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We derive a two-layer rotating shallow-water model for a moist atmosphere with water vapor
condensation and related diabatic heating. Moist convection is represented by additional mass
exchanges between the layers, which are determined from the moist enthalpy conservation principle,
and related to the precipitation. Various boundary conditions at the lower and upper boundaries may
be used. We show that the model reproduces in appropriate limits the main simplified models used
previously in the literature for description of the large-scale moist-convective dynamics and
precipitation fronts, namely the linear two-layer baroclinic models, the nonlinear two-layer
quasigeostrophic model, and the nonlinear one-layer moist-convective rotating shallow-water
model. We study the properties of the equations of the model, with special attention to the
hyperbolicity loss, which is inherent to multilayer shallow-water models, and to the front
propagation. Numerical illustrations of these properties are given with the help of a recently
proposed high-resolution finite-volume numerical scheme with precipitation sources/sinks.
© 2011 American Institute of Physics. �doi:10.1063/1.3582356�

I. INTRODUCTION

In a preceding paper,1 we derived a simple rotating
shallow-water �RSW� type model for large-scale atmospheric
dynamics that includes water vapor condensation and moist
convection. We showed that the model was a natural nonlin-
ear extension of the pioneering model by Gill,2 which was
extensively studied in the recent works of Majda and
collaborators.3–5 In the model, the moist convection was rep-
resented by a mass sink related to a convective flux through
the upper boundary of the fluid layer. This flux, in turn, was
proportional to precipitation, which was triggered once a
saturation threshold in the humidity was attained. In spite of
its nice properties,1 the model remains essentially barotropic
and should be thought of as a part of a fully baroclinic sys-
tem, where the mass loss would become a mass exchange
between the layers. In the present paper, we derive such a
fully baroclinic two-layer moist-convective RSW �mc2RSW�
model. We show that the one-layer model is a limit of the
infinitely thick upper layer of the parent model. We also
show how the balanced moist-convective two-layer model of
Ref. 6 follows from our model in the quasigeostrophic limit.
These limits prove that our two-layer model is sound. We
also examine in detail the mathematical and physical prop-
erties of the new model, as well as its variants resulting from
different choices of boundary conditions.

The paper is organized as follows. In Sec. II, we present
a derivation of the model by vertical averaging of the primi-
tive equations, and by use of the moist enthalpy conserva-
tion. In Sec. III, we study the physical and mathematical

properties of the model, and in particular of its one-
dimensional �1D� version. The behavior of the characteristics
is studied and we address the question of �possible� loss of
hyperbolicity. The Rankine–Hugoniot conditions are derived
for weak solutions, and the properties of the precipitation
fronts are analyzed. In Sec. IV, we study a reduction of the
model resulting from imposing the constant pressure �“rigid
bottom,” instead of free material surface� boundary condi-
tion; this allows us to filter out the global modes and to
restrict attention to the most important baroclinic modes. In
Sec. V, we establish the one-layer and quasigeostrophic lim-
its of our model and show how one recovers the models
known in the literature. In Sec. VI, we present examples of
numerical simulations with the model, illustrating its basic
properties in the simplest nonrotating one-dimensional con-
figuration. Section VII contains conclusions and a discus-
sion. A variant of the model with the mass flux through the
upper boundary, which should be rather considered as the
lower part of a more complicated three-�or more� layer sys-
tem, is briefly discussed in Appendix A. Appendix B con-
tains a generalization to nonconstant relaxation threshold for
precipitation.

II. DERIVATION OF THE TWO-LAYER RSW
EQUATIONS WITH MOIST CONVECTION

We start from the primitive equations in pseudoheight
isobaric coordinates7

d

dt
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d

dt
� = 0, �2.2�

� · v + �zw = 0, �2.3�

�z� = g
�

�0
. �2.4�

Here, v= �u ,v� denotes the horizontal velocity field, �d /dt�
=�t+v ·�+w�z denotes the Lagrangian derivative, �
= ��x ,�y�, w is the vertical velocity, and f is the Coriolis
parameter, which will be considered constant for simplicity
in what follows. k is the unit vector in the z-direction, g is
gravitational acceleration, � is potential temperature, �0 is a
normalization constant �potential temperature on the
ground�, and � is geopotential. It should be remembered7

that an approximation of constant in the vertical �in
pseudoheight coordinate z̄� pseudodensity r, defined as rdz̄
=�dz, where � is the air density and z is geometric height, is
made in the model in order to arrive at the incompressibility
condition �Eq. �2.3��.

The system �Eqs. �2.1�–�2.4�� describes the dry adiabatic
dynamics of the atmosphere, where evaporation of water and
condensation of the water vapor are switched off. The
specific humidity q is conserved during the motion of air
parcels

d

dt
q = 0. �2.5�

In the presence of precipitation �the evaporation will be not
considered throughout the paper, although it may be easily
added�, the potential temperature �=entropy� Eq. �2.2� and
the specific humidity Eq. �2.5� acquire a source and a sink,
respectively. Nevertheless, there still exists a Lagrangian in-
variant, the moist enthalpy �ME� �+ �L /cp�q, where L is the
latent heat release coefficient and cp is the specific heat.8 On
the isobaric surface, this quantity is conserved for any air
parcel

d

dt
�� +

L

cp
q� = 0. �2.6�

Our goal is to obtain vertically averaged primitive equa-
tions for large-scale atmospheric motions, including the pre-
cipitation effects. As is well known,9 vertical averaging of
the “dry” Eqs. �2.1�–�2.4� between consecutive material sur-
faces leads to multilayer RSW equations. One could try to
average the full “moist” version of these equations. This
would lead, however, to substantial difficulties due to the
essential nonlinearity of the equation of state of the moist air
and of the resulting expressions for source and sinks, to be
added to Eqs. �2.2� and �2.5�, respectively. We would rather
adopt another, heuristic, approach. Precipitation leads to la-
tent heat release and related moist convection. We will try to
incorporate these phenomena in the traditional shallow-water
setting by adding appropriate sinks/sources, like we have al-
ready done while deriving the simplest one-layer moist-

convective RSW model.1 For simplicity, we will limit our-
selves to two-layer configurations, multilayer generalizations
being straightforward.

We thus consider three material surfaces zk�x ,y , t�
�k=0,1 ,2� with moist-convective fluxes represented by ad-
ditional vertical velocities W1 and W2 through the upper
boundaries, as shown in Fig. 1,

�
w0 =

dz0

dt
,

w1 =
dz1

dt
+ W1,

w2 =
dz2

dt
+ W2.

	 �2.7�

Under the hypothesis of constant pseudodensity, the extra
vertical velocity indeed corresponds to a mass flux. The ex-
plicit form of these fluxes will be obtained below from the
moist enthalpy conservation.

The hydrostatic relation Eq. �2.4� is integrated in z in
each layer, giving the following expressions for the geopo-
tential:

��z�

= ���z0� + g
�1

�0
�z − z0� , if z0 � z � z1,

��z0� + g
�1

�0
�z1 − z0� + g

�2

�0
�z − z1� , if z1 � z � z2,	

�2.8�

where �1,2 are averaged potential temperatures in the lower
and upper layers 
z0 ,z1� and 
z1 ,z2�, respectively. We verti-
cally average the equations of the system �Eqs. �2.1�–�2.3��
in each layer using Eqs. �2.7� and �2.8�, and the mean field
approximation: �ab��a�b. Furthermore, we suppose that
the averaged potential temperature remains horizontally ho-
mogeneous in each layer �otherwise so-called Ripa’s equa-
tions result, instead of the standard RSW1�: ��i=0. We thus
obtain the momentum

W

W2

1

θ

θ1

2

0

2z

z

z

1

FIG. 1. Sketch of the atmospheric two-layer RSW model with mass ex-
changes through the boundaries via additional vertical velocities W1 and W2.
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�
�tv1 + �v1 · ��v1 + fk � v1 = − ���z1� + g

�1

�0
� z1,

�tv2 + �v2 · ��v2 + fk � v2 = − ���z2� + g
�2

�0
� z2

+
v1 − v2

h2
W1,

	
�2.9�

and the mass conservation equations

��th1 + � · �h1v1� = − W1,

�th2 + � · �h2v2� = + W1 − W2,
� �2.10�

in both layers, where vi= �vi. � · i means the vertical average
over the layer i, and hi=zi−zi−1 is the thickness of the layer i.
hi is directly proportional to the mass of the layer since
pseudodensity is supposed to be constant. Equations �2.9�
and �2.10� are the equations of the two-layer RSW model
with �yet undetermined� mass exchanges and no boundary
conditions imposed at z0 and z2. Such general configuration
is presented in Fig. 1. It should be mentioned that the last
term of the second equation in Eq. �2.9� represents a vertical
transfer of momentum by convection and follows in the ap-
proximation v�zi��vi. Note that such term also appears in
the three-layer model developed similar to our considerations
in Ref. 10.

We now vertically integrate the ME conservation
Eq. �2.6� and obtain the following:

�
�1��1h1 +

L

cp
Q1� = − ���z1� +

L

cp
q�z1��W1,

�2��2h2 +
L

cp
Q2� = + ���z1� +

L

cp
q�z1��W1

− ���z2� +
L

cp
q�z2��W2,

	
�2.11�

where Qi=�zi−1

zi qdz is the bulk humidity in the corresponding
layer, and we defined �i�a�=�ta+� · �avi�. Using the con-
stancy of potential temperature and the mass conservation
Eq. �2.10�, these expressions are rewritten as follows:

�
L

cp
�1�Q1� = − ���z1� +

L

cp
q�z1� − �1�W1,

L

cp
�2�Q2� = + ���z1� +

L

cp
q�z1� − �2�W1

− ���z2� +
L

cp
q�z2� − �2�W2.

	 �2.12�

Then we can explicitly link Wi to the precipitation Pi in the
corresponding layer by supposing that precipitation is the
only moisture sink

�tQi + � · �Qivi� = − Pi. �2.13�

In the precipitating regions �Pi�0�, moisture is saturated
q�zi�=qs�zi� and the temperature of the air mass dxdyWidt
convected due to the latent heat release ��zi�+ �L /cp�qs�zi�
must correspond to the temperature of the upper layer �i+1.

By choosing a “dry” stable stratification of the atmosphere,

�i+1 = ��zi� +
L

cp
q�zi� � �i +

L

cp
q�zi� � �i, �2.14�

with constant ��zi� and q�zi�, we get from Eqs. �2.12� and
�2.13� that mass sinks are proportional to precipitation,

Wi = 	iPi, �2.15�

with a positive-definite coefficient

	i =
L

cp��i+1 − �i�
�

1

q�zi�
� 0. �2.16�

Here, �3 is an undefined potential temperature above z2.
The last step of the derivation consists of linking the

precipitation to the bulk humidity. To do this, we will use a
Betts–Miller-type scheme. The original one11 corresponds to
the relaxation by precipitation of the specific humidity q to a
vertical convective reference profile qc�z�. We apply a verti-
cally averaged version of the relaxation by assuming that the
bulk humidity in each layer Qi relaxes to a reference value
associated to the saturation value Qi

s. For simplicity, the latter
is chosen constant, but it can also depend on the layer thick-
ness hi �see Appendix B�

Pi =
Qi − Qi

s



H�Qi − Qi

s� �2.17�

where H� · � is the Heaviside function.
Equations �2.9�, �2.10�, �2.13�, �2.15�, and �2.17� are to

be completed by boundary conditions. More precisely, one
has to make assumptions on the character of the surfaces
zk�x ,y , t� and on their geopotentials ��zk�. In the following
Secs. III and IV and in Appendix A, we derive three variants
of the moist-convective two-layer RSW model �mc2RSW�
and analyze their properties.

III. THE TWO-LAYER MOIST-CONVECTIVE RSW
MODEL „MC2RSW…

A. The model

In the first variant of the two-layer model, which is
sketched in Fig. 2, the upper boundary is “rigid” �isobaric�,
z2=const, while the geopotential of the bottom boundary re-
mains constant, ��z0�=const, as in the standard representa-
tion of the ground if the pressure is used as the vertical
coordinate.12 Since moisture is usually concentrated in the

θ

θ1

2
h

h1

2W

P>0

FIG. 2. Sketch of the mc2RSW model.
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lower atmosphere, we suppose that Q2=0 and that convec-
tive flux through the top boundary is zero, W2=0.

In this case, Eqs. �2.9�, �2.10�, and �2.13� become

�tv1 + �v1 · ��v1 + fk � v1 = − g � �h1 + h2� , �3.1�

�tv2 + �v2 · ��v2 + fk � v2 = − g � �h1 + �h2�

+
v1 − v2

h2
	P , �3.2�

�th1 + � · �h1v1� = − 	P , �3.3�

�th2 + � · �h2v2� = + 	P , �3.4�

�tQ + � · �Qv1� = − P , �3.5�

where �=�2 /�1 is the stratification parameter and for sim-
plicity we take �0=�1 and omit the index 1: W1=W, P1= P,
	1=	, and Q1=Q. The precipitation term is given by Eq.
�2.17� with a constant saturation value Q1

s =Qs.

B. Conservation laws

Dropping a constant pseudodensity factor, the energy
density of each layer is defined as

�e1 = h1
v1

2

2
+ g

h1
2

2
,

e2 = h2
v2

2

2
+ gh1h2 + �g

h2
2

2
,	 �3.6�

and one can show that for the total energy of the isolated
system E=�dx�e1+e2�, we get the following:

�tE = −� dx	P�gh2�1 − �� +
�v1 − v2�2

2
� . �3.7�

The first term in the right-hand side �rhs� is positive for a
stable stratification ��1 and corresponds to the production
of potential energy while the second term is always negative
and corresponds to the destruction of kinetic energy due to
the drag produced by convective mass exchange. At the ze-
roth order in perturbations over the state of rest, precipitation
thus increases the energy, which is consistent with our intu-
ition on latent heat release

�tE � −� dx	PgH2�1 − �� . �3.8�

As follows from Eq. �3.6�, we work with the dry energy,
which will be just called energy hereafter. An example of
“moist” energy functional may be found in Refs. 3 and 6.

As follows from Eqs. �3.3� and �3.4�, the mass of each
layer is not conserved, but the total mass of the system is
constant.

Moist enthalpy in the lower layer is defined by m1=h1

−	Q and is always locally conserved

�tm1 + � · �m1v1� = 0. �3.9�

Since the upper layer is dry �Q2=0�, the moist enthalpy is
not defined there.

Momentum equations in each layer are derived by com-
bining Eqs. �3.1�, �3.3�, �3.2�, and �3.4�, pairwise

��t + v1 · ���v1h1� + v1h1 � · v1 + fk � �v1h1�

= − g �
h1

2

2
− gh1 � h2 − v1	P , �3.10�

��t + v2 · ���v2h2� + v2h2 � · v2 + fk � �v2h2�

= − �g �
h2

2

2
− gh2 � h1 + v1	P . �3.11�

The second term in the rhs of each equation takes into ac-
count the mutual influence of the layers and does not allow
us to rewrite these equations in a conservative form, even in
the absence of the Coriolis force. The last term in each equa-
tion represents a drag due to moist convection, which also
appears in the three-layer model of Ref. 10. It acts as an
effective friction and diminishes the energy, cf. Eq. �3.7�.
The sum of Eqs. �3.10� and �3.11� in the absence of rotation
�f =0� gives local conservation of the total momentum v1h1

+v2h2. This latter is thus not affected by the moist processes.
Potential vorticity �PV� plays an important role in rotat-

ing fluids. Its evolution in each layer is given by

��t + v1 · ��
�1 + f

h1
=

�1 + f

h1
2 	P , �3.12�

��t + v2 · ��
�2 + f

h2
= −

�2 + f

h2
2 	P

+
k

h2
· �� � �v1 − v2

h2
	P�� , �3.13�

where �i=k · ���vi�=�xvi−�yui �i=1,2� is the relative vor-
ticity. Thus, PV in each layer is not a Lagrangian invariant in
the precipitating regions. The main source term, �−1�i−1��i

+ f�hi
−2	P, reinforces�weakens� PV in the lower�upper� layer.

This is in agreement with the previous results in the one-
layer mcRSW model.13 Another source appears in the upper
layer PV Eq. �3.13� and represents the vorticity induced by
the drag due to moist convection.

Conservation of the moist enthalpy in the lower layer
Eq. �3.9� allows us to derive a new Lagrangian invariant, the
moist potential vorticity �MPV�

��t + v1 · ��
�1 + f

m1
= 0. �3.14�

There is no equivalent of this quantity in the upper layer.

C. Mathematical properties

1. Characteristic equation

As usual, in studying the hyperbolic structure of the
mc2RSW equations �which may be anticipated from what is
known of its “dry” counterpart�, reducing the spatial dimen-
sions allows us to make explicit calculations. The 1.5-
dimensional �1.5D� version of the system �Eqs. �3.1�–�3.5��
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�i.e., with all dependence on one spatial coordinate, y, re-
moved, but velocity in y-direction remaining� can be rewrit-
ten in the standard quasilinear form

�tf + A�f��xf = b�f� . �3.15�

where f is a vector representing the variables
�u1 ,v1 ,u2 ,v2 ,h1 ,h2 ,Q�, A is a matrix given by

A =�
u1 0 0 0 g g 0

0 u1 0 0 0 0 0

0 0 u2 0 g �g 0

0 0 0 u2 0 0 0

h1 0 0 0 u1 0 0

0 0 h2 0 0 u2 0

Q 0 0 0 0 0 u1

� , �3.16�

and b is the vector of the source/sink terms given by

b =�
+ fv1

− fu1

+ fv2 +
u1 − u2

h2
	P

− fu2 +
v1 − v2

h2
	P

− 	P

+ 	P

− P

� . �3.17�

A quasilinear system is hyperbolic only when the eigen-
values of the matrix A are real.14 In this case, they corre-
spond to propagation velocities along the characteristics
c�x , t�. Solving the eigenproblem det�A−cI�=0, where I is
the unit matrix, leads to the following characteristic equa-
tion:

F�c� = 
�u1 − c�2 − gh1�
�u2 − c�2 − �gh2� − gh1gh2 = 0,

�3.18�

if nonpropagating characteristics �c=u1 and c=u2� are dis-
carded. This is a fourth-order algebraic equation that may not
have real solutions.

The linearization of Eq. �3.18� around a state of rest
allows us to obtain an approximation of the characteristics
for small perturbations. The solutions are as follows:

C = g�H1 + �H2�
1  ��

2
, �3.19�

where we use the notation C=c2 and

� = 1 −
4H1H2�� − 1�
�H1 + �H2�2 =

�H1 − �H2�2 + 4H1H2

�H1 + �H2�2 . �3.20�

These solutions may be related to the speeds of dry linear
gravity waves in the system. For a stable stratification ��
�1�, it is easy to show that 0���1 and C�0, which
means that the four linear characteristic velocities c are real
and that the system Eq. �3.15� linearized �in its hydrody-
namical part� around the state of rest is hyperbolic. The slow

solutions C− correspond to internal characteristics due to
their strong baroclinic components. By analogy, the fast,
mostly barotropic, solutions C+ may be called external.15

When precipitation is taken into account, we will ana-
lyze the system under the assumption of immediate relax-
ation: 
→0. This is a reasonable simplification, as the time-
scale of the relaxation toward saturated humidity in the
atmosphere is rather small �between 2 and 12 h�. This limit
corresponds to the strict quasiequilibrium hypothesis and is
singular in the sense that the system becomes piecewise hy-
perbolic. In the nonprecipitating areas �P=0�, the same re-
sults as above are valid, while in the precipitating areas the
precipitation term can be rewritten in terms of wind conver-
gence in the lower layer,2 P=−Qs� ·v1, which modifies the
properties of the system �such approximation was systemati-
cally derived in the one-layer case1�. Consequently, the sys-
tem �Eqs. �3.1�–�3.5�� takes the following form:

�tv1 + �v1 · ��v1 + fk � v1 = − g � �h1 + h2� , �3.21�

�tv2 + �v2 · ��v2 + fk � v2 = − g � �h1 + �h2�

−
v1 − v2

h2
	Qs � · v1,

�3.22�

�th1 + � · �h1v1� = + 	Qs � · v1, �3.23�

�th2 + � · �h2v2� = − 	Qs � · v1, �3.24�

while the humidity field is always staying at its saturation
value: Q=Qs.

The characteristic equation for the 1.5D version of the
system �Eqs. �3.21�–�3.24�� is given by

Fm�c� = F�c� + Rg	Qs = 0, �3.25�

where

R = �u1 − u2�2 − �� − 1�gh2. �3.26�

Linearizing Eq. �3.25� leads to the following moist linear
characteristic velocities:

C
m = g�H1 + �H2�

1  ��m

2
. �3.27�

The discriminant is modified by precipitation with respect to
the dry one �Eq. �3.20��,

�m = 1 −
4M1H2�� − 1�
�H1 + �H2�2 = � +

4�� − 1�	QsH2

�H1 + �H2�2 . �3.28�

For a stable stratification ���1�, it is easy to show that
C

m �0, and hence corresponding cm are real, for a positive
moist enthalpy of the lower layer in the state of rest: M1

=H1−	Qs�0. The linearized system �Eqs. �3.21�–�3.24�� is
then hyperbolic under this assumption.

Comparison of the dry and the moist linear characteristic
velocities gives
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C−
m � C− �

g�H1 + �H2�
2

� C+ � C+
m, �3.29�

for 0�M1�H1. Thus, in the model, the moist internal
�mainly baroclinic� mode propagates more slowly than the
dry one, which is consistent with the observations.16

These results can be compared with numerical solutions
of nonlinear characteristic Eqs. �3.18� and �3.25� for a given
set of parameters. Figure 3 shows the dry �solid� and the
moist �dashed� characteristic velocities as functions of the
baroclinic velocity ubc=u1−u2. Two of the four dry solutions
�corresponding to the internal characteristic velocities� be-
come complex for 1.2� �ubc� /�gh1�3.6 while all of the
moist ones stay real. The result �Eq. �3.29�� is well verified
for ubc=0 and one observes that it is maintained in the non-
linear case until �ubc� /�gh1=1 for the chosen values of pa-
rameters. This limit corresponds to R=0, denoted by solid
gray lines in the figure.

2. Criterion of hyperbolicity

The hyperbolicity of the system is preserved if all four
solutions c of the characteristic Eq. �3.18� are real. In the
previous section, we showed that this is guaranteed around
the state of rest. Now we attempt to define a criterion of

hyperbolicity �still in the 1.5D system� globally, by using the
method proposed by Ovsyannikov.17 The characteristic
Eq. �3.18� can be written in the form

�p2 − 1��r2 − 1� =
1

�
, �3.30�

with

p =
u1 − c
�gh1

and r =
u2 − c
��gh2

. �3.31�

The solutions can be found as intersections of the curve de-
fined by Eq. �3.30� and the straight line

r =� h1

�h2
p −

ubc

��gh2

, �3.32�

in the �p ,r� plane, as follows from Eq. �3.31�. For p2�1 and
r2�1, the solutions of Eq. �3.30� are simply

r = �1 +
1

��p2 − 1�
�3.33�

and possess straight asymptotes at p= 1 and r= 1. For
p2�1 and r2�1, Eq. �3.30� is close to the one of the circle
p2+r2=constant, and solutions can be expressed as functions
of the polar angle �

p =�� − 1

�
cos � and r =� � − 1

� sin2 � + cos2 �
sin � .

�3.34�

These solutions are shown in Fig. 4.
By a simple geometric argument, it is possible to obtain

a sufficient condition for the existence of four intersection
points between these two curves in the �p ,r� plane: the
straight line must cross the circle of radius ���−1� /�. This
imposes the following condition on the vertical shear:

FIG. 3. Normalized solutions ĉ= �c−u1� /�gh1 of the dry and moist charac-
teristic equations F�c�=0 �Eq. �3.18�� �solid� and Fm�c�=0 �Eq. �3.25��
�dashed�, respectively, as functions of the normalized baroclinic velocity û
= �ubc� /�gh1. Vertical gray lines correspond to solutions of R=0 for which
the dry and moist characteristic velocities are identical: �û�=1. Here,
�=h1 /h2=0.5, �=1.5, and 	Qs /h1=0.9.

FIG. 4. The curves �Eq. �3.30�� �solid� and �Eq. �3.36�� �dashed� and the
straight line �Eq. �3.32�� in the �p ,r�-plane. �=h1 /h2=0.5, �=1.5, 	Qs /h1

=0.9, and ubc /�gh1=0.5�1.
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�ubc�
�gh1

� ��
� − 1

�
if � � � ,

�� − 1

�
if � � � ,	 �3.35�

where �=h1 /h2. Note that this condition corresponds to
R=0 for ���.

In the precipitating regions in the immediate relaxation
approximation, the characteristic Eq. �3.25� becomes

�p2 − 1��r2 − 1� =
1

�
−

R	Qs

�gh1h2
. �3.36�

Solutions similar to the previous one can be derived if R
�gh1h2 /	Qs, which is an additional constraint on the verti-
cal shear

�ubc�
�gh1

�
�� − 1 +

h1

	Qs

�
, �3.37�

where h1 /	Qs�1 for positive moist enthalpy. In this case,
the sufficient condition for the existence of four intersections
between the two curves consists of a straight line crossing
the circle of radius ���−1� /�+R	Qs /�gh1h2, and thus

�ubc�
�gh1

� ��
� − 1

�
if � � � ,

�� − 1

�

h1 − 	Qs

�h2 − 	Qs
if � � � .	 �3.38�

Note that in the particular case �h2−	Qs�0, the existence
of the four intersections is directly satisfied and no other
condition for the vertical shear than Eq. �3.37� is needed.

In conclusion, for positive moist enthalpy m1=h1−	Qs,
the hyperbolicity criterion is the same �if ����, or looser
�if ����, in the moist as compared to the dry case.

It is important to stress that the conditions Eqs. �3.35�
and �3.38� together with Eq. �3.37� are sufficient but not
necessary. Furthermore, even if Eq. �3.37� is not satisfied, the
system may be hyperbolic in precipitating regions where
P
→0�0 while not hyperbolic in nonprecipitating regions.

In Fig. 3, the hyperbolicity limits �Eqs. �3.35� and
�3.38�� are the same and are indicated by the gray lines cor-
responding to R=0 since ���. One observes that the hy-
perbolicity in nonprecipitating regions is lost for the internal
characteristic velocities, which become complex, while the
hyperbolicity in the precipitating regions is preserved beyond
this limit. Note that this happens for R�0 when the inequal-
ity between dry and moist characteristic velocities is not sat-
isfied anymore, see Eq. �3.29�.

3. Linearized Riemann variables

A quasilinear system �Eq. �3.15�� can be rewritten in the
characteristic form14

l j��t + cj�x�f = l jb�f� �3.39�

where cj is the eigenvalue of the n�n matrix A and l j—the
associated left eigenvector �j=1, . . . ,n�. For some systems,

this form can be simplified by a change of variables to give

��t + cj�x�rj = gj . �3.40�

In this case, it describes the evolution of solutions rj, called
Riemann variables, along the characteristic curves cj. If
gj =0, the Riemann variables become Riemann invariants.

The form of solutions ck �k=1, . . . ,4� of Eq. �3.18� is too
complicated to formulate the 1.5D system �Eqs. �3.1�–�3.5��
in the form of Eq. �3.39� or Eq. �3.40�. Nonetheless, a lin-
earized solution is always possible, especially in the absence
of rotation, and is useful in order to show how precipitation
affects the dry solutions.

By linearizing the hydrodynamic part of the one-
dimensional version of Eqs. �3.1�–�3.5� in the absence of

rotation around the state of rest �H1 ,H2 , Q̄� and by neglect-
ing the second-order precipitation term in the momentum
equation, the system is reduced to

���t + ck�x�rk = �−
ck

H1
+ � ck

2

gH1
− 1� ck

H2
�	P ,

�tr0 = − �1 −
	Q̄

H1
�P , 	 �3.41�

where the characteristic velocities ck are the positive and
negative square roots of Eq. �3.19� and the Riemann vari-
ables are given by

�rk = u1 +
ck

H1
�1 + � ck

2

gH1
− 1��u2 +

ck

H2
�2� ,

r0 = q −
Q̄

H1
�1, 	 �3.42�

where hi=Hi+�i �i=1,2� and Q= Q̄+q. Precipitation modi-
fies the Riemann variable on each characteristic curve. This
modification strongly depends on the value of ck. In the im-
mediate relaxation limit �
→0�, the system is piecewise hy-
perbolic and the characteristic form of the 1D linearized ver-
sion of Eqs. �3.21�–�3.24� in the precipitating region is given
by

��t + ck
m�x�rk

m = 0, �3.43�

where the moist Riemann variables

rk
m = u1 +� ck

m

M1
−
� ck

m2

gM1
− 1�	Qs

M1

ck
m

H2

1 +
	Qs

M1

ck
m2

gH2

��1

+

ck
m2

gM1
− 1

1 +
	Qs

M1

ck
m2

gH2

�u2 +
ck

m

H2
�2� �3.44�

are invariant �M1=H1−	Qs�. This result is in agreement
with the nonlinear results obtained previously in the one-
layer model.1
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4. Fronts and Rankine–Hugoniot conditions

In this subsection, we will study the propagation of dis-
continuities, both in dynamical variables and their deriva-
tives, which will be frequently called fronts below. We will
be particularly interested in precipitation fronts: the bound-
aries between precipitating and nonprecipitating regions.
Discontinuities correspond to weak solutions of a hyperbolic
system and their propagation must satisfy the Rankine–
Hugoniot �RH� conditions deduced from the conservation
equations for mass and momentum.14

a. Shocks: Discontinuities in dynamical variables. A
complete system of the RH conditions describing the jumps
of the dynamical variables across discontinuities �shocks�,
and thus completely determining the weak solutions, may be
obtained for a system of conservation laws.18 The exchange
terms gh1�h2 and gh2�h1 appearing in the momentum Eqs.
�3.10� and �3.11� prevent us from rewriting these equations
in the conservative form �t f j +� ·F j�f�=dj�f�. Only the mass
in each layer and the total momentum �v1h1+v2h2� are lo-
cally conserved. The available RH conditions for the 1.5D
system �Eqs. �3.1�–�3.5�� may be derived by standard rules

�
− s�u1h1 + u2h2�

+ �u1
2h1 + u2

2h2 + g
h1

2

2
+ g�

h2
2

2
+ gh1h2� = 0,

− s�v1h1� + �u1v1h1� = 0,

− s�v2h2� + �u2v2h2� = 0,

− s�h1� + �h1u1� = 0,

− s�h2� + �h2u2� = 0,

− s�Q� + �Qu1� = 0,

	
�3.45�

where here and below s is the velocity of propagation of the
discontinuity and � . . . � is a jump across this discontinuity. We
emphasize here that, as in the mcRSW model,1 precipitation
does not appear in these relations because in the integrated
equations, limxs→a limb→xs

�a
bP=0, where xs is the position of

the discontinuity. Since P is a continuous function of Q, it
simply inherits its jump. Even if �P� exists, it only appears in
the RH conditions for the derivatives of the dynamical vari-
ables and does not directly affect the shock propagation.

As the conditions �Eq. �3.45�� are not complete, with one
more condition missing, an additional constraint must be
chosen to close the system. This point has been largely dis-
cussed in the literature, in particular, in the context of gravity
currents. Reduced models under additional hypotheses of
weak stratification or thin upper layer have been derived in
order to simplify the RH conditions, so that additional con-
straint is no more needed.19 Since shocks dissipate energy,
the additional constraint was usually chosen to represent the
energy loss in one of the layers depending on the type of
shock.20,21 Holland et al.22 introduced a turbulent internal
energy in the energy equation to take into account the dissi-
pation by mixing. Jiang and Smith23 developed an ideal
shock theory by parametrizing the small scale turbulence by
Newtonian or non-Newtonian viscosity term in the momen-

tum equation. The closure problem of the RH conditions in a
two-layer SW model still remains open. We will come back
to this discussion in Sec. VI.

In the particular case of a discontinuity inside a precipi-
tating region in the immediate relaxation limit �
→0�, the
jump in humidity �Q� is impossible since Q=Qs, and all the
conditions �Eq. �3.45�� except for the first are modified cor-
respondingly,

�− s�v1h1 + v2h2� + �u1v1h1 + u2v2h2� = 0,

− s�m1� + �m1u1� = 0,

− s�h2� + �h2u2 + 	Qsu1� = 0.
	 �3.46�

The condition derived from the mass conservation in the
lower layer h1 is replaced by the one derived from the moist
enthalpy conservation m1=h1−	Qs. Two additional con-
straints are now needed to close the system.

b. Discontinuities in the derivatives of dynamical vari-
ables and precipitation fronts. In the immediate relaxation
limit 
→0, precipitation can be considered to be discontinu-
ous at the interface between precipitating and nonprecipitat-
ing regions. The jump �P� appears only in the RH conditions
for the derivatives of the dynamical variables, and corre-
sponds to a weak discontinuity. The associated RH condi-
tions are derived from the integration of the conservation
laws for the derivatives of the dynamical variables. Contrary
to the momentum equations �3.10� and �3.11�, the equations
for the derivatives of the momentum in each layer do have a
conservative form,

�
�tx�u1h1� + �xx�u1

2h1 + g
h1

2

2
�

+ �x�gh1�xh2� − f�x�v1h1� = − 	�x�u1P� ,

�tx�u2h2� + �xx�u2
2h1 + �g

h2
2

2
�

+ �x�gh2�xh1� − f�x�v2h2� = + 	�x�u1P� ,

�tx�v1h1� + f�x�u1h1� = − 	�x�v1P� ,

�tx�v2h2� + f�x�u2h2� = + 	�x�v1P� ,

	 �3.47�

so a full system of RH conditions is as follows:

�
�u1 − s���xu1� + g��xh1� + g��xh2� = 0,

�u2 − s���xu2� + g��xh1� + �g��xh2� =
u1 − u2

h2
�P� ,

�u1 − s���xv1� = 0,

�u2 − s���xv2� =
v1 − v2

h2
�P� ,

�u1 − s���xh1� + h1��xu1� = − 	�P� ,

�u2 − s���xh2� + h2��xu2� = + 	�P� ,

�u1 − s���xQ� + Qs��xu1� = − �P� ,

	
�3.48�

where dynamical variables themselves are supposed to be
continuous. Discarding the nonpropagating solutions s=u1

and s=u2, these equations can be reorganized into two main
conditions,
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�F�s���xu1� = Rg	�P� ,

Fm�s���xu1� = − �u1 − s�Rg	��xQ� ,
� �3.49�

which allow us to compare the precipitation front speed s
with the dry and moist characteristic velocities, F�c�=0 and
Fm�c�=0, as a function of the sign of ��xu1�, ��xQ�, and �P�.
The term R is given by Eq. �3.26�.

Linearization of the coefficients of the jump conditions
in Eq. �3.49� around the state of rest gives

��s2 − C+��s2 − C−���xu1� = − �� − 1�gH2g	�P� ,

�s2 − C+
m��s2 − C−

m���xu1� = − s�� − 1�gH2g	��xQ� .
�

�3.50�

For a configuration where condensation arises on the right
side of the discontinuity, P−=0 and P+=−Qs�xu1+�0, there
exist five types of precipitation fronts:

�1� the dry external fronts, �C+�s��C+
m,

�2� the dry internal subsonic fronts, �C−
m�s��C−,

�3� the moist internal subsonic fronts, −�C−
m�s�0,

�4� the moist internal supersonic fronts, −�C+�s�−�C−,
and

�5� the moist external fronts, s�−�C+
m.

These internal fronts are exactly the precipitation fronts
found by Frierson et al.3 in a linear baroclinic model.

Figures 5 and 6 show the nonlinear solutions s of Eq.
�3.49� for the configuration P−=0 as functions of the baro-
clinic velocity ubc for ��xu1��0 and ��xu1��0, respectively.
Note that the solutions in the configuration P−=0 only exist
for s−u1�Qs��xu1� / ��xQ�. Linearized results are well veri-
fied for ubc=0: the precipitation fronts 1, 2, 3, and 5 are
represented in Fig. 5, and the front 4 in Fig. 6. As for the
characteristic velocities, the inequalities that define them are
maintained for �ubc� /�gh1�1 �R�0�.

D. Summary of the properties of the mc2RSW model

We have shown that the mc2RSW model has enjoyable
properties. In precipitating regions, the mass transfer from
the lower to the upper layer induces a momentum transfer, a
PV modification, and a total energy variation, which corre-
spond to physical intuition. As it should be, the moist en-
thalpy �ME� in the humid lower layer is locally conserved,
offering a new Lagrangian invariant: the moist potential vor-
ticity �MPV�. The system is hyperbolic for positive ME and
moderate baroclinic velocities. In the immediate relaxation
limit �
→0�, the system becomes piecewise hyperbolic and
moist characteristics appear in the precipitating regions. As
in the observations,16 the moist internal �mostly baroclinic�
characteristics propagate more slowly than the dry ones for
positive moist enthalpy and moderate baroclinic velocity
�R�0�. Under these conditions, five types of precipitation
front exists. Among them, the three internal ones are the
two-layer equivalents of the precipitation fronts previously
found in linear baroclinic3 and nonlinear one-layer1 models.

IV. THE TWO-LAYER MOIST-CONVECTIVE RSW
MODEL WITH CONSTANT LOWER PRESSURE
„“RIGID BOTTOM” RB-MC2RSW…

It is perfectly natural that the fast �cf. Eq. �3.29�� moist
external waves appear in the two-layer system with two free

FIG. 5. Solutions ŝ=s−u1 /�gh1 of the implicit Eq. �3.49� �solid black� as
functions of baroclinic velocities û=ubc /�gh1 for the configuration with
P−=0 and ��xu1��0. Solid and dashed gray lines correspond to dry and
moist characteristic velocities, respectively, as in Fig. 3. Vertical dashed
lines correspond to solutions of the equation R=0 for which the dry and
moist characteristic velocities are identical: �û�=1. The nonlinear extension
of precipitation fronts 1, 2, 3, and 5 of Eq. �3.50� are found for �û��1 �R
�0�. Here, �=h1 /h2=0.5, �=1.5, 	Qs /h1=0.9, and �gh1	��xQ� /h1��xu1�
=0.3.

FIG. 6. Solutions ŝ=s−u1 /�gh1 of the implicit Eq. �3.49� �solid black� as
functions of baroclinic velocities û=ubc /�gh1 for the configuration with
P−=0 and ��xu1��0. Solid and dashed gray lines correspond to dry and
moist characteristic velocities, respectively, as in Fig. 3. Vertical dashed
lines correspond to solutions of R=0 for which the dry and moist charac-
teristic velocities are identical: �û�=1. The nonlinear extension of precipita-
tion front 4 of Eq. �3.50� is found for �û��1 �R�0�. �=h1 /h2=0.5,
�=1.5, 	Qs /h1=0.9, and �gh1	��xQ� /h1��xu1�=−1.
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material surfaces. However, they have no counterparts in the
observations, and seem to be physically irrelevant. These
waves may be easily filtered by “freezing” the lower bound-
ary, which leads to a purely baroclinic two-layer model. We
will briefly present the main properties of such a model in
this section. The previously used boundary condition at z0 is
henceforth changed: the geopotential ��z0� is now free and
z0 is constant.

A. The model

The corresponding system, sketched in Fig. 7, is de-
scribed by the following set of equations:

�tv1 + �v1 · ��v1 + fk � v1 = − ��1, �4.1�

�tv2 + �v2 · ��v2 + fk � v2 = − ��2 +
v1 − v2

h2
	P , �4.2�

�th1 + � · �h1v1� = − 	P , �4.3�

�th2 + � · �h2v2� = + 	P , �4.4�

�tQ + � · �Qv1� = − P , �4.5�

�2 − �1 = g�h1 + �h2� , �4.6�

where �1=��z0�, �2=��z2�, and �=�2 /�1 as before. Due to
the constraint

h1 + h2 = H = const, �4.7�

the only independent height variable is the deviation of the
interface from its rest position. As usual, in the rigid lid/
bottom two-layer RSW,24 the barotropic part of the geopo-
tential is not an independent variable and may be expressed,
up to an arbitrary function of time, in terms of other vari-
ables via the constraint

� ·
v1h1 + v2h2

H
= 0. �4.8�

The baroclinic part of the pressure is then determined from
the dynamic boundary condition at the interface �Eq. �4.6��.

B. Conservation laws

The conservation laws for moist enthalpy, PV and MPV,
are the same as in the mc2RSW model, cf. Sec. II. Using
Eqs. �4.7� and �4.8�, one can show that the evolution of the

total energy of the isolated system is the same as in the
mc2RSW model, and is given by Eq. �3.8�. Momentum
equations are identical to Eqs. �3.10� and �3.11�, except for
the two first terms in the rhs, which are replaced by −h1��1

and −h2��2 for the lower and the upper layer equations,
respectively. As in the mc2RSW model, the total momentum
is locally conserved in the absence of rotation �f =0�.

C. Mathematical properties

1. Characteristic equation

In order to reduce the 1.5D version of the system �Eqs.
�4.1�–�4.7�� with all dependence on y removed to the quasi-
linear form Eq. �3.15�, an additional hypothesis is required to
fix the barotropic component of the geopotential. For sim-
plicity, we set the barotropic velocity in the x direction to be
zero: ubt= �u1h1+u2h2� /H=0. Since H is constant, this hy-
pothesis means that the total barotropic momentum in the x
direction is zero. This allows us to determine the derivative
of the geopotential �1 as a function of other variables,24

�x�1 =
1

H
�− �x�u1

2h1 + u2
2h2 + g�� − 1�

h2
2

2
�

+ f�v1h1 + v2h2�� . �4.9�

The propagating solutions of the characteristic equation of
the reduced 1.5D system obtained in this way

c =
u1h2 + u2h1

H
�h1h2

H2 � , �4.10�

and are real if �=g��−1�H− �u1−u2�2�0. Linearizing this
equation, one obtains

cd = �g�� − 1�He, �4.11�

where He=H1H2 /H is the equivalent height and g��−1� is
the reduced gravity.

In the immediate relaxation approximation �
→0�, the
system �Eqs. �4.1�–�4.6�� can be rewritten in the precipitating
regions, where P=−Qs� ·v1, as follows:

�
�tv1 + �v1 · ��v1 + fk � v1 = − ��1,

�tv2 + �v2 · ��v2 + fk � v2 = − ��2 −
v1 − v2

h2
	Qs � · v1,

�th1 + � · �h1v1� = + 	Qs � · v1,

�th2 + � · �h2v2� = − 	Qs � · v1,

�2 − �1 = g�h1 + �h2� .

	�4.12�

Under the same hypothesis of zero barotropic velocity for the
1.5D version of the system �Eq. �4.12��, the propagating
characteristics c

m have the same expression as Eq. �4.10�
with the discriminant � replaced by

θ

θ1

2
h

h1

2W

P>0

FIG. 7. Sketch of the rb-mc2RSW model.
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�m = g�� − 1�H�1 −
	Qs

h1
� − �u1 − u2�2�1 −

	QsH

h1h2
�

= � + R	QsH

h1h2

, �4.13�

where the coefficient R is given in Eq. �3.26�. One observes
that these moist characteristics are real and the hyperbolicity
in the precipitating regions is guaranteed if �m�0. More-
over, these characteristics propagate more slowly than the
dry ones if R�0. For the linearized 1.5D version of the
system �Eq. �4.12��, one finds

cm = cd�1 −
	Qs

H1
� cd, �4.14�

if the moist enthalpy in the state of rest is positive: M1

=H1−	Qs�0.

2. Criterion of hyperbolicity

The criterion of hyperbolicity becomes explicit and is
based on the positivity of the discriminant of the character-
istic velocities. In the nonprecipitating regions, ��0 if the
vertical shear satisfies the condition

�ubc�
�gH

� �� − 1. �4.15�

This condition is analogous to the one found in Ref. 24 in the
two-layer model of the ocean, and corresponds to the thresh-
old of the Kelvin–Helmholtz �KH� instability, a classical
ageostrophic instability arising in shear flows.

In precipitating regions in the immediate relaxation limit
�
→0�, �m�0 replaces the previous condition and the cri-
terion becomes

�ubc�
�gH

���� − 1�
1 −

	Qs

h1

1 −
	Qs

he

, �4.16�

where he=h1h2 /H is the equivalent height and the moist en-
thalpy is supposed to be positive: m1=h1−	Qs�0. This
shows that the hyperbolicity is easier to preserve in the pre-
cipitating regions since he�h1. Furthermore, �m�0 is im-
mediately satisfied if he�	Qs.

3. Linearized Riemann variables

Even if the solutions of the nonlinear characteristic equa-
tion are known analytically, cf. Eq. �4.10�, the associated
Riemann variables are not. A linearization, following the
lines of Sec. III C 3, is then used for the system �Eqs.
�4.1�–�4.6��. Under the hypothesis of zero zonal barotropic
velocity, and in the absence of rotation, one obtains

���t  cd�x�r = �
cd

H1
	P ,

�tr0 = − �1 −
	Q̄

H1
�P . 	 �4.17�

Similarly to the mc2RSW model, the linearized Riemann
variables

�r = u1 
cd

H1
�1,

r0 = Q −
Q̄

H1
�1, 	 �4.18�

are modified in precipitating regions. In the immediate relax-
ation approximation �
→0�, the moist Riemann variables

r
m = u1 

cm

M1
�1 �4.19�

defined in the precipitating regions are invariant.

4. Fronts and Rankine–Hugoniot conditions
a. Strong discontinuities: Shocks. The RH conditions for

a strong shock �Eq. �3.45�� or a strong shock inside a pre-
cipitating region in the immediate relaxation limit
�Eq. �3.46�� still hold with the replacement of the first con-
dition in Eq. �3.45� by

�u1
2h1 + u2

2h2 + g�� − 1�
h2

2

2
+ H�1� = 0, �4.20�

which satisfies the condition of zero barotropic zonal veloc-
ity u1h1+u2h2=0 through the shock.

b. Precipitation fronts. The RH conditions �Eq. �3.48��
corresponding to precipitation fronts in the 1.5D mc2RSW
model still hold, except for the two first conditions, which
must be replaced by the unique condition

�u1 − s���xu1� + ��x�1� = 0, �4.21�

where �x�1 is given in Eq. �4.9�. These can be combined into
two main conditions:

��s − c+��s − c−���xu1� = −
1

H
R	�P� ,

�s − c+
m��s − c−

m���xu1� =
1

H
�u1 − s�R	��xQ� .	 �4.22�

For R�0, the hyperbolicity is preserved everywhere ��
��m�0� and the moist characteristic velocities are slower
than the dry ones: �c

m �� �c�. Defining the velocities relative
to the velocity in the lower layer ĉ=c−u1 �and ŝ=s−u1�, one
can show that

ĉ− � ĉ−
m � 0 � ĉ+

m � ĉ+, �4.23�

where baroclinic zonal velocity ubc=u1−u2�0 is chosen to
be negative. Consequently, for the configuration �P��0 and
��xQ��0, three precipitation fronts are found,

�1� the dry subsonic fronts, ĉ+
m� ŝ� ĉ+,

�2� the moist subsonic fronts, ĉ−
m� ŝ�0, and

�3� the moist supersonic fronts, ŝ� ĉ−.
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They are equivalent to the ones obtained in the one-layer
model.1 In the case of positive baroclinic zonal velocity ubc

�0, the relation �Eq. �4.23�� is reversed and the same pre-
cipitation fronts are found with subscripts + and � inter-
changed. Note that the case R�0 should be discarded, even
if hyperbolicity is preserved with �m���0, because it al-
lows the moist characteristics to propagate faster than the dry
ones, which is unphysical.

D. Summary of the properties of the rb-mc2RSW
model

Thus, the rigid bottom mc2RSW �rb-mc2RSW� model
filters out the external characteristics while preserving all
other properties of the mc2RSW model. It provides a non-
linear equivalent of the linear model previously studied in
Refs. 2–5. Note, however, that the rigid bottom/lid boundary
conditions are more difficult to treat by the finite-volume
numerical methods than the free-surface ones �see Sec. VI
below�.

V. LIMITING EQUATIONS AND RELATION
TO THE KNOWN MODELS

A. Formulation in terms of the barotropic and
baroclinic components

We first explicitly formulate the two-layer model in its
generic setting �Eqs. �2.9�, �2.10�, and �2.13�� in terms of
barotropic and baroclinic components, in order to see how
each component is affected by precipitation and moist con-
vection.

The baroclinic-barotropic decomposition of the velocity
field is defined by

�vbt =
h1v1 + h2v2

h1 + h2
,

vbc = v1 − v2,
	 ⇒ �v1 = vbt + �1 −

h

H
�vbc,

v2 = vbt −
h

H
vbc, 	

�5.1�

where H=h1+h2 and h1=h hereafter. For a dry upper layer,
Q2=0, q�z2�=0, and P2=0, and mass and moisture conser-
vation equations become

�tH + � · �Hvbt� = − W2, �5.2�

and

��th + � · �h�vbt + �1 −
h

H
�vbc�� = − W1,

�tQ + � · �Q�vbt + �1 −
h

H
�vbc�� = − P . 	 �5.3�

The momentum equations contain double �Kbc−bc, Gbt−bt,
Gbc−bc� and mixed �Kbt−bc� terms that describe the self-
interaction of the barotropic and the baroclinic modes, and
their nonlinear coupling, respectively,

�tvbt + fk � vbt + Gbt−bt + Gbc−bc

= −
h

H

���z1� − g � z1�

− �1 −
h

H
�
���z2� − �g � z2� +

hvbc

H2 W2, �5.4�

�tvbc + fk � vbc + Kbc−bc + Kbt−bc

= − g�� − 1� � �h − H� +
vbc

H − h
W1. �5.5�

The precise form of the �rather cumbersome� terms Kbc−bc,
Gbt−bt, Gbc−bc, and Kbt−bc, which are easy to write down, is
not important at the moment.

As expected, if W2=0, as in the above-considered
mc2RSW and rb-mc2RSW models, the terms W1=	P di-
rectly influence the baroclinic components �vbc, h� in the
precipitating regions �P�0�. This is in agreement with the
observations, which indicate that moist convection mostly
affects the baroclinic motions in the troposphere.

Based on this observation, purely baroclinic dynamics is
often considered in the literature.3 With a constant total
height H and no convection at the upper surface W2=0 �rb-
mc2RSW model�, the barotropic velocity becomes nondiver-
gent, see Eq. �5.2�, and, for small perturbations around the
state of rest �h=H1+��, vbt is indeed decoupled from vbc,
being forced only by ���z0�. Note that the last term of the
vbc Eq. �5.5� should not be taken into account, since it is of
the second-order of perturbation in the precipitating regions
�P�0�. The resulting linear system in the baroclinic sector
coincides with models previously studied in the literature2–5

for ��−�,

��tvbc + fk � vbc + = − ge � � ,

�t� + He � · vbc = − 	P ,

�tQ + Qe � · vbc = − P ,
	 �5.6�

where ge=g��−1� and Qe= �He /H1�Qs.
However, the nonlinearity couples barotropic and baro-

clinic components and produces an indirect influence of the
precipitation over the former. Note, finally, that if W2�0
�see Appendix A�, the barotropic component is directly af-
fected by the moist processes but the system in this case
should be considered as the lower part of a more general
three-layer system.

B. Quasigeostrophic approximation

Needless to say, the quasigeostrophic �QG� approxima-
tion resulting from the full “primitive” equations in the limit
of small Rossby numbers is relevant for large-scale atmo-
spheric motions that are, generally, close to the geostrophic
equilibrium in temperate latitudes. This approximation for
the multilayer RSW equations may be systematically derived
by multiscale asymptotic expansions,25 with different QG re-
gimes arising for different aspect ratios and strong/weak non-
linearity. Below, we will limit ourselves to the standard QG
regime26 with typical nonlinearity of the order of the Rossby
number, and the unperturbed thicknesses of the layers of the
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same order. In the mc2RSW model, we introduce a �single�
characteristic length scale L, a characteristic velocity scale V,
and the vortex turnover time-scale T=L /V, and define the
barotropic deformation radius Rd=�gH / f0, where H=H1

+H2 is the total height at the state of rest. The nondimen-
sional thicknesses of the layers are Di=Hi /H0, and will be
supposed to be of the same order. Dimensionless parameters
of the system, thus, are the Rossby number �=V / f0L, the
barotropic Burger number sbt=Rd

2 /L2, the typical nondimen-
sional deviation of the interface �and the free surface� �, and
the nondimensional gradient of the Coriolis parameter 	 /L,
where f = f0+	y. We then make a standard QG hypothesis
����	 / f0L→0, with sbt�O�1�. We will consider a quasi-
saturated state for which the deviations from the saturation
will be supposed to be small and of the same order as other
small parameters Q=H0�Qs+�q�. The nondimensional
mc2RSW equations are then given by

�
�
�tv1 + �v1 · ��v1� + �1 + �y�k � v1 = − ���1 + �2� ,

�
�tv2 + �v2 · ��v2� + �1 + �y�k � v2

= − ���1 + ��2� + �2 v1 − v2

D2 + ��2
W1,

��t�1 + � · 
�D1 + ��1��1� = − �W1,

��t�2 + � · 
�D2 + ��2�v2� = − ��W2 − W1� ,

��tq + � · 
�Qs + �q�v1� = − �P .

	
�5.7�

The QG approximation, as usual, is obtained by retain-
ing the first two orders in the asymptotic expansion of the
velocity field in Rossby number vi=� j�

jvi
�j�. The geostrophic

equilibrium appears at O��0�,

k � vi
�0� = − ��i, �5.8�

where �i is the geostrophic streamfunctions defined by

� �1 = �1 + �2,

�2 = �1 + ��2.
� �5.9�

The evolution of the nondivergent geostrophic velocity field
is obtained at O��1�,

d1
�0�

dt
��2�1 + y −

�1

D1
� =

W1

D1
, �5.10�

d2
�0�

dt
��2�2 + y −

�2

D2
� =

W2 − W1

D2
, �5.11�

where di
�0� /dt=�t+ �vi

�0� ·�� represents advection by the geo-
strophic velocity field. Equations �5.10� and �5.11� express
the PV conservation in the lower and upper layers, respec-
tively. The moisture conservation at O��1� can be combined
with Eq. �5.10� with W1=	P to express the moist potential
vorticity conservation in the lower layer,

d1
�0�

dt
��2�1 + y −

�1 − 	q

D1 − 	Qs� = 0. �5.12�

For the rb-mc2RSW model under the QG assumptions,
the same equations result, with a change of the barotropic by
the baroclinic Burger number sbc, where the baroclinic defor-
mation radius is defined as Rd=�g��−1�H0 / f . The geo-
strophic streamfunctions coincide with geopotentials: �i=�i,
and are expressed in terms of the interface displacement by
�=�1=−�2. This latter case is strictly equivalent to the
model used in Ref. 6 if dissipation and friction are neglected,
with the same expressions for the coefficients 	i, cf.
Eq. �2.16�.

Note that the QG Eqs. �5.10� and �5.11� may be directly
derived as the QG approximation of the PV Eqs.
�3.12�–�3.14� in the mc2RSW and rb-mc2RSW models.

C. Reduced gravity model: Another justification
of the mcRSW model

In this section, we present another way to derive the
mcRSW model introduced in a previous work1 starting from
the two-layer mc2RSW model. We consider the following
characteristic length scale:

L = �g�HeT , �5.13�

where g�=g��−1� /� is the reduced gravity, He=H1H2 /H0 is
the equivalent height, and H0=H1+H2 is the total height at
rest. We assume that the upper layer is almost at rest and is
much thicker than the lower one, so that we can introduce
the following small parameter:

� =
H1

H0
= 1 −

H2

H0
� 1. �5.14�

The typical velocities in the respective layers are as follows:

U1 = �1 − ���g�He and U2 = ��g�He. �5.15�

Finally, we express the heights h1 and h2 as functions of the
dimensionless interface and lower surface displacements,

h2

H2
= 1 + �h� and

h1 + h2

H0
= 1 + �

g�H2
2

gH0
2 � . �5.16�

Note that the scale of Q is H1=�H0, as it is concentrated in
the lower layer.

Using this scaling, the mc2RSW model Eqs. �3.1�–�3.5�
take the following dimensionless form:
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�
�tv1 + �1 − ���v1 · ��v1 + fk � v1 = − �� ,

��tv2 + �2�v2 · ��v2 + �fk � v2 = − � � h� − �1 − �� � � +
�

1 − �

�1 − ��v1 − �v2

1 + �h� 	P ,

�t�� − 1

�
�1 − ��� − h�� + � · �v1�1 + �1 − ���� − 1

�
�1 − ��2� − h���� = −

1

1 − �
	P ,

�th
� + � · 
v2�1 + �h��� = +

1

1 − �
	P ,

�tQ + �1 − �� � · �Qv1� = − P .

	 �5.17�

In the limit �→0, this system is reduced to

��tv1 + �v1 · ��v1 + fk � v1 = − �� ,

�t� + � · 
v1�1 + ��� = − 	P ,

�tQ + � · �Qv1� = − P ,
	 �5.18�

if we assume that �+�h�=0 is constant. Consequently, the
velocity v2 is expressed in terms of other variables via

� · vp = � · 
v1�1 + �� + �v2� = �� − 1�	P , �5.19�

where vp is “pseudobarotropic” velocity, which is nondiver-
gent in the nonprecipitating regions. This condition is
standard27 in the derivation of the reduced gravity model for
the ocean, where the gradient of the geopotential at the upper
surface is cancelled ���z2�=0.

The system �Eq. �5.18�� is the dimensionless mcRSW
model of Bouchut et al.,1 and we thus demonstrated that it is
directly related to the “parent” two-layer model. Note that
this result is also valid for the two-layer mcRSW model with
nonzero convective flux through the upper boundary derived
in Appendix A, but the condition �Eq. �5.19�� should be re-
placed by � ·vp=−	P.

VI. NUMERICAL ILLUSTRATIONS

We present here two numerical experiments with a high-
resolution shock-capturing finite-volume code. The purpose
of the first is to benchmark the numerical scheme by com-
paring with one-layer simulations, and to illustrate the results
obtained in the previous sections, in particular for fronts and
shocks. Therefore, the setup is chosen deliberately the same
as in the experiments with the one-layer model of Ref. 1. The
second experiment gives an example of a fully baroclinic
phenomenon, and illustrates the capability of the code to
resolve the fine details of the dynamics. We perform simula-
tions in the framework of the 1D nonrotating version of the
full mc2RSW model, without making the rb-mc2RSW re-

duction. Numerically, it is easier to treat the first than the
second, because of the incompressibility constraint for the
barotropic velocity in the latter.

A. Numerical scheme

There are additional numerical problems in the two-layer
RSW model, even in its dry version, as compared to the
one-layer RSW model. First, two-layer RSW can be nonhy-
perbolic and have complex characteristic velocities, see Secs.
III C 1 and III C 2. Second, as mentioned in Secs. III B and
III C 4, the system is not fully conservative, which implies a
lack of appropriate RH relations. This latter difficulty was
largely discussed in Ref. 15.

A robust well balanced finite-volume scheme for the
multilayer shallow-water system was proposed in Ref. 28.
The first tests in the oceanic context demonstrated its
efficiency.29 At each timestep, the scheme uses a one-layer
hydrostatic reconstruction solver for each layer. It then modi-
fies the resulting numerical fluxes to preserve the total mo-
mentum conservation. The centered discretization used in the
scheme is consistent with the momentum conservation in
each layer. Note that this property is common with an older
scheme by Castro et al.30 More details can be found in Ref.
28. Rotation and transverse velocity may be introduced as in
the one-layer system,31 and the equation of the conserved
tracer Q is added. The precipitation is introduced as condi-
tional source/sink switched at the end of each iteration, see
Appendix C of Ref. 1. This scheme does not support the
rigid lid constraint, and thus is only applicable to the
mc2RSW model �or the ml-mc2RSW model presented in
Appendix A�.

Since the original construction of Ref. 28 corresponds to
the standard “oceanic” configuration and uses densities �1,2

and the free upper surface, an appropriate change of vari-
ables has to be performed for the input and output variables
in order to adapt it to the atmospheric configuration, see
Table I.

B. Choice of parameters

The scale of the domain is fixed at Lx�Ly =10�10 in
the units of length L. Since there is no intrinsic horizontal
scale in the model in the absence of rotation, the length scale
is L=�gH0T, where H0 is the sum of the layer thicknesses at
rest and T is the time-scale.

TABLE I. Correspondence between atmospheric and oceanic two-layer
shallow-water variables.

Atmosphere h1 h2 v1 v2 �1 /�0 �2 /�0 ��z0�
Ocean �2h2 �1h1 v2 v1 1 /�2 1 /�1 gz0
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We choose a high resolution in the zonal direction x with
nx=500 grid points. The timestep is chosen as the minimum
between a specific value allowing to respect the Courant–
Friedrich–Levy �CFL� condition, �tCFL, and some maximum
value �tmax �which was chosen to be=� /5�.

Neumann boundary conditions are numerically imple-
mented by requiring that each variable has the same values
in the two first and two last cells of the domain. Even if these
conditions do not forbid complex reflections of the solutions
and numerical dissipation at the boundaries, these effects are
weak far from the boundaries and do not significantly affect
our simulations.

The relaxation time is linked to the timestep of the nu-
merical scheme, 
=5�t, and corresponds to a rapid �quasi-
immediate� relaxation. The values of other parameters are
given in Table II. The values chosen for 	 and Qs allow us to
have �C−

m�0.3�C− for H1=1, for the internal moist charac-
teristic velocity, as in the observations.16 They also corre-
spond to the values used by Majda and collaborators in their
numerical experiments.3

C. Scattering of an internal simple wave on a
stationary moisture front

We first perform an experiment that benchmarks our nu-
merical model through a direct comparison with the analyti-
cal results on the characteristics and precipitating fronts pre-
sented above, as well as with the one-layer mcRSW
simulations of Ref. 1. It consists of scattering of an unidirec-
tional propagating “simple wave” of small amplitude at a
stationary moisture front.

The simple wave is a solution propagating along a single
characteristic curve. It is obtained by canceling the Riemann
variables on all the other characteristics. We consider an in-
ternal linear wave initially centered at xP=2 and moving
eastward,

u1�x,0� = ���x − xP�2 + U0 if −�U0

�
� x − xP ��U0

�
,

0 otherwise,
	

�6.1�

where U0=0.01 and �=−1. The choice of an internal simple
wave maximizes the projection onto the baroclinic mode �cf.
Eq. �5.1��, as compared to a simple wave propagating along
the external characteristics. It is motivated by the fact that it
is the baroclinic mode that is mainly affected by moist pro-
cesses in the atmosphere. From the results of Sec. III C 3,
one obtains the following expressions for the remaining vari-
ables:

�
�1�x,0� =

H1

�C−

u1�x,0� ,

u2�x,0� = − � C+

gH1
− 1�−1

u1�x,0� ,

�2�x,0� = −
H2

�C−
� C+

gH1
− 1�−1

u1�x,0� ,
	 �6.2�

where the lower layer height at rest is fixed at H1=1. For our
choice of parameters, the external and internal linear charac-
teristic velocities �Eq. �3.19�� are given by �C+=1.93 and
�C−=0.52, respectively.

The stationary moisture front is placed in the middle of
the domain �xM =5�, with the saturated area at the eastern
side �x�xM� and the unsaturated area at the western side
�x�xM�,

Q�x,0� = Qs
1 + q0 tanh�x − xM�H�− x + xM�� , �6.3�

with q0=0.05. The simple wave comes from the unsaturated
area �xP�xM�. Since it has a strong convergence at its east-
ern side in the lower layer ��xu1�0�, it will first increase the
moisture field Q on its way such that precipitation will be
triggered near the moisture front.

The Hovmöller �characteristic� diagrams of the barotro-
pic ubt and baroclinic ubc velocities are presented in Figs.
8�a� and 8�b�, respectively. The simple wave appears in both
fields and, as expected, follows the eastward internal charac-
teristic with �C−�0.5, as long as precipitation does not oc-
cur �for t�4.8�. Note that some small perturbations emerge
from the initial location of the wave, since the simple wave
is not a solution of the full system, but only of its linearized
version. Even though they are reflected at the boundaries
�t�4�, the influence of these parasite perturbations remains
weak.

The initial moisture field is modified by the divergence
in the lower layer ��xu1�, as shown in Fig. 8�c�. A negative
moisture anomaly appears once the simple wave leaves its
initial position, and persists during the simulation following
the nonpropagating characteristic �c0=0� via the associated
linearized Riemann invariant r0 given by Eq. �3.42�. Since
the propagating disturbance is symmetric, it also produces a
moisture anomaly on its way. Consequently, this positive
anomaly follows the internal characteristic until it triggers
precipitation near the moisture front.

As follows from Eq. �3.41�, precipitation modifies the
Riemann variables over all the characteristics. This is shown
in Figs. 8�a� and 8�b� for 4.8� t�7.2. In the barotropic field,
the wave is partially transmitted in the saturated region as a
positive anomaly along the eastward external characteristic
��C+�2�. It is also partially reflected back to the unsaturated
region as a positive�negative� anomaly following the inter-
nal�external� characteristics. In the baroclinic field, the
anomalies on the external characteristics are too weak and
only the internal reflected wave is clearly observed. This
result is in full agreement with Fig. 2 of Ref. 1 in the one-
layer mcRSW model.

Figure 8�c� shows that the scattering of the wave affects
the moisture profile. The resulting westward internal wave

TABLE II. Parameter values in numerical simulations.

H0 �=�2 /�1 Qs 	

3 1.5 0.9 1
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produces a weak negative anomaly of moisture on its way,
while the moisture front is smoothened and displaced east-
ward.

The total �dry� energy of the system is well conserved as
long as precipitation does not occur, as shown in Fig. 9. The
energy in the lower layer is diminished by precipitation, as in
the one-layer mcRSW model, see Fig. 4 in Ref. 1. This is
essentially due to the convective mass loss. In compensation,

energy and mass in the upper layer increase. As expected
from Eq. �3.8�, the total energy of the system also increases.
Note that the energy balance is affected by dissipation at the
boundaries starting from t�7.

In the precipitating region delimited by the thick contour
in Fig. 8�c�, the approach based on linearization still holds in
the immediate relaxation limit �
→0�, and the moist linear-
ized Riemann variables �Eq. �3.44�� can be observed. Figures
10 and 11 show the Hovmöller �characteristic� diagrams of
the dry and moist linearized Riemann variables in the pre-
cipitating region and its vicinity. One sees that the dry Rie-
mann variables are indeed modified following Eq. �3.41�,
rewritten as

���t  �C−�x�ri � � 	P ,

��t  �C+�x�re �  	P .
� �6.4�

One also checks that the values of the moist characteristic
velocities correspond to the analytical results �Eq. �3.27��

��C−
m = 0.16 � �C− = 0.52,

�C+
m = 1.99 � �C+ = 1.93,

� �6.5�

by following the slopes formed by moist linearized Riemann
invariants inside the precipitating region. Finally, one ob-
serves that the precipitating region is delimited by two pre-
cipitation fronts, which correspond to a dry internal subsonic
front ��C−

m�s1��C−� and a moist internal supersonic front
��C−�s2��C+�.

Analogous results are found for a simulation with the
alternative model presented in Appendix A �not shown�. It
should be stressed that in this case the energy is always dis-
sipated by precipitation, see Eq. �A6�.
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D. Simulation of a warm gravity current
over a saturated layer

The second numerical experiment gives an illustration of
the capability of the numerical scheme to capture fine details
of fully nonlinear fully baroclinic dynamics. As an example,

we consider a “dam-break” problem with a terminating
warm dry layer over a saturated cold layer. Physically, this
type of flow can represent an upper-level outflow from deep
convection.

We initialize the numerical model in such a “dam-break”
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problem �which can be related to the genuine dam-break
problem, frequently studied with the help of the two-layer
shallow-water model, through Table I� with the following
interface profile:

h2�x,0� = �H2 tanh
− a�x − xM�� if x � xM ,

0 if x � xM ,
� �6.6�

where H2=1, a=10, and xM =5. The two layers are initially
at rest: u1�x ,0�=u2�x ,0�=0 and h1�x ,0�=H0−h2�x ,0�, and
the lower one is uniformly saturated: Q�x ,0�=Qs=0.9. We
compare a “dry” simulation for which P�0 at all times and
a “moist” one for which precipitation can be triggered.

The initial condition is a nonstationary state and in the
absence of rotation, the colder layer will tend to move to the
left and the warmer layer to the right, in order to recover the
state of static equilibrium. At the initial times, it is expected,
cf. Eq. �5.5�, that a strong baroclinic velocity appears at the
head of the warm current and convergence �divergence� de-
velops at the western �eastern� side of the head. In the full
three-dimensional equations, localized convergence �diver-
gence� produces a vertical ascent �descent�, cf. Eq. �2.3�.
Subsequently, such circulation should spread. The calcula-
tions confirm this scenario, as shown in the following fig-
ures.

Figure 12 presents the Hovmöller �characteristic� dia-
grams of the barotropic ubt �Fig. 12�a�� and baroclinic ubc

�Fig. 12�b�� velocities and the moisture deficit Q−Qs �Fig.
12�c�� for the dry simulation. We present spatial profiles of
the variables at t=2 in Fig. 13.

The head front �front 1� corresponds to a warm internal
wave and propagates eastward with high velocity: sw�0.96.
In fact, the velocity field u2 quickly grows and the nonlinear
advection terms become important. At the warm head, the
wave solution rapidly breaks and propagates as a strong
shock: �u2h2��0. Its velocity depends on the RH conditions
�Eq. �3.45�� completed by the ones selected by our numerical
scheme �consistent with layer-wise momentum conservation
in each layer28�. The front 2 corresponds to a cold internal
wave. It propagates more slowly sc�−0.52 and follows the
internal characteristic ��C−=0.56 for H2=1�.

It should be stressed that the would-be front 3 visible in
the baroclinic velocity field in Figs. 12�b� and 13 is spurious,
as it is not identifiable in the momentum variable u2h2. Since
the velocity field u2 is retrieved from the momentum u2h2,
the precision in u2 drops for h2 tending to zero, which ex-
plains the noise in the propagation of this pseudofront, which
is just a zone of rapid change of u2, for t�1.5.

Note that the velocity of these fronts can be derived from
the one-layer RSW model,32 assuming that the thickness of
the upper layer goes continuously to zero at the head; from
the values of the nonlinear Riemann invariants,

u�t0� + 2�gh�t0� = u�t� + 2�gh�t� , �6.7�

one finds, for u�t0�=0 and h�t�=0 at the head, sw=2c�t0� and
sc=−c�t0�, where c�t0�=�gh�t0� is the characteristic velocity
calculated with respect to the initial state. Our results are in
approximate agreement with these latter if we use the linear
internal characteristic velocity for c�t0�.
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Since the lower surface is free, a part of the energy is
also transferred to external gravity waves �fronts 4 and 5�. As
clearly seen in the barotropic velocity field �Fig. 12�a��, they
propagate faster: +�C+=+1.73 �for H2=0� and −�C+

=−1.78 �for H2=1�.
The growing anomaly of velocity u1 induces perturba-

tions in the moisture field. This is shown in Fig. 12�c�. A
strong moisture gradient �front 6� appears where �xu1=0 and
propagates with the velocity cq=u1�−0.06 following the
nonpropagating characteristic. It separates two areas: the as-
cent area ��xu1�0�, situated between the cold internal wave
�front 2� and the moisture gradient �front 6�, which is super-
saturated; and the descent area ��xu1�0�, situated between
the moisture gradient �front 6� and the warm internal wave
�front 1�, which is subsaturated. Note that slightly supersatu-
rated and subsaturated areas also appear due to external wave
propagation, between the fronts 1 and 4 and 2 and 5, respec-
tively.

In the moist simulation, a similar scenario is observed in
Figs. 14�a�–14�c� but precipitation is now triggered by the
ascent motions ��xu1�0�.

The eastward external gravity wave 4 triggers and main-
tains precipitation on its way, as expected from Eq. �3.41�.
The precipitation induces a weak perturbation of h2 and the
front 4 consequently becomes the head front, see the
h2-profile in Fig. 15.

The cold internal wave �front 2� still propagates follow-
ing the dry internal characteristic, but it is now followed by a
moist subsonic internal precipitation front 7 with a velocity
close to the linear moist internal gravity wave speed: −�C−

m

�sP�−0.4�0 where �C−
m=0.41. A second precipitating re-

gion is thus well observed in the ascent area, delimited by
this precipitation front 7 and the point where divergence field
vanishes �xu1=0 and Q=Qs, the moisture gradient �front 6�.
Precipitation modifies the Riemann variables and their char-
acteristic velocity in such a way that a plateau appears be-
tween 8 and 1 one instead of a monotonic profile. Moreover,
the weak disturbances induced by precipitation triggered by
the eastward external gravity wave 4 modify the jumps �u2�
and �h2� of the warm internal wave �front 1� and slow down
its propagation: sw�0.67. This is an extension, to a different
configuration and to the two-layer model, of the one-layer
results presented in Ref. 1.

A complementary experiment would be a lower layer
saturated cold gravity current propagating beneath a dry
warm upper layer. One can show, however, that precipitation
does not occur in this case, with moisture just following the
interface.

VII. CONCLUSIONS

We have derived a two-layer RSW model of the precipi-
tating atmosphere. We demonstrated that the model has en-
joyable properties conformal to our intuition on moist-
convective processes. It reproduces, on one hand, the
recently introduced one-layer moist-convective RSW model
and, on the other hand, the previously used two-layer quasi-
geostrophic model in appropriate limits. While linearized,
the model corresponds to the classical baroclinic model.2 We
studied the properties of the model and described different
types of possible discontinuities, including the precipitation
fronts. We showed that these latter perfectly correspond to
the ones studied recently in the literature in the linearized
baroclinic models. We also showed that precipitation moder-
ates the hyperbolicity loss inherent to the two-layer models.
The model allows for efficient numerical simulations with
the new-generation finite-volume schemes, as we demon-
strated in our numerical illustrations. The simulations al-
lowed us to benchmark the numerical scheme and to show
that it successfully works in fully nonlinear and fully baro-
clinic situations; therefore, it can be used for more realistic
simulations. Work on the life cycle of the moist baroclinic
instability is in progress in the framework of the model.
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APPENDIX A: THE TWO-LAYER MOIST-CONVECTIVE
RSW MODEL WITH A MASS LOSS
„ML-MC2RSW…

1. The model

Another two-layer model can be derived with moisture
confined in the lower layer �Q=Q1, Q2=0, and P2=0� but
where “convective columns” go through the upper boundary.
The additional vertical velocities at the top of each layer are
identical and proportional to precipitation in the lower layer:
W1=W2=W=	P �P= P1� with �2=��z2� and q�z2�=0, see
Fig. 16.

This model can be seen as the lower part of a precipitat-
ing three-layer model where the mass of the middle-level
layer is unaffected. Note that three-layer models �or two-
baroclinic-mode models� are considered to be sufficient to
model moist convection in the tropics.10,33

In this case, we obtain the following set of equations
following the lines of Sec. II:

�tv1 + �v1 · ��v1 + fk � v1 = − g � �h1 + h2� , �A1�

�tv2 + �v2 · ��v2 + fk � v2 = − g � �h1 + �h2�

+
v1 − v2

h2
	P , �A2�

�th1 + � · �h1v1� = − 	P , �A3�

�th2 + � · �h2v2� = 0, �A4�

�tQ + � · �Qv1� = − P , �A5�

where �=�2 /�1 for �0=�1.

2. Conservation laws

From Eq. �3.6�, the total energy of the isolated system
now always decreases when precipitation occurs �	�0�,

�tE = −� dx	P�g�h1 + h2� +
�v1 − v2�2

2
+

v2
2

2
� � 0,

�A6�

This mainly results from the fact that the total mass h1+h2 is
not conserved anymore in precipitating regions.

Moist enthalpy in the lower layer, m1=h1−	Q, is again
locally conserved.

The momentum equations are similar to Eqs. �3.10� and
�3.11� except for the upper layer where a new source −v2	P
appears in the rhs due to the transfer of momentum induced
by the moist convection W2 through the upper boundary.
Consequently, the total momentum is no longer locally con-
served in the precipitating regions.

The PV Eqs. �3.12� and �3.13� still hold but the first
source term in the rhs of the equation for the upper layer
disappears since mass h2 is here locally conserved. In pre-
cipitating regions, MPV is a Lagrangian invariant, as in the
mc2RSW model, see Eq. �3.14�.
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3. Mathematical properties

a. Characteristic equation

The characteristic equation is again given by Eq. �3.18�
and the linear characteristic velocities �Eq. �3.19�� follow.

In the immediate relaxation limit �
→0�, Eqs. �A2� and

�A3� can be rewitten, in the precipitating region only, as
Eqs. �3.22� and �3.23� with Q=Qs and P=Qs� ·v1. The as-
sociated characteristic equation in 1.5D is

F̃m�c� = F�c� + R̃�c�g	Qs = 0, �A7�

where

R̃�c� = �u1 − c��u1 − u2� + �u2 − c�2 − �� − 1�gh2, �A8�

if nonpropagating characteristics are discarded �c=u1 and c

=u2�. The moist linear characteristic velocities C̃
m are given

by Eq. �3.19� with

�̃m = 1 −
4M1H2�� − 1�
�M1 + �H2�2 =

�M1 − �H2�2 + 4M1H2

�M1 + �H2�2 . �A9�

Since the argument of the square root is positive for a posi-

tive moist enthalpy M1, C̃
m �0 �corresponding c are real� for

stable stratification ���1� and the linearized system
�Eqs. �3.21�–�3.24�� is hyperbolic. Contrary to the mc2RSW
model, one can show that the inequality between dry and
moist linearized characteristic velocities is here the same for
the external �+� and the internal ��� modes

C̃
m � C. �A10�

The nonlinear moist characteristic velocities �solutions
of Eq. �A7�� as functions of the baroclinic velocity ubc are
shown in Fig. 17 �dashed black lines�. They are compared to
solutions of Eq. �3.18� �solid black lines�. For ubc=0, the
inequality �Eq. �A10�� is verified, and for given values of
parameters it is maintained until the limiting value
�ubc� /�gh1�1. Note that, contrary to the solutions of R=0 in

the mc2RSW model, the solutions of R̃�c�=0 �solid gray
line� are not constant and do not allow us to exactly define
this limit.

b. Criterion of hyperbolicity

In the nonprecipitating regions, the ml-mc2RSW model
does not differ from the mc2RSW model and the sufficient
conditions �Eq. �3.35�� still hold. However, in the precipitat-
ing regions with the immediate relaxation approximation

�
→0�, the moist additional term R̃�c� in the characteristic
Eq. �A7� depends on the solutions c. Consequently, even if
an equation similar to Eq. �3.30� can be derived using appro-
priate variables �p̃ , r̃�, the relation between them is no more
linear and simple geometric considerations do not work.

Figure 18 shows the solutions of Eq. �A7� denoted by
dashed black lines in the �p ,r�-plane defined by Eq. �3.31�.
These solutions are asymmetric in r compared to the
mc2RSW model, see Fig. 4.

c. Linearized Riemann variables

A linearization can be applied to the 1D version of
Eqs. �A1�–�A5�, as done in Sec. III C 3,
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���t + ck�x�rk = −
ck

H1
	P ,

�tr0 = − �1 −
	Q̄

H1
�P , 	 �A11�

where Riemann variables are given by Eq. �3.42�. Nothing
changes compared to the mc2RSW model, except for the
precipitation term in the propagating Riemann variables
equations.

In the immediate relaxation limit �
→0�, the Riemann
variables in the precipitating regions r̃k

m are invariants, as in
Eq. �3.43�, along the characteristic curves c̃k

m, given by posi-

tive and negative square roots of C̃
m . They are expressed by

r̃k
m = u1 +

c̃k
m

M1
�1 + � c̃k

m2

gM1
− 1��u2 +

c̃k
m

H2
�2� . �A12�

d. Fronts and Rankine–Hugoniot conditions

Strong shocks.

The results for strong shocks for the 1.5D mc2RSW
model �Eq. �3.45�� still hold since precipitation does not ap-
pear in the associated RH conditions. Nevertheless, in the
special case of a strong shock in a precipitating region only
�P�0� and for the immediate relaxation approximation

�
→0�, the total momentum equation loses its conservative
form due to the term −v2	P �see Eq. �A2�� and prevents us
from deriving the associated RH conditions.

Precipitation fronts.

The RH conditions for the derivatives of the dynamical
variables �supposed to be continuous� are given by Eq. �3.48�
with obvious modification of the mass conservation in the
upper layer,

�u2 − s���xh2� + h2��xu2� = 0. �A13�

Discarding nonpropagating solutions s=u1 and s=u2, two
main conditions �Eq. �3.49�� follow, where R is replaced by

R̃�c� given by Eq. �A8�. The linearization of the coefficients
in front of jumps in these equations around a state of rest
gives expressions identical to Eq. �3.50�, where C

m is re-

placed by C̃
m . In the configuration P−=0 ���xQ��0 and

�P��0�, five types of precipitation fronts are found for

��1. Since C̃+
m�C+�C+

m, these fronts correspond to the
ones found for the mc2RSW model for which C+, C+

m, and

C−
m are replaced by C̃+

m, C+, and C̃−
m, respectively.

Nonlinear precipitation front velocities s are shown in
Figs. 19 and 20 as functions of the baroclinic velocity ubc for
the configuration P−=0. As in the mc2RSW model, linear-
ized results are well verified for ubc=0: precipitation fronts 1
to 4 are presented in Fig. 19 and the fifth in Fig. 20.

4. Comparison with the mc2RSW model

As the mc2RSW model, the ml-mc2RSW model gives
dry and moist internal characteristic velocities in agreement
with observations.16 The properties of the precipitation fronts
are the same. However,, the main advantage of the mc2RSW
model is its total mass conservation. Moreover, the total en-
ergy in the mc2RSW model increases in precipitating regions
in the first approximation, conformal to the idea of the latent
heat release by condensation, while it always decreases in the
ml-mc2RSW model due to the mass loss. Finally, a criterion
of hyperbolicity can be easily derived in the mc2RSW
model, which is not the case for the ml-mc2RSW one.

FIG. 17. Same as Fig. 3 for the ml-mc2RSW model. Solid gray line corre-

sponds to solutions of R̃�c�=0 for which the dry and moist characteristic
velocities could be identical, which is the case at the intersections between
dry �solid� and moist �dashed� internal �slow� characteristic curves at �û�
�1.1 and �û��1.

FIG. 18. Same as Fig. 4 for the ml-mc2RSW model.
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APPENDIX B: DEPENDENCE OF THE SATURATION
THRESHOLD ON THE LOWER LAYER
THICKNESS

As shown in Appendix B of Ref. 1, the saturation thresh-
old Qs can depend on the moist lower layer thickness h1

=H1+�1. In the first approximation, one can assume the lin-
ear expression Qs=Q0

s −��1 where Q0
s and � are constant and

the last term corresponds to a linearization of the Clausius–
Clapeyron equation. In this case, all the results presented in
the main body of the paper still hold with the replacement of
Qs by

Qef f
s =

Q0
s + �H1

1 + �	
, �B1�

in the equations corresponding to precipitating regions in the
immediate relaxation limit �
→0� as in Ref. 6, and thus in
the expressions for the moist characteristic velocities.

1F. Bouchut, J. Lambaerts, G. Lapeyre, and V. Zeitlin, “Fronts and nonlin-
ear waves in a simplified shallow-water model of the atmosphere with
moisture and convection,” Phys. Fluids 21, 116604 �2009�.

2A. E. Gill, “Studies of moisture effetcs in simple atmospheric models: The
stable case,” Geophys. Astrophys. Fluid Dyn. 19, 119 �1982�.

3D. M. W. Frierson, A. J. Majda, and O. M. Pauluis, “Large scale dynamics
of precipitation fronts in the tropical atmosphere: A novel relaxation
limit,” Commun. Math. Sci. 2, 591 �2004�.

4S. N. Stechmann and A. J. Majda, “The structure of precipitation fronts for
finite relaxation time,” Theor. Comput. Fluid Dyn. 20, 377 �2006�.

5O. Pauluis, D. M. W. Frierson, and A. J. Majda, “Precipitation fronts and
the reflection and transmission of tropical disturbances,” Q. J. R. Meteo-
rol. Soc. 134, 913 �2008�.

6G. Lapeyre and I. M. Held, “The role of moisture in the dynamics and
energetics of turbulent baroclinic eddies,” J. Atmos. Sci. 61, 1693 �2004�.

7B. J. Hoskins and F. P. Bretherton, “Atmospheric frontogenesis models:
Mathematical formulation and solution,” J. Atmos. Sci. 29, 11 �1972�.

8K. A. Emanuel, Atmospheric Convection �Oxford University, New York,
1994�, Chap. 4.

9V. Zeitlin, “Introduction: Fundamentals of rotating shallow water model in
the geo-physical fluid dynamics perspective,” Nonlinear Dynamics of Ro-
tating Shallow Water: Methods and Advances, edited by V. Zeitlin
�Elsevier, Amsterdam, 2007�, Chap. 1.

10D. A. Schecter and T. J. Dunkerton, “Hurricane formation in diabatic
Ekman turbulence,” Q. J. R. Meteorol. Soc. 135, 823 �2009�.

11A. K. Betts and M. J. Miller, “A new convective adjustement scheme. Part
II: Single columns tests using GATE wave, BOMEX, ATEX and arctic
air-mass data sets,” Q. J. R. Meteorol. Soc. 112, 693 �1986�.

12J. R. Holton, An Introduction to Dynamic Meteorology �Academic, Lon-
don, 1972�.

13J. Lambaerts, G. Lapeyre, and V. Zeitlin, “Moist vs dry barotropic insta-
bility in a shallow water model of the atmosphere with moist convection,”
J. Atmos. Sci. 68 �2011�.

14G. B. Whitham, Linear and Nonlinear Waves �Wiley, New York, 1974�,
Chap. 5.

15M. J. Castro, P. G. LeFloch, M. L. Munoz-Ruiz, and C. Parés, “Why many
theories of shock waves are necessary: Convergence error in formally
path-consistent schemes,” J. Comput. Phys. 227, 8107 �2008�.

16M. Wheeler and G. N. Kiladis, “Convectively coupled equatorial waves:
Analysis of clouds and temperature in the wavenumber-frequency do-
main,” J. Atmos. Sci. 56, 374 �1999�.

17L. V. Ovsyannikov, “Two-layer “shallow water” model,” J. Appl. Mech.
Tech. Phys. 20, 127 �1979�.

18P. D. Lax, “Hyperbolic systems of conservation laws and the mathematical
theory of shock waves,” SIAM Regional Conference Series in Applied
Math, 1973.

19P. J. Montgomery and T. B. Moodie, “Analytical and numerical results for
flow and shock formation in two-layer gravity currents,” J. Aust. Math.
Soc. Ser. B, Appl. Math. 40, 35 �1998�.

20C. S. Yih and C. R. Guha, “Hydraulic jump in a fluid system of two-
layers,” Tellus 7, 358 �1955�.

21J. B. Klemp, R. Rotunno, and W. C. Skamarock, “On the propagation of
internal bores,” J. Fluid Mech. 331, 81 �1997�.

22D. M. Holland, D. S. R. R. Rosales, and E. G. Tabak, “Internal hydraulic
jumps and mixing in two-layer flows,” J. Fluid Mech. 470, 63 �2002�.

23Q. Jiang and R. B. Smith, “Ideal shocks in 2-layer flow,” Tellus 53A, 129
�2001�.

24J. L. Sommer, S. B. Medvedev, R. Plougonven, and V. Zeitlin, “Singular-
ity formation during relaxation of jets and fronts toward the state of geo-
strophic equilibrium,” Commun. Nonlinear Sci. Numer. Simul. 8, 415
�2003�.

25V. Zeitlin, G. M. Reznik, and M. B. Jelloul, “Nonlinear theory of geo-
strophic adjustment. Part 2. Two-layer and continuously stratified primi-
tive equations,” J. Fluid Mech. 491, 207 �2003�.

26J. Pedlosky, Geophysical Fluid Dynamics �Springer-Verlag, New York,
1979�.

27G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics �Cambridge Uni-
versity, Cambridge, 2006�.

28F. Bouchut and V. Zeitlin, “A robust well-balanced scheme for multi-layer
shallow water equations,” Discrete Contin. Dyn. Syst., Ser. B 13, 4
�2010�.

29J. Gula and V. Zeitlin, “Instabilities of buoyancy-driven coastal currents
and their nonlinear evolution in the two-layer rotating shallow-water
model. Part 1. Passive lower layer,” J. Fluid Mech. 659, 69 �2010�.

FIG. 19. Same as Fig. 5 for ml-mc2RSW model.

FIG. 20. Same as Fig. 6 for ml-mc2RSW model.

046603-23 Simplified two-layer models of precipitating atmosphere Phys. Fluids 23, 046603 �2011�

Downloaded 28 Apr 2011 to 129.199.72.38. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3265970
http://dx.doi.org/10.1080/03091928208208950
http://dx.doi.org/10.1007/s00162-006-0014-1
http://dx.doi.org/10.1002/qj.250
http://dx.doi.org/10.1002/qj.250
http://dx.doi.org/10.1175/1520-0469(2004)061<1693:TROMIT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2
http://dx.doi.org/10.1002/qj.405
http://dx.doi.org/10.1016/j.jcp.2008.05.012
http://dx.doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2
http://dx.doi.org/10.1007/BF00910010
http://dx.doi.org/10.1007/BF00910010
http://dx.doi.org/10.1017/S0334270000012352
http://dx.doi.org/10.1017/S0334270000012352
http://dx.doi.org/10.1111/j.2153-3490.1955.tb01172.x
http://dx.doi.org/10.1017/S0022112096003710
http://dx.doi.org/10.1017/S002211200200188X
http://dx.doi.org/10.1016/S1007-5704(03)00050-9
http://dx.doi.org/10.1017/S0022112003005457
http://dx.doi.org/10.1017/S0022112010002405


30M. J. Castro, J. Macías, and C. Parés, “A Q-scheme for a class of systems
of coupled conservation laws with source term. Application to a two-layer
1-D shallow water system,” Math. Modell. Numer. Anal. 35, 107 �2001�.

31F. Bouchut, “Efficient numerical finite volume schemes for shallow water
models,” in Nonlinear Dynamics of Rotating Shallow Water: Methods and

Advances, edited by V. Zeitlin �Elsevier, Amsterdam, 2007�, Chap. 4.
32G. H. Keulegan, “Wave motion,” in Engineer Hydraulics, edited by H.

Rouse �Wiley, New York, 1950�, pp. 711–768.
33S. N. Stechmann and A. J. Majda, “Gravity waves in shear and implica-

tions for organized convection,” J. Atmos. Sci. 66, 2579 �2009�.

046603-24 Lambaerts et al. Phys. Fluids 23, 046603 �2011�

Downloaded 28 Apr 2011 to 129.199.72.38. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1051/m2an:2001108
http://dx.doi.org/10.1175/2009JAS2976.1

