate depends on two quantities: The positive eigenvalue of
tion of the enstrophy cascade which knowledge in physicajhe rate-of-strain tensor and the angle between its compres-
space is important to better understand the internal organizajona| eigenvector and the vorticity gradient. The knowledge
tion of the flow. of the eigenvalue cannot solely determine the growth rate.
Within this context, the approach followed by many the getermination of the orientation of the vorticity gradient
studie$™ has been to examine the dynamics of vorticity gra-ith respect to the compressional eigenvector is essential in
dient, or more generally, of the gradient of a tracer which isyqer to understand the enstrophy cascade.
conserved along a Lagrangian trajectory; such tracer gradient 5 remark of Babiancet al® indicates the possible exis-
obeys the same equation as vorticity gradient. The gradienigce of some alignment properties in 2D flows: They noted
dynamics allow to partition the physical space into differenty ¢ jsglines of tracer and vorticity have similar orientations.
regions: Production regions where tracer gradient NOrMynege two tracers are likely to align with the same direction
grows expo_nentlally and regions where the gvolpﬂon of gragyhich depends only on the flow topology. Other stutifed
dient norm is slow and where gradient rotation is expectedy e revealed a tendency for vorticity gradient to align with
Okubd® and Weiss were the first to derive a criterion e compressional eigenvector. The issue of alignment with

based on the eigenvalues of the velocity gradient t€nsofe eigenvector of the strain-rate tensor has also been exten-
which governs the equation of the first order time derlvzitlvesi\/e|y studied in 3D(three-dimensionalturbulence. It has

of the tracer gradient vector. They assumed that the velocCityean shown numericalty4that the tracer gradierior the
gradient tensor is slowly varying along a Lagrangian trajecy,qrticity vectorS) tends to align with an eigenvector of the

rate-of-strain tensor. With an assumption similar to that
dElectronic mail: glapeyre@ifremer.fr made by Okubo and Weiss, this result for the vorticity vector
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can be demonstratéfl thus stressing the importance of the on=du—ay\v, Vg=p(cosb,sing),

invariants of the velocity gradient tensor. In 2D turbulence, a )

single invariant remains: The determinant of the tensor, Is=dV T U, (0s,0q)=0(c0S2p,sin2¢),

which is the opposite of the Okubo—Weiss _qua_ntity. Recent w=dy—au, with p=0 and¢=0.

3D results have revealed that the assumption is not always

valid and that the pressure Hessian plays an importanthe eigenvectors of the rate-of-strain matfiie symmetric

role1”!8 These results show many similarities between 2DPart of [Vu]*) are called the compressional and extensional

and 3D turbulence. strain axes. The compressional axis corresponds to the maxi-
This paper revisits the question of the alignment of vor-mum growth rate of gradient norm, whereas the extensional

ticity or tracer gradient with the eigenvectors of the rate-of-8xis corresponds to the maximum decay rate. The angle be-

strain tensor, and more generally, the existence of a prefefween thex axis and the compressional axis-igm/4— ¢.

ential direction for the gradient vector. In Sec. I, the  As EQ.(2) is dependent on the coordinates system, it is

equation for the orientation of tracer gradient in the strain™ore convenient to separate the magnitude of the tracer gra-

basis is derived, following the approach of Dresselhaus anélient from its orientation

Tabor® (which was also used by Dritschet al?° to exam- 1 Dp?

ine the stability of vorticity filaments This basis allows to AT —osin2(6+¢)), (3

take into account explicitly the part of the acceleration gra-

dient tensor that corresponds to the rotation of the strain Do

axes. In Sec. lll, the orientation equation is solved assuming Zﬁ:w_gcos(z(ﬁJ“ ®)). (4)

a stationarity property for the velocity field which is much ) ) o

less restrictive than the Okubo—Weiss assumption. We pro-  1he right-hand-side of Eq3) indicates that the evolu-

pose a new criterion to partition the physical space into straition of the magnitude strongly depends on the angle be-

dominated regions and effective rotation dominated regiondWeen the tracer gradient and the eigenvectors of the rate-of-

where effective rotation is defined as the sum of the vorticityStrain matrix. This emphasizes the importance of the

and the rotation rate of the strain axes. Furthermore, we prd2fientation dynamics. By contrast, Eg) for the orientation

vide an estimation for both the direction of the gradient vec-f does not depend on the gradient magnitpde

tor and the exponential growth rate of its norm. These results "€ Same equations have alsozobegn derived bz% Dressel-

allow to characterize the tracer cascade in physical space. fffuS and Tabot and Dritschelet al.™ Dritschel et al.™ in-

Sec. IV, the accuracy of our results is assessed through tH@stllgate the stability .of a vortlc:lty filament submitted to

examination of a numerical simulation of freely decayingStrain. 'Ijh'ey show that if the str§tch|ng rqtexceeds 25% of

turbulence and through analytical examples. It is shown thaif€ Vorticity anomalyéw (the typical vorticity contrast across

our criterion yields an exact solution of the growth rate ofthe filament, the instability is completely suppressed. An-

gradient norm for axisymmetric vorticgsvhich the point- other possibility to inhibit roII-up_ mstablll_ty_ls the presence

vortex belongs thand an improved approximation of the of adverse sheak/5w<<0 whereA is the twisting rate. In our

growth rates in 2D turbulence. notations, these quantities are simply:
100 T inaies
Y= oDt 5 Sin2(6+ ¢))

Il. EQUATIONS FOR THE EVOLUTION OF TRACER
GRADIENT Do

A= ZE— w=—0 COS(Z( 0+ ¢))
A. Magnitude and orientation
Dritschef! uses these diagnostics in a simulation of 2D tur-
bulence where he shows that most of the vorticity filaments
behave passively. A prediction of the orientation of the vor-
ticity gradient would lead to a better identification of the

Let us consider a traceg which is conserved along a
Lagrangian trajectory in a two-dimensional flow field

q
Dt dq+u-vVag=0, 1) regions where vorticity filaments should remain passive. The
important role played by the rotation of the strain-rate axes
whereu=(u,v) andV-u=0. relatively to vorticity, was not stressed by Dritscle¢lal 2°?*

In a more general situation, there should be a diffusiven contrast, in the present paper, we provide evidence that it
term (¥V2q) on the right hand side of E@1). Its main effect  allows to better characterize the stirring properties in physi-
is to weaken the gradient magnitude. We assume in thisal space.
study that the dynamics of tracer gradient orientation is in-

sensitive to this diffusive term. B. Orientation in strain coordinates
The equation for the tracer gradient is In order to simplify Eq.(4), we define
DVq t
D_tz_[Vu]*Vq, 2 {=2(6+¢) and T=f o(s)ds. (5
0

where[Vu]* is the transpose of the velocity gradient tensor.  We expect the orientatiofito be a continuous function
For what follows, some definitions have to be given:  of time, so its values are to be taken[iro,] and not in
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[0,27]. It is related to the angle between the tracer gradient (=r—cos(
and the strain axes: A value af/2 (respectively,—/2)
stands for an alignment with the compressiomesp. exten-
siona) axis. 7 is related to the strain-rate history experienced
by a fluid particle(t is here the Lagrangian timeThe typical
time for the process of alignment is thus given by the inverse
of the rate-of-strain and is much shorter than the time taker ¢
for the diffusion to act if it were present. Equati¢f) be-
comes a simple first-order O.D.trdinary differential equa-

tion)
D¢
Dy ' cos, ©) ¢ = —arccosr ¢y = arccost
with
r= 2 +2 % - M FIG. 1. Diagram of the behavior affor r2<1.
o Dt o
The dimensionless parameteis the ratio between effective e if r2>1, D¢/Dr=r—cos{~r and ¢ should grow

rotation (in the terminology of Dresselhaus and Talipin quasi-linearly in time.
the strain basi¢i.e., the rotation effects due to both the vor- We recognize a partition of the flow similar to the par-

ticity and the rotation of the principal axes of the strain-rateiion of Okubd and Weisd into hyperbolic(or “straining”)
tensoj and the magnitude of the strain rdighich tends to regions (2<1) and elliptic (or “eddy”) regions ¢2>1).

align the gradient with a strain eigenvegtor The main difference is that we take into account the rotation
The Lagrangian time derivative @f is simply related t0 ¢ ihe strain axes.

the Lagrangian time derivatives of, and o The general solutions of Eq$3) and (6) for the three
D¢ oyDo,/Dt)—on(Dos/Dt) regimesr?<1, r2=1 andr?>1 are now presented.

Dt it ol

N . 1. Strain dominated regions: r 2<1
These quantities can be expressed as functions of the La-

grangian acceleration gradient tensor. In two dimensions, the

Lagrangian acceleration is equal to the pressure gradient, and 1-r T1-—r?
the quantities to examine are given by ¢{(m)=—2arctan \/ytanf A+ ——I], (8

The general solution is

Do
50 = (da dy)P, (7a 2y p2 FCOSHRAT V1= ©
P Po r+ cosh2A) '
D‘TS: —20.p (7b) Here the constanA is the same for the two equations
Dt o and depends on the initial orientation of the tracer gradient.

wherep is the pressure. The gradient orientation converges to the direcffon

Basdevant and Philipovitérand Hua and Kleif have { =—arccos, (10)
shown that (1¢) (D o/Dt) andD ¢/Dt are of the same order . . e
exponentially fast. This preferential direction corresponds to

of magnitude ass and w (involved in the Okubo—Weiss _ ; o
criterion). Thus their effects need to be included to obtain the? Stable fixed point and does not depend on the initial direc-

exact gradient dynamics. Here our main assumptions are thHth of the gradient vector. Thlsfd|rect|on IS d|fferr(]ent from
(i) the parameter and (ii) the rate of strainr are slowly e Strain eigenvectors except for=0. However, the two

varying along a Lagrangian trajectory. This allows to so|Vefixed.directions are rellated to thg eigeqvectors of thg velocity
Eq. (6) and to recovet from . Thus we focus our attention gradient tensor seen in the strain basis as proven in Appen-

on the competition between strain and effective rotation b)fi'x' This alignment is associated with an exponential gradi-

i i i 2 2
taking into account the role of the rotation of the strain axesen? grovx{th with a dimensional raier B (“’+2(D¢/Dt),) :
(D ¢/Dt) but we neglect (¥)(Do/Dt). This regime should correspond to regions where patrticles are

expelled very rapidly, for instance in the saddle points of the
flow.

I1l. DYNAMICS OF THE GRADIENT ORIENTATION

A. Different regimes of evolution fé=ftra/n-eﬁect/ve rotation compensated regions:

A_firszt examination of Eq_(6) (Fig._ 1) shows that The general solution is
« if r“<1, there are two fixed points, one staljle and

one unstablg , . Moreover{ should converge to the stable _m

fixed pointZ_ . (1) 5 (1+r)+2arctaiA+rr), (11
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) ,1+(A+rn)? " 0 , '
p (T) =Po 1+A2 . ( ) o
The gradient orientation converges to the direction rotation alignment rotation
=05
1—r no growth exponential no growth
- =5 (13 4l § growth § |
o 2
o0 on
which makes an angle af/4 with the strain axes. The con- s.-1sf g § .
vergence is slower than for the preceding regime. It is asso- = =
ciated with an algebraic growth of the gradient magnitude.  -#f - - ]
This process of slow growth could maintain sharp gradients g é
of tracer as in the case of axisymmetric vortices and shear °f & 5 1
flows (these cases are studied in Sec. IVB L C = |
3. Effective rotation dominated regions: r ~ ?>1 -35 - - - i L .
The general solution is r
r—1 m FIG. 2. Preferential directiod and nature of the dynamics of gradient as a
{(7)=2 arctaf \/ —— tar| A+sign(r) |, function ofr.
r+1 2
(14
oA+ s =1 the rotation due to vorticity and of the rotation of the strain
P2(7)=p(2) r+cog2A+sign(r)ryrc—1) (15) axes. However the most probable direction is

r+cog2A) ' Lprov=[1—sign(r)] =/2 which makes an angle of/4 with the
Actually Eq.(14) is quasi linear in timd@remember that ~Strain axes. The nondimensional rotation rate/ 'g__l n
{is a continuous function of timeZ~sign(r) 7yr?— 1. This the strain coordinates. The magnitude of the gradient does
means that the gradient vector is rotating in the strain basi80t grow nor decay. _ _ _
because of either the rotation of the strain axes or the effect Figure 2 summarizes the different regimes of the gradi-
of vorticity. In the coordinatesxy), the dimensional rota- €Nt dynamics and the preferential directions as a function of
tion rate is: @+2(D$/Dt))VI—r 2—2(D/Dt). Thus, ' An approach based on the eigenvalues of the velocity gra-
for large values of, the gradient rotates at the angular ve-dient tensor expressed in the strain basis gives the same re-
locity . sults (see Appendix

However, there is a preferential direction

1-sign(r)
prob="5 - (16)  A. Freely decaying turbulence

IV. NUMERICAL AND ANALYTICAL RESULTS

The reason for the existence of this direction is that when We diagnose a numerlcal simulation Of. freely decaying
{=Lorop |(DE/D7)| is minimum. So the tracer gradient turbulence at a resolution of Frlrfoz4024 using a pseudo-
spends more time near this direction than near other direcs—p’e\l(:tratI chése_e Hu_‘"tl and }ﬂeth otr tr;orelz?detal:ﬁ Theret;s .
tions and, on time average, the gradient direction will lig2 Newtonian Viscosity suc at the Reynoids number 1s
near {,rq,. Moreover, according to Eq(15), the gradient 3.5><_104. It should n_ot affect the gradlen_t o_nentaﬂon dy-
magnitude remains bounded. This situation should corre?@M!Cs as the following resuits seem to indicate. The flow

spond to the cores of vortices or regions of rapid strain axeg)(h'b'ts.the emergence of cohgrgnt §truqtures together with a
rotation. strong filamentation in the vorticity fieltFig. 3.

The probability density function for (Fig. 4, curve A
presents a slight asymmetry between positive and negative
values ofr with a plateau between 1 and 1. Strong vorticity

According to the preceding results, the criterioallows  gradients(which represent 2% in area as indicated in the
to partition the fluid in three regimes with different proper- figure caption seem to prefer regions wheré=1 (curve

B. Criterion to partition the flow

ties concerning the tracer gradient evolution: B), a result which stresses the dominance of this regime. The
1. if r2<1, the effects of strain dominate. The gradientfraction of hyperbolic regiongdefined ag?<1) represents
orientation{ converges to the directiofi. = —arccos; the  59% of the total field. The asymmetry between the area of
gradient magnitude grows exponentially in time at the non-<lliptic and hyperbolic regions was also noted by Protas
dimensional rate/1—r2. et al® but based on the Okubo—Weiss definitiore., with-
2. if r?=1, the effects of strain and effective rotation out the rotation of the strain axes
balance each other. The direction tends{to=(1—r) /2 The key result of this study is displayed on Fig$a)5
which is the bisector of the strain axes. The magnitude of thend 5b) which compare the alignments of the vorticity gra-
gradient grows only algebraically in time. dient vector with the compressional strain axis and with the

3. if r2>1, effective rotation dominates. The direction direction given by the preferential directiogs [Eq. (10)]
rotates in the reference frame of the strain axes because ahd ¢, [EQ. (16)]. We concentrate on regions with strong
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regimer?>1 [Fig. 5b)], the gradient orientatiofcurve A
exhibits a weak preference for no exponential growth
(sin¢~0). On contrast, curve B shows that gradients are
close to the most probable directidf, [Eq. (16)]. The
comparison of the curves B of Figs(@ and 5b) reveals a
narrow peak forr?<1 and a broader one far>1. This
could point out the existence of a mechanism of alignment in
regimer?<1 and the absence of such a mechanism in re-
gimer?>1. Figures %a) and %b) confirm that our analytical
solution reproduces rather well the basic features of vorticity
gradient dynamics.

Figure 6 presents the joint p.d.f. df-#/2 andr, the
bold curve is cog. The relation cog~r is well corroborated
and this strongly validates the analytical solution. A joint
p.d.f. betweerd andw/o (not shown does not present such a
correlation, thus further emphasizing the quantitative impor-
tance of the rotation of the strain axes.

For r2<1, the area of regions of gradient norm decay
represents only 36% of the total area. These regions are gen-
erally associated with the alignment with the unstable direc-
tion £, =+arccog (not shown. This alignment is not as
strong as with/_ in regions of growth.
gradients because pdfs are sharper there but the results also Now we can examine the distributions of vorticity the
hold for the entire fieldnot shown. The alignment with the Parameterr and the exponential gradient growth rate
compressional axis in the regimé<1 is represented by —osin{ in physical spacdFigs. 7a-7(c)] to understand
curve A on Fig. %a). A value of O(respectively,= ) corre-  their importance. We focus our attention on a single vortex
sponds to the case where the vorticity gradient is aligneds all vortices display a similar behavior. Figuf@)jresents
with the compressionalresp. extensionplaxis. There is a the vorticity contours of the anticyclonic vortex close to the
weak tendency for alignment with the compressional axiscenter of Fig. 3. The core of the vortex is surrounded by
However experimental results reveal a much better alignfilaments peeled out as described by Mariettial! Some
ment of the vorticity gradients with the direction correspond-are expelled far away from the vortex.
ing to the stable solutiod_ of Eq. (10) (curve B. In the Figure 7b) represents the field af At first glance, we

FIG. 3. Vorticity . Dark regions represent vorticity extrema.
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see thatr is a good index for the characterization of the site sign ofw. This indicates that a characterization of the
topology of vortices since the different dynamical regimesstirring properties of vortices must take into account this

(corresponding to different values of are well separated in
physical space. The vortex core is a region with—1 be-

rotation rate.
A comparison with the exponential gradient growth rate

cause of largaw. The vortex periphery is composed of re- —osin{ [Fig. 7(c)] reveals that the regions of maximum

gions withr2<1 because of large and regions withr>1

exponential growth or decay rate are characterized by

because of large{ ¢/Dt). For each vortex, we observe op- <1. Regions of gradient norm growth are contiguous to re-
posite signs of between its core and the part on its periph-gions of decay, and these two types of regions are well sepa-

ery where effective rotation is strong. In these regioas,
+2(D ¢/Dt), is dominated by 2D ¢/Dt) which is of oppo-

4
-3.8 -2.5 -2.8

-1.5 -1.4 -.5 ] .5 1.0

zeta

1.5 2.6 2.5 3.0

rated by sharp fronts. The small growth rates on the vortex
edge are associated with strong values of the parameter

FIG. 6. Joint p.d.f. of+#/2 andr (total field); the bold
curve is cog.
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FIG. 7. (a) Vorticity . (b) Criterion. r=(w
+2(D¢/Dt))/o. (c) Exponential gradient growth rate
—osing.

(@) (b)

Finally, the core of the vortex presents strong growth of gra-2. Shear flows

dient, and other mechanisms like diffusion may play a role  ~qnsider a shear flow such thai ¥)=(u(y),0). The

there. rate of strain is o=|(du/dy)| and the vorticity
=—(du/dy). This flow is similar to the previous one be-

_ cause the behavior of tracer gradient is
B. Analytic examples

ioal i . 1+(A+
To stress the physical importance of the regime-1, pP=po (—rzat), (20)
we examine two analytical examples which are solutions of 1+A
the Euler equations. -
§=5(1+r)+2arctamA+rot), (22
1. Axisymmetric vortices
where
Consider an axisymmetric vortex, that is a flow with a q
streamfunctiony(R) whereR?>=x?+y?. Particles are rotat- = sigr( _ _u) —+1 (22)
ing at the angular velocity) = — (1/R)(d#/dR). The rate of dy
strain iso=|(1/R)(dy/dR) —Z(dzlﬂ/g R?)| while the vortic- The gradients tend to be oriented perpendicularly to the
ity is o= (1/R)(dy/dR)+ (d"¢/dR). Analytical solutions o\, Here the strain axes are fixed §/Dt)=0. So both
for tracer gradient are the Okubo—Weiss criterion\(;=0) and our criterion 12
1+ (A+rot) =_1) indicate a linear grovv_th (_)f _gradient_norm: The_ main
pP=po\ 11z (17 difference between these criteria is tharovides an estima-
tion of the orientation of the gradient vector and the growth
T rate of its amplitude.
§=§(l+r)+2 arctatA+rot), (18
with V. CONCLUSION
A2y 1 dy We can answer the question asked in the title of this
r=sigr<ﬁ— R ﬁ) ==+1 (29 paper: Both the analytical and numerical results of this study

show that the tracer gradient vector does not preferentially

The orientation{ tends to (r)#/2 so gradients be- align with strain eigenvectors. There exists a preferential di-
come more and more radial: They rotate in physical space teection depending only on the flow topology which has been
follow the rotation of the strain axes. Moreover their magni-estimated analytically.
tude is linearly increasing with time. The analytical solutions have revealed that the main

The Okubo-Weiss criterion is Ag=0%— w? mechanism of the tracer gradient dynamics is a response to
=—2[(1/R)(dy/dR)(d?y/dR?)]. Thus the criterion is ei- the competition between strain and effective rotatioa.,
ther positive which indicates hyperbolic regions, or negativethe rotation effects due to both the vorticity and the rotation
which indicates elliptic regions, according to the definitionsof the principal axes of the strain-rate tensdrhis competi-
given by Weiss. But the flow is neither elliptic nor hyper- tion leads to preferential directions that are different from the
bolic since the gradient growth is only linear in time; this strain axes. We have derived a criterion based on the param-
behavior occurs because of the rotation of the strain axiseterr to describe the flow topology in terms of tracer gradi-
(D¢/Dt)=—(1/R)(dy/dR), which is not taken into ac- ent evolution. This parameter measures the competition be-
count by the Okubo—Weiss criterion and this criterion istween strain and effective rotation. When strain dominates or
therefore incorrect. On the contrary, the value of our critedis equal to effective rotationrf<1), the tracer gradient
rion (r= = 1) predicts the alignment dynamics and the linearaligns with an eigenvector of the velocity gradient tensor
growth of tracer gradients. expressed in the strain basis. The gradient norm growth is
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exponential when strain dominateg{ 1), and linear when APPENDIX: EIGENVALUE PROBLEM
there is compensatiorf=1. When effective rotation domi-
nates (°>1), the gradient vector only rotates, but with a

tendency to align with the directiofy,qp. Hua and Kleiff because this latter approach can give the

.The numerlgal S|.mulat|on .clearly conflrms that the COM-same kind of information. We start from the equation
petition mechanism is the main feature of alignment dynam-

ics. The gradients are statistically well aligned with the esti- DVq
mated preferential directions. The criterian allows to Dt

partition the flow into regions of exponential growth and 5 change of basis allows to study more carefully this prob-

regions of slow or no growth. Moreover the different pat-jem_ The transform of orthonormal basis corresponds to a
terns of the flow are well diagnosed by this criterion. rotation of the gradient

The preferential directions found in each regime allow
us to estimate roughly the true stretching rate., the expo- Va=R(e)Y. (A2)
nential growth ratg and thus to better precise the topology Here R(¢) is the rotation matrix of angle which will be
of the stirring. Moreover these results have revealed that thdefined later
alignment properties of the tracer gradient vector do not de-
pend on either the gradient magnitude or the orientation his- R(¢)=
tory. This explains why different tracer fields display strong
gradients at the same locations and why their isolines arblow we decomposgVul* in symmetric and antisymmetric
quite similar, as previously noted by Babiaabal® in their ~ parts
experiments. o |

Another important factor in tracer gradient dynamics is  [Vu]=S+ §R(§)' (A4)
the rotation of the strain axes. Taking into account this term
in the effective rotation effects allows a much better characwhere[S] is the rate-of-strain matrix. The problem reduces
terization of the stirring properties. An illustration of this into
point is that our criterion gives the correct behavior for tracer py
gradient for axisymmetric flows for which the Okubo—-Weiss 57 =~ ( R(—¢)SR¢) +
criterion is known to fail. The numerical simulation have
also revealed that the rotation rate of the strain axes can b¥€ can diagonalizgS] with the appropriate; it suffices to
the predominant term of the effective rotation on the periphWte it as
ery of vortices. The reason is that the rotation of the strain o[sin2¢ cos2p
axis is a part of the accelergtion gradient. tensor. The c'ru.cial S= E(cos 2% —sin 2¢)-
role played by the Lagrangian accelerations for the stirring
properties has been stressed by the work of Hua and KleinT@king ¢=m/4— ¢, the tracer gradient in strain basis verifies
and Huaet al?® Even though we neglect the other partofthe  py
acceleration gradient tensgthat involves the Lagrangian Dt 2
time derivative of the strain ratewe obtain robust results
since they have been confirmed by the numerical simulatio "€ €igenvalues and eigenvectors of the matrix present in
and the analytical examples. It should be interesting to asseddiS equation are
the effect of this other part, which requires a different ap- e,=(—cosd,sin®¥) associated with
proach. Such work is under progréés.

It is interesting to associate the O.D.E. approach of this
paper with the eigenvalue approach of Okdbaeiss® and

— —[Vu]*Vq. (A1)

cose —sing (A3)

sing  cose

o373
i3 Rlz| Y- *9)

(AB)

-1 —r)
oY (A7)

The Lagrangian accelerations also play a key role for the A= — g J1—r2, (A8)
stirring properties of more realistic flows as the quasi- 2
geostrophic(QG) ones?® In such QG flows, not only the e,= (—sin®,cosd) associated with
ageostrophic pressuf@s in the 2D flows of the present
study, see Eq(7)] but also additional terms such as the beta o 12 (A9)

effect and the divergence potential are present in the La- 272

grangian acceleratiorfs.So future work should aim to ex- Here 9= m/4— (arccog)/2. If r2 is greater that 1, the eigen-
tend the results of the present study to more realistic flows by, a5 are purely imaginary. '
considering the effects of these additional terms. Forr2<1, itis straightforward to see thaf corresponds
Finally, the role of diffusion on the alignment properties 1o ;=arccog=¢, and e, to {=—arccog=¢{_. So the
needs to be examined. Preliminary results indicate that itgigenvectors and the eigenvalues of the velocity gradient ten-
effect on alignment properties appears to be weak. This igor in the strain basis give the same information as our re-
also confirmed in this paper by the comparison of the invissults. However, they are only a mean to know the dynamics
cid analytical results with a numerical simulation that in- of tracer gradients: They do not explain why this is the cor-
volves a Newtonian viscosity. rect behavior. The approach of solving the O.D.E. enables to
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