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ABSTRACT

Upper-ocean turbulent flows at horizontal length scales smaller than the deformation radius depart from geostrophic equilibrium and
develop important vertical velocities, which are key to marine ecology and climatic processes. Due to their small size and fast temporal
evolution, these fine scales are difficult to measure during oceanographic campaigns. Instruments such as Lagrangian drifters have provided
another way to characterize these scales through the analysis of pair-dispersion evolution and have pointed out striking particle convergence
events. By means of numerical simulations, we investigate such processes in a model of surface-ocean turbulence that includes ageostrophic
motions. This model originates from a Rossby-number expansion of the primitive equations and reduces to the surface quasi-geostrophic
model, a paradigm of submesoscale dynamics, in the limit of vanishing Rossby number. We focus on the effect of the ageostrophic dynamics
on the pair-dispersion and clustering properties of Lagrangian tracer particles at the ocean surface. Our results indicate that while over long
times the pair separation process is barely affected by the ageostrophic component of the velocity field, the latter is responsible for the forma-
tion of temporary particle aggregates, and the intensity of this phenomenon increases with the Rossby number. We further show that
Lagrangian tracers preferentially accumulate in cyclonic frontal regions, which is in agreement with observations and other more realistic
modeling studies. These findings appear interesting to improve the understanding of the turbulent transport by ocean fine scales and in light
of upcoming, new high-resolution satellite data of surface velocity fields.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0174665

I. INTRODUCTION

Ocean flows at scales comparable and smaller than the deforma-
tion radius, i.e., in the meso and submesoscale ranges, are characterized
by quasi two-dimensional (2D) turbulent dynamics. In spite of this
important common feature, remarkable differences distinguish subme-
soscales from mesoscales. Flow structures in the mesoscale range have
horizontal sizes of several tens to few hundreds of kilometers, and they
extend over depths of O(1000) m. Such eddies contain most of the
kinetic energy in the ocean. Their vertical velocities, however, are quite
small, namely of Oð1� 10Þ m day� 1. On the other hand, submeso-
scales correspond to eddies and, more importantly filaments with
smaller horizontal scales of Oð1� 10Þ km. These structures reach
depths of only O(100) m and evolve on faster timescales of O(1) day.
Theoretical arguments and high-resolution numerical simulations
indicate that their vertical velocities can be up to an order of magni-
tude larger than the mesoscale ones.1,2 They are then expected to pro-
vide a relevant contribution to vertical transport, and thus to play a

key role for both marine ecology and the coupling between the ocean
and the atmosphere.3

In recent years, many evidences about submesoscales have
emerged from Lagrangian drifter data. Based on the possibility to relate
particle pair-dispersion statistics to the properties of the underlying
turbulent flow (see, e.g., Ref. 4), several authors focused on the deter-
mination of the laws controlling the spreading process of drifters
deployed at the surface of the ocean. By taking this approach, and
computing the scale-by-scale pair separation rate, regimes of enhanced
relative dispersion at fine scales were detected in different regions,
pointing to energetic submesoscales (see, e.g., Refs. 5–8).

Another striking feature that was recently observed, first in the
Gulf of Mexico9 and later in other regions, is the occurrence of tempo-
rary drifter clustering. This means that while globally Lagrangian par-
ticles still spread in time, every now and then many of them are
brought together in regions of very limited size. Such convergence
events are associated with large vorticity (and divergence) values
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highlighting the departure from geostrophic balance—meaning that
the Rossby number, roughly estimated by Ro ¼ f=f (with f relative
vorticity and f Coriolis frequency), is not negligibly small—and with
the onset of important vertical velocities.

Explaining this phenomenon is currently an open point and
requires going beyond the quasi-geostrophic (QG) approximation,
obtained from a development of the basic equations of motion (primi-
tive equations) at the lowest order in Ro, in which the flow is strictly
horizontal and non-divergent. To include the physics of both cluster-
ing and dispersion, a natural possibility is to improve the dynamics of
an idealized QG model by adding higher-order corrections when
developing (in Ro) the primitive equations. While, by construction, the
resulting model does not include important sources of ageostrophy,
such as high-frequency motions (internal gravity waves and tides),
which are further off from geostrophic equilibrium, it properly
accounts for ageostrophic motions associated with frontogenesis.
Moreover, it allows separating the geostrophic and ageostrophic flow
components in a straightforward manner.

Understanding the role of ageostrophic turbulent dynamics on
Lagrangian transport is relevant in view of future satellite measure-
ments, such as those from the Surface Water and Ocean Topography
(SWOT) mission. This satellite, launched at the end of 2022, has
started measuring sea surface height (SSH) at a spatial resolution of
�15 km, which represents an order of magnitude of improvement
with respect to presently available data.10 As a result, it should provide
access to the mesoscale and submesoscale ranges at global scale.
Determining to what extent small-scale processes, associated with
non-negligible Rossby numbers, hinder the possibility to retrieve sur-
face currents from SSH through geostrophic balance represents an
important challenge for the exploitation and the theoretical interpreta-
tion of these new data. For this purpose, Lagrangian statistics based on
drifter datasets appear promising; different from Eulerian ones, they
reflect the temporal evolution of fluid parcels and may thus enable a
clear separation between fast (ageostrophic) processes that could con-
taminate the satellite-derived velocity and slower (geostrophic) ones.

In this study, by means of numerical simulations, we investigate
the spreading of Lagrangian tracer particles at the ocean surface in a
model of upper-ocean turbulence derived as an extension of the QG
approximation and including ageostrophic effects. We particularly
focus on the reproduction of Lagrangian convergence events and on
the quantification of the importance of the latter with increasing
Rossby number. Furthermore, by comparing pair-dispersion statistics
for particles advected by flows at different values of Ro, we aim at
assessing the relevance of ageostrophic motions on the relative disper-
sion process.

This article is organized as follows. In Sec. II, we introduce the
flow model; the main features of its turbulent dynamics are discussed
in Sec. III. The results of the analysis of Lagrangian particle statistics
are reported in Sec. IV. There, we separately characterize the role of
ageostrophic motions on relative dispersion (Sec. IVA) and the clus-
tering properties, as well as their relation with the flow structure (Sec.
IVB). Finally, discussions and conclusions are presented in Sec. V.

II. MODEL

A convenient theoretical framework to address the dynamics of
the upper ocean in the fine-scale range (scales comparable and, to
some extent, smaller than the deformation radius) is offered by QG
models. Indeed, these models allowed a relatively good understanding

of the larger mesoscale [O(100) km] regime1 and can be taken as the
basis for model improvement when approaching the lower end
[< Oð10Þ km] of the fine-scale range. They are obtained from an
expansion at lowest order in Ro of the momentum and buoyancy evo-
lution equations, within the Boussinesq and hydrostatic approxima-
tions (see, e.g., Ref. 11). The main dynamical equation, resulting from
this approach, assumes constant stratification and states that in the
interior of the considered fluid layer potential vorticity (PV) is con-
served along the geostrophic flow.

Surface quasi-geostrophy (SQG)12,13 is a special case of QG
dynamics. Within this model, the interior PV is assumed to be exactly
equal to zero. The associated flow is then entirely driven by the evolu-
tion of surface buoyancy (or, equivalently, temperature). Previous
studies highlighted the interest of this model for ocean submesoscale
turbulence (see Ref. 13 for a review), for phytoplankton diversity14 as
well as Lagrangian dispersion.15,16 Indeed, SQG dynamics give rise to
energetic small-scale flows and are considered as one of the possible
mechanisms of submesoscale generation via mesoscale straining pro-
cesses. While other mechanisms can also be invoked, such as mixed-
layer instabilities, which energize submesoscales also at depth and can
be related to the seasonal cycle,17,18 the SQG model presents the
advantage of a simpler mathematical formulation.

Observations, as well as realistic or primitive-equation-based
simulations, however, revealed some important features, such as the
asymmetry of vorticity statistics, with cyclones prevailing over anticy-
clones,19–21 and the occurrence of Lagrangian convergence
events,9,22–24 which cannot be explained by QG theory. In order to
overcome the limitations of the QG framework, an interesting possibil-
ity is to extend it by including ageostrophic motions through the devel-
opment of primitive equations to next order in Ro. By doing so, one
obtains the QGþ1 system, which encompasses ageostrophic correc-
tions,25,26 potentially responsible for those phenomena. In the case of
surface-driven dynamics, this approach leads to the so-called SQGþ1

model. The latter was first introduced in an atmospheric context in
Ref. 27, where it was shown through simulations of freely decaying tur-
bulence that it gives rise to the expected cyclone-anticyclone
asymmetry.

Here, we consider the SQGþ1 system to investigate surface-ocean
turbulence in the fine-scale range, a question that to our knowledge
has not been addressed before. Our main aim is to provide a minimal
model, based on the fundamental dynamical equations, accounting for
the above-mentioned submesoscale features, and to use it to investigate
the effect of the ageostrophic flow on the spatial distribution of tracer
particles. Other models based on a Rossby-number development of
primitive equations exist, such as the surface semi-geostrophic one,28

which reproduces both cyclone-anticyclone asymmetries and strong
vertical velocities at fronts. Here, we chose the SQGþ1 model as several
of its properties have been well documented.

In the following, we shortly introduce the mathematical for-
mulation of the model, adapting the original derivation (see Ref. 27
for more details) to the present oceanic conditions. We assume
that the vertical coordinate is �1 < z � 0, and that the dynamics
are controlled by the lateral advection of temperature (buoyancy)
at the surface (z¼ 0). The main governing equation retains the
same form as in the SQG system (corresponding to Ro¼ 0), and it
expresses the conservation of surface temperature along the surface
flow. This reads
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@th
ðsÞ þ uðsÞ � $hðsÞ ¼ 0; (1)

where hðx; tÞ is the temperature fluctuation field, the superscript (s)
indicates quantities evaluated at z¼ 0, and the total velocity field is
given by the sum of the geostrophic component ug (computed at the
lowest order in Ro) and two (next order in Ro) ageostrophic terms uu
and ua,

u ¼ ug þ Ro uu þ uað Þ: (2)

The geostrophic velocity can be expressed in terms of the streamfunc-
tion /,

ug ¼ �@y/; @x/
� �

; (3)

where x and y denote the horizontal coordinates. Note that here and in
what follows, we use nondimensional units. As in SQG, the stream-
function is related to surface temperature through

/ ¼ F�1 FðhðsÞÞ
k

ekz
� �

; (4)

where h is here taken at lowest order, andF stands for the horizontal
Fourier transform and k for the horizontal wavenumber modulus. The
above relation is a direct consequence of the assumption of zero inte-
rior PV, $2

H/þ @2
z/ ¼ 0 (with $2 the Laplacian operator and the

subscript H indicating that only horizontal coordinates are consid-
ered), with the boundary conditions hðsÞ ¼ @z/jz¼0 and @z/ ! 0 for
z ! �1. The ageostrophic velocity components, absent in SQG, can
be expressed as

uu ¼ �@yu; @xu
� �

; (5)

ua ¼ �@zA; (6)

where the functions u and A are related to surface and lower-order
quantities by

u ¼ h2

2
�F�1

F hðsÞð@zhÞðsÞ
h i

k
ekz

( )
; (7)

A ¼ �hug þF�1 FðhðsÞuðsÞg Þekz
h i

; (8)

again with h taken at lowest order. Equation (7) follows from the
requirement of having zero interior PV at all orders in Ro, while
Eq. (8) is a form of the omega equation obeyed by vertical velocities
(see also Refs. 13, 25, and 27). The functions u and A are such that
@zu ¼ 0 and A ¼ 0 at z¼ 0. Note that ua has both a rotational and a
divergent component from (8) while uu is nondivergent.

Remark that the model specified by Eqs. (1)–(8), by construction,
accounts for ageostrophic motions related to fronts, meaning those
associated with next-order corrections to the balanced (i.e., geo-
strophic) flow. Other sources of ageostrophy are instead excluded. In
particular, this applies to higher-frequency motions, such as internal
gravity waves and tides, which are not close to geostrophic
equilibrium.

III. TURBULENT FLOW PROPERTIES

The model evolution equations (Sec. II) are numerically inte-
grated by means of a pseudospectral method on a doubly periodic
square domain of side L0 ¼ 2p at resolution N2 ¼ 10242, starting

from an initial condition corresponding to a streamfunction whose
Fourier modes have random phases and small amplitudes. The code
was adapted from an original one developed by Ref. 29 and previously
used in Refs. 15, 18, and 30. We consider the forced and dissipated ver-
sion of Eq. (1), which allows reaching a statistically stationary flow
state. Specifically, we add on the right-hand side of the equation a ran-
dom (d-correlated in time) forcing acting over a narrow range of wave-
numbers 4 � kf � 6 (and whose intensity is F¼ 0.02), as well as a
hypofriction term �a$�2

H h to remove energy from the largest scales,
and a hyperdiffusion term ��$4

Hh to assure small-scale dissipation
and numerical stability. For the dissipative terms, we set a ¼ 0:5 and
we determine � according to the condition kmaxl� � 6, with l� the dis-
sipative scale (estimated for Ro¼ 0). These choices correspond to quite
large dissipations and will limit the number of active scales; however, it
turned out that they were necessary for controlling the numerical sta-
bility of the code at the largest Ro value explored. Indeed, the integra-
tion of the SQGþ1 system is delicate due to the effective
compressibility of the horizontal flow introduced by the ageostrophic
corrections, which creates strong gradients that are difficult to resolve.
The surface-temperature evolution equation, Eq. (1) with forcing and
dissipation terms, is advanced in time using a third-order
Adams–Bashforth scheme. We verified that the results are essentially
unchanged when using a fourth-order Runge–Kutta algorithm, but the
latter is computationally less efficient. The time step was set to the
quite small value dt ¼ 10�4, which was verified to ensure temporally
converged results for different values of the Rossby number. The latter
being the main control parameter, we performed different simulations
by increasing it from Ro¼ 0 to Ro¼ 0.075, which is the largest value
we can safely reach.

In the following, we present the main characteristics of the turbu-
lent flows, for both Ro¼ 0 (SQG) and Ro> 0 (SQGþ1), which will be
of interest for the dynamics of Lagrangian tracer particles.

A. Kinetic energy spectra

When the Rossby number is increased, starting from Ro¼ 0, the
flow develops stronger and stronger gradients and the total kinetic
energy grows monotonically with Ro (not shown). Its spatial structure
is characterized by eddies of different sizes and, especially, by sharp
fronts (see also Sec. IV).

Kinetic energy spectra E(k) computed from the total velocity u,
for the smallest (Ro¼ 0) and the largest (Ro¼ 0.075) Rossby number
are shown in Fig. 1. They display a scaling close to k�2 (see inset of
Fig. 1) over about a decade. They are flatter than in QG barotropic
dynamics, where EðkÞ � k�3. However, they are slightly steeper than
the theoretical prediction k�5=3 for the direct cascade of buoyancy vari-
ance in the SQG system. This steepening effect is essentially indepen-
dent of Ro and is more important at low wavenumbers, suggesting that
its origin likely lies in the presence of large-scale persistent structures
of size �2p=kf , as also noted in previous studies of SQG and SQGþ1

turbulence.13,27,30,31

At high wavenumbers, the scaling range is limited by the large
values of the dissipation coefficients, which are needed to control the
formation of very intense gradients. At low wavenumbers, we do not
observe the k�1 scaling corresponding to an inverse cascade in SQG,
as the forcing acts on large scales and hypofriction is strong enough to
damp modes below kf.
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B. Vorticity statistics

As mentioned earlier, an important feature of oceanic (and atmo-
spheric) flows, which is not captured by QG theory, is the asymmetry
of vorticity statistics. This was detected in data from both observa-
tions19,21 and primitive-equation simulations.20,32 The latter numerical
works also highlighted the role of surface dynamics on the prevalence
of cyclonic over anticyclonic flow regions.

Different mechanisms can explain this asymmetry. A first one is
related to nonlinear Ekman pumping. As the stress at the air-sea inter-
face is proportional to the difference of winds and currents, it creates a
surface drag causing the decay of ocean anticyclones.33,34 Another
mechanism relies on the vortex-stretching term in the vorticity equa-
tion @tf � ðf þ fÞ@zwþ � � � for finite Rossby numbers. Here, w is the
vertical velocity, f the Coriolis frequency and relative vorticity is
defined as f ¼ @xv � @yu [where u ¼ ðu; vÞ is the horizontal flow]. As
discussed in previous works (see, e.g., Refs. 1, 27, and 35), at fronts,
through the ageostrophic term f@zw, vortex stretching amplifies more
cyclonic vorticity (on the heavy side of the front) than anticyclonic
vorticity (on the light side of the front). Note that within a purely QG
framework vortex stretching would instead give a contribution to the
vorticity growth rate (@tf � f @zw) that is independent of the sign of f.

Clear asymmetry in favor of stronger cyclones is also observed in
QGþ1 and SQGþ1 models in which next-order corrections in Ro to
QG equations are included.25,27 It was argued that the symmetry is
broken because the divergence due to ageostrophic frontogenesis at
small scales accelerates (slows down) the contraction of dense (light)
filaments,27,36 which gives rise to intense and localized cyclones, and
weaker more broadly spread anticyclones. This is the case in our forced
simulations of SQGþ1 turbulence as cyclones prevail over anticyclones
whenever Ro> 0, and vorticity statistics are similar to those in decay-
ing turbulence at fixed Rossby number.27 The probability density func-
tion (pdf) of f, rescaled by its standard deviation sf and averaged over
time, is shown in Fig. 2 for Ro¼ 0 and Ro¼ 0.075. As it can be seen in
the figure, the right tail of the pdf (f > 0) is much higher than the left

one (f < 0) when Ro¼ 0.075, while the two tails essentially overlap
over a whole range of jfj values for Ro¼ 0. The skewness of the vortic-
ity distribution Sf ¼ hf3i=hf2i3=2 grows, approximately quadratically,
with Ro (see inset of Fig. 2), indicating that the magnitude of the asym-
metry increases with the intensity of the ageostrophic flow.

Based on the results in this section, the SQGþ1 simulations con-
sidered here appear appealing to explore the transport and dispersion
properties of Lagrangian tracers in turbulent flows, relevant to surface-
ocean dynamics and possessing (weakly) ageostrophic components.

IV. LAGRANGIAN DYNAMICS

We now consider the dynamics of Lagrangian tracer particles in
the turbulent flows produced by the model of Sec. II, both at Ro¼ 0
and at Ro> 0. In order to qualitatively compare the main features of
our results with those from ocean drifters, we restrict the motion to
occur at the surface. Particles then move according to the following
equation:

dxi
dt

¼ uðxiðtÞ; tÞ; (9)

where xi ¼ ðxi; yiÞ is the horizontal position of particle i (with
i ¼ 1;…;Np) and uðxi; tÞ is the total velocity (i.e., including the ageo-
strophic component, for Ro 6¼ 0) at its position.

Equation (9) is numerically integrated using a third-order
Adams–Bashforth scheme and bicubic interpolation in space of the
velocity field at particle positions.37 Except where explicitly stated, we
assume that the particle motion occurs in an infinite domain and use
the spatial periodicity of the Eulerian flow to compute the Lagrangian
velocities outside the computational box. The temporal accuracy of the
resulting trajectories was verified by varying the time step, and also
according to the Lagrangian acceleration criteria proposed in Ref. 38.
A total of Np¼ 49 152 particles are seeded in the turbulent flows once
the latter are at a statistically steady state. Their initial positions corre-
spond to a regular arrangement of M ¼ 128� 128 triplets over the

FIG. 1. Kinetic energy spectra, temporally averaged over several flow realizations
in the statistically steady state for Ro¼ 0 and Ro¼ 0.075. The dashed black line in
the main panel corresponds to the expectation for SQG dynamics. Inset: the same
spectra compensated by k�2 and rescaled with a coefficient such that, in both
cases, the scaling range corresponds to the wavenumbers for which EðkÞk2 ’ 1.

FIG. 2. Probability density function of vorticity f (rescaled by its rms value sf), tem-
porally averaged over several flow realizations in the statistically steady state, for
Ro¼ 0 (empty black points) and Ro¼ 0.075 (filled red points), with different point
types indicating f > 0 and f < 0. For reference, the standard Gaussian distribution
is also shown (dashed gray curve). Inset: vorticity skewness Sf as a function of the
Rossby number; the solid green line corresponds to Sf � Ro1:87.
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entire domain. Each triplet forms an isosceles right triangle, with a par-
ticle pair along x and one along y, both of which are characterized by
an initial separation Rð0Þ ¼ Dx=2 (with Dx the grid spacing). In the
following, we introduce the distance between two particles RðtÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RxðtÞ2 þ RyðtÞ2

q
[where RxðtÞ and RyðtÞ are the separations along

x and y, respectively, at time t]. To compute dispersion statistics, only
original pairs were used, which in our case amounts to 32768 pairs. It
was verified that the pair separation statistics do not depend on the ini-
tial orientation (along x or y direction) of the pairs. Moreover, pro-
vided that enough pairs are chosen, the results are mostly insensitive
to their number.

An illustration of typical particle spatial distributions, at a
given instant of time in the statistically steady state of the flow, is

shown in Fig. 3 for both Ro¼ 0 and Ro¼ 0.075, together with the
corresponding vorticity fields. Here, particles are placed back in
the original doubly periodic domain to see the effect of accumula-
tion in space (while we assume that they leave this domain when
computing dispersion statistics). Independently of the value of Ro,
vorticity is characterized by quite a filamentary structure in addi-
tion to almost elliptical vortices of various sizes. For nonzero Ro
cyclonic eddies (f > 0) are more coherent than anticyclonic ones
(f < 0), and vorticity is globally more intense in root mean square
(rms) value (not shown). Concerning particles, it is here apparent
that at Ro¼ 0.075 they do not uniformly spread over the spatial
domain (as is the case for Ro¼ 0), which highlights the occurrence
of clustering. In the following, we will separately address the

FIG. 3. Vorticity normalized by its rms value for Ro¼ 0 (a) and Ro¼ 0.075 (c) at a fixed instant of time in statistically stationary conditions. Panels (b) and (d) show a closeup
view of the region in the black rectangle in the main panels (a) and (c), respectively, including the particle distribution at that time.
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characterization of their relative dispersion process and of their
aggregation properties in the flow, for varying Rossby number.

A. Pair-dispersion statistics

Here, we examine the effect of varying the Rossby number on par-
ticle pair dispersion, using both fixed-time and fixed-scale indicators.
The latter typically better allow to disentangle contributions from dif-
ferent flow scales.6,15,39,40 We then mainly focus on the scale-by-scale
dispersion rate, by computing the finite-size Lyapunov exponent
(FSLE),39,40 defined as follows:

kðdÞ ¼ log r
hsðdÞi ; (10)

where the average is over all pairs and sðdÞ is the time needed to
observe the separation growing from d to a scale rd (with r> 1).

In a nonlocal dispersion regime, for which the separation process
is controlled by the largest flow features, and normally associated with
a steep kinetic energy spectrum of the flow [EðkÞ � k�b, with b > 3],
the FSLE is expected to attain a scale-independent, constant value.
This reflects in an exponential growth of the mean squared pair sepa-
ration distance, i.e., relative dispersion,

hR2ðtÞi ¼ hjxiðtÞ � xjðtÞj2i: (11)

Note that relative dispersion is a fixed-time metric, with the average
computed at time t, over all pairs (i, j) such that at t¼ 0 (the release
time) jxið0Þ � xjð0Þj ¼ Rð0Þ. When the turbulent flow possesses ener-
getic small scales [EðkÞ � k�b, with b < 3], the separation process
should be controlled by velocity increments at a length scale compara-
ble to the distance between particles within a pair. The dispersion
regime is, therefore, referred to as a local one, and both the FSLE and
relative dispersion are expected to display power-law behaviors:
kðdÞ � dðb�3Þ=2 and hR2ðtÞi � t4=ð3�bÞ, respectively. At separations
larger than the largest flow scales, or at very large times, particles in a
pair experience essentially uncorrelated velocities and their separation
distance grows diffusively, implying that the FSLE scales as kðdÞ
� d�2 and relative dispersion as hR2ðtÞi � t.

Another indicator that may be used to discriminate between dif-
ferent dispersion regimes is the kurtosis of the separation distance,

kuðtÞ ¼ hR4ðtÞi
hR2ðtÞi2 : (12)

Under nonlocal dispersion, ku(t) should grow exponentially in time,
while for local dispersion it should attain a constant value (equal to 5.6
for Richardson dispersion, expected for b ¼ 5=3) at intermediate
times.15,41 At very large times, the kurtosis should in any case converge
to ku¼ 2 corresponding to the diffusive limit of dispersion.15,41

The FSLE measured in our simulations for different values of the
Rossby number is shown in Fig. 4. Independently of Ro, the curves are
remarkably flat at small separations and approach the diffusive behav-
ior at the largest ones [larger than the flow integral lengthscale
‘I ¼ 2p

Ð1
0 k�1EðkÞdk= Ð10 EðkÞdk]. The slight deviations from the

expected d�2 scaling are here likely due to the limited inertial range of
our turbulent flows. Indeed, previous studies reported similar observa-
tions in simulations with reduced inertial ranges and proposed the use
of an alternative, pdf-based indicator42 to improve the agreement with
the large-scale theoretical prediction.

No clear evidence of a power-law scaling kðdÞ � d�1=2 [following
from a kinetic energy spectrum EðkÞ � k�2] is detected, except per-
haps on a narrow range of intermediate separations (see inset of
Fig. 4). This result suggests that the dispersion process is essentially
nonlocal. This is also confirmed by the temporal evolution of the kur-
tosis (Fig. 5), which displays a fast growth at short times, and
approaches 2 at large times. At intermediate times, ku(t) never
approaches a constant plateau, which would correspond to a local dis-
persion regime. This behavior, pointing to nonlocal dispersion while
local dispersion would be expected, may appear quite surprising.
Interestingly, it bears some resemblance to measurements of drifter
separation in the Gulf of Mexico,43,44 once inertial oscillations are
removed. One possibility to explain it is related to the presence of
large-scale coherent structures in the flow, which can provide a

FIG. 4. FSLE (rescaled by the flow integral timescale) for different Rossby numbers.
Inset: the same without rescaling the FSLE. The d�1=2 scaling law is the dimen-
sional prediction for a kinetic energy spectrum EðkÞ � k�2. The scale amplification
factor is r¼ 1.2, and it was verified that the results are robust with respect to the
choice of this parameter value.

FIG. 5. Kurtosis of particle relative displacements (main panel) and relative disper-
sion (inset) as a function of time for different Rossby numbers. The t3 (Richardson
dispersion) and t4 scaling laws in the inset are the expectations for a kinetic energy
spectrum EðkÞ � k�5=3 and EðkÞ � k�2, respectively.
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dominant contribution to the dispersion process.31 To test this hypoth-
esis, we rescale the FSLE with the flow integral timescale TI ¼ ‘I=

ffiffiffi
E

p
,

with E the total kinetic energy. As it can be seen in Fig. 4, for all Ro, the
plateau values of the rescaled FSLE range between 1.1 and 0.8, which
are close to 1, supporting this explanation.

The values of FSLE (not rescaled by TI) at small d slightly increase
with the Rossby number (inset of Fig. 4), consistently with the increase
in velocity gradients with Ro. A similar trend is observed from the
short-time behavior of relative dispersion, which grows faster for larger
Ro (inset of Fig. 5). At later times, hR2ðtÞi does not present a clear scal-
ing, though on a limited time interval it may not be far from the t4 the-
oretical expectation. More interestingly, its growth slows down when
the Rossby number is increased, which hints to temporary phases dur-
ing which some particles aggregate and thus the efficiency of the global
separation process is reduced.

We conclude that the Ro-dependence of the different measures of
pair separation is overall weak, indicating that ageostrophic motions
do not substantially alter pair-dispersion statistics. This suggests that,
in this system, when the Rossby number is increased, large eddies con-
serve their capacity to drive the dispersion process.

B. Particle clustering and relation with the Eulerian
flow structure

While on average, over long times, Lagrangian tracers separate,
their spatial distribution is not homogeneous and clusters can form in
the course of time. To investigate this point, the first quantity we con-
sider is the averaged divergence experienced by particles along their
trajectories, also known as the dilation rate,22 a numerically efficient
single-particle indicator of tracer accumulation.

The divergence of the velocity field h$ � uixi;t , computed at parti-
cle positions xi and averaged over time and all particles, is shown as a
function of Ro in Fig. 6. It is negative for nonzero Rossby numbers and
grows roughly quadratically in Ro in absolute value, indicating that
particles aggregate more when ageostrophic motions are more intense.
Due to the compressibility they experience, particles are attracted to
contracting flow regions and hence do not homogeneously sample the

phase space. This fact has been shown to give rise to differences
between Lagrangian and Eulerian statistics in other situations, such as
that of time-correlated compressible flows.45,46 A qualitative under-
standing of what occurs in our experiments can be obtained by looking
at the pdf of the Eulerian divergence, Pð$ � uÞ (Fig. 7). When Ro is
increased, the tails of this pdf rise, highlighting the more likely occur-
rence of very intense divergence events. Its shape is remarkably sym-
metric, though, meaning that positive and negative values of $ � u are
equally probable. The negative sign of the averaged Lagrangian diver-
gence h$ � uixi;t then results from particles getting trapped in conver-
gence regions and spending a significant fraction of the time there, a
phenomenon which increases in intensity with increasing Rossby
number.

The occurrence of clustering in our system is clearly demon-
strated by the pdf of Voronoï normalized cell areas, a statistical tool
that is often used to characterize the aggregation of inertial particles in
(incompressible) turbulent flows.47,48 The cells are constructed by par-
titioning the spatial domain into regions containing one particle and
all the points that are closer to that particle than to any other.47–49 The
nonhomogeneity of the particle distribution produces deviations of the
pdf PðA=hAixiÞ (the average being taken over all areas, containing
each one particle) from the corresponding one computed for uni-
formly random distributed particles. As it can be seen in Fig. 8, for
Ro¼ 0, PðA=hAixiÞ agrees with the probability distribution expected
for uniformly spread particles in a 2D domain,50 f2DðA=hAixiÞ
¼ 343=15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7=ð2pÞp ðA=hAixiÞ5=2 exp ð�7=2A=hAixiÞ (solid gray line

in the figure). When the Rossby number increases, however, its
left tail gets monotonically higher, indicating that the probability
of finding particles at small distances, and hence to observe clus-
tering, is larger. We can contrast the case of Ro¼ 0.075 with
one where we advect particles by its geostrophic component only.
As expected from particle transport in geostrophic turbulence,51

the pdf corresponding to uniformly distributed particles is
recovered [case of ðRo ¼ 0:075Þg in Fig. 8], which further proves
that this phenomenon is entirely due to the ageostrophic flow
component.

FIG. 6. Velocity divergence sampled by particles, averaged over time and over all
particles, as a function of the Rossby number. Here, the error bars correspond to
the standard deviation of the temporal statistics. The black dashed line is propor-
tional to �Roa, with a ’ 2:07 from a best fit.

FIG. 7. Probability density function of the Eulerian flow divergence $ � u, temporally
averaged over several flow realizations in the statistically steady state, for different
values of Ro.
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Aiming to understand where particles accumulate, we first look
at the fine-scale properties of clustering. The latter originate from the
contraction of volumes in the phase space (here coinciding with the
physical space) of the dissipative ($ � u < 0) dynamical system of
Eq. (9). Consequently, after a transient, the Lagrangian dynamics take
place on a fractal set. A common quantitative indicator of clustering is
the correlation dimension,52 D2, of the dynamical attractor. A decrease
to values D2 < d, with d the dimension of the physical space (d¼ 2 in
the present case), indicates an increased occurrence of small distances
separating particle pairs. This fractal dimension is defined as follows:

D2 ¼ lim
rp!0

log CðrpÞ
� �

log ðrpÞ ; (13)

with the correlation sum CðrpÞ given by

CðrpÞ ¼ lim
Np!1

2
NpðNp � 1Þ

XNp

i;j>i

Hðrp � jxi � xjjÞ;

where H is the Heaviside step function, xi and xj are the positions of
particles belonging to pair (i, j), and the distance jxi � xjj is the short-
est one, after taking into account the 2p-periodicity of the computa-
tional box. Equation (13) then means that, for small rp, the probability
to find particle pairs separated by a distance less than rp scales as
CðrpÞ � rD2

p .
Figure 9 shows the measurement of the correlation dimension as

a function of the Rossby number. For Ro¼ 0, as expected, D2 ¼ 2
within statistical accuracy, which confirms the spatially homogeneous
distribution of particles in the SQG system. Here, the small deviation
from the theoretical value 2 may be attributed to the finite number of
particles. At nonzero values of Ro, D2 decreases monotonically,
highlighting that clustering now takes place and that its intensity grows
with the Rossby number. Again, this is a direct consequence of the
transport of Lagrangian tracers by the ageostrophic flow. Indeed, when
advection is realized by the geostrophic velocity only in the SQGþ1

model, the nonhomogeneity of the particle distribution disappears and
D2 ’ 2, as shown by the blue empty point in the figure for the highest
value of Ro explored (but the same holds for all Ro). Overall, these
results suggest that particles aggregate on flow structures with a dimen-
sionality smaller than that of the physical space and progressively
more unidimensional with increasing Ro.

We now discuss in what regions of the flow particles tend to clus-
ter. The question is of primary importance in oceanography, e.g., to
identify areas of pollutant accumulation in surface flows, or locations
of intense vertical velocities relevant for nutrient upwelling and plank-
ton dynamics.

While inspection of Fig. 3(d) already suggests some tendency of
particles to avoid negative-vorticity (anticyclonic) regions and to con-
centrate along filamentary structures, a more quantitative approach is
needed. A classical tool to identify different (2D) flow regions and to
characterize their role in transport phenomena is the Okubo–Weiss
parameter,53,54

Q ¼ r2 � f2; (14)

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2n þ r2s

p
is the total strain (rn ¼ @xu� @yv and rs ¼ @xv

þ @yu being the normal and shear strain, respectively) and f is vorticity.
The parameter Q allows to discriminate between strain-dominated
(Q> 0, i.e., r > jfj) and rotation-dominated (Q< 0, i.e., r < jfj)
regions, and reveals useful, for instance, to explain the dynamics of
tracer-field gradients.55,56 Note that a more refined criterion was further
obtained in incompressible flows to take into account the rotation of the
strain eigenvectors that can affect the straining properties.57 These strain
and rotation-dominated regions can be related to dispersion properties
through the linearization dðxi � xjÞ=dt ¼ ui � uj ’ ð$uÞðxi � xjÞ. It
is then clear that velocity gradients will also determine the particle small-
scale dispersion or aggregation properties.

In order to determine the regions where particles preferentially
cluster, we follow Ref. 58 and compute the flow divergence condition-
ally averaged over all grid points of the domain with given values of

FIG. 8. Probability density function of Voronoï cell areas, normalized by the aver-
aged cell area, PðA=hAixi Þ, at an instant of time in the statistically steady flow
state, for different values of the Rossby number. The curve labeled by
ðRo ¼ 0:075Þg has been obtained from particles advected by the geostrophic flow
only. The solid gray line is the theoretical prediction for uniformly distributed par-
ticles f2DðA=hAixi Þ (see the text).

FIG. 9. Correlation dimension D2 as a function of Ro, obtained from data in several
statistically steady flow realizations. Uncertainties are estimated from the standard
deviations of best fits over the range of small distances rp where CðrpÞ � rD2

p . The
empty blue point is for particles advected by the geostrophic flow component only
at Ro¼ 0.075. The black dashed line corresponds to the second-order Taylor
expansion D2 ’ 2þ aRoþ bRo2, with a ’ �2:9 and b ’ �50:2 from a best fit.
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vorticity and strain, noted �D
fr
. This is a robust statistical tool originally

introduced to investigate the vertical fluxes of a passive scalar field in
submesoscale turbulence.58 Figure 10(a) shows its measurement in our
SQGþ1 simulations for Ro¼ 0.075 at the same instant of time chosen
for the visualization of Fig. 3(d) (but it was verified that its features do
not significantly change when a time-average is also taken). It is here

apparent that strong divergence (�D
fr

> 0) and convergence

(�D
fr

< 0) predominantly occur in strain-dominated regions (r > jfj),
extending along tails above the lines r ¼ jfj. The asymmetric shape of
the tails is a direct consequence of the dominance of cyclonic vorticity
(see Fig. 2), due to ageostrophic dynamics. Here, the association of
convergence with f > 0 values is arguably due to the same vortex-
stretching effects that amplify cyclonic vorticity (Sec. III B). Note, too,

that in rotation-dominated regions (jfj > r), the divergence �D
fr

is
more likely to take both positive and negative values that tend to cancel
out more. The above features are generic, and also appear at smaller
values of Ro (not shown), except that the tails associated with large

positive and negative values of �D
fr

become more symmetric, and
divergence is smaller in absolute value, when the Rossby number is
decreased.

To complete the picture, we also show in Fig. 10(b) the
divergence, in vorticity-strain space, computed at particle positions,
�D
fr
xi . The Rossby number and the instant of time are the same as in

Fig. 10(a) (and, again, we verified that averaging over time does not
considerably modify the results). By comparing Figs. 10(a) and 10(b),
it is evident that the Lagrangian and Eulerian estimates of divergence,
conditionally averaged over the values taken by vorticity and strain,
share the same general characteristics (similarly to what is found for
vertical velocity in Ref. 59). The partial attenuation of extreme events
when using Lagrangian statistics is likely due to the smaller sample.
Apart from this, it can be noted that the patterns from the Lagrangian
estimate are sharper and characterized by a reduced frequency of
�D
fr

> 0 events, in comparison with those from the Eulerian estimate.
This is due to the tendency of particles to aggregate in flow-
convergence regions, and hence to predominantly sample negative val-
ues of divergence. Overall, Fig. 10(b) confirms the preference of
Lagrangian tracers to concentrate in regions of positive vorticity and
large strain (r > jfj). This finding quite nicely matches the spatial
organization of particles that is observed from a closeup view of a por-
tion of the full domain at the same instant of time [Fig. 3(d)]. Indeed,
regions of negative vorticity (f < 0) tend to be relatively particle-free.
On the contrary, particles are abundant in filamentary, positive vortic-
ity regions (corresponding to f > 0 and r > f) while it is less the case
inside cyclonic eddies (corresponding to f > 0 and r < f).

The previous analysis indicates that particle clustering takes place
in cyclonic strain-dominated regions. These correspond mostly to fila-
ments and fronts outside coherent eddies. Indeed, a straight front
along the y direction [with velocity u ¼ uðxÞ independent of y] is
characterized by negative divergence ($ � u ¼ @xu < 0) in its cross-
wise direction (which sustains the front) and by strain exceeding vor-
ticity. The fact that r > jfj follows from the relation r2 ¼ ð$ � uÞ2
þ f2 > f2 holding for a velocity field that only depends on the cross-
front coordinate x.

Our findings support those from a recent, more complex model-
ing study, which, taking a Eulerian point of view, reported on strong
vertical velocities and flow convergence in cyclonic submesoscale
fronts.58 Furthermore, they provide clear evidence of Lagrangian-
tracer clustering in cyclonic regions, also observed from real surface-
drifter data,9,60 and a possible explanation of the basic mechanisms
controlling the phenomenon in the framework of a minimal model
accounting for ageostrophic dynamics.

V. CONCLUSIONS

We studied Lagrangian particle dynamics in an idealized model
of surface-ocean turbulence that includes ageostrophic motions by
means of numerical simulations. We particularly focused on the effect
of ageostrophy on the spreading process of tracer particles, by examin-
ing both relative dispersion and clustering properties.

The turbulent dynamics were assumed to be described by the
SQGþ1 system, which accounts for frontogenetic ageostrophic
motions, and is obtained from a development of primitive equations to
next order in Ro, with respect to standard QG models. This approach,
originally introduced in an atmospheric context,27 allowed us to repro-
duce the cyclone-anticyclone asymmetry, a phenomenon that is
observed in both primitive-equation simulations20 and data from
observations19,21 of ocean turbulence at sufficiently fine scales, but is
missed by QG models. The turbulent flows from our simulations for

FIG. 10. Mean divergence �D
fr

conditionally averaged over vorticity (f) and strain
(r), from Eulerian (a) and Lagrangian (b) statistics, at a fixed instant of time in the
statistically steady state of the flow, for Ro¼ 0.075. For the Lagrangian estimate,
the subscript xi indicates that D, f, and r are computed at particle positions. In
both (a) and (b), the dashed lines correspond to r ¼ jfj.
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different Rossby numbers are characterized by energetic small scales,
particularly in the form of filamentary structures associated with
intense gradients. Kinetic energy spectra are not far from the theoreti-
cal expectation in the SQG system (recovered by setting Ro¼ 0 in the
governing equations), although slightly steeper. Their scaling behavior
is close to EðkÞ � k�2, as also found at submesoscales in more realistic
simulations.61–63 In the present case, the steepening of the spectrum is
most likely due to the presence of large-scale coherent structures, a fea-
ture that was already observed in both the SQG13,31 and the SQGþ1

systems.27

To explore how ageostrophic fluid motions impact the particle
separation process, we compared the measurements from different
indicators of pair dispersion as a function of Ro. Given that the total
kinetic energy increases when increasing Ro, we used mostly dimen-
sionless diagnostics allowing a fair comparison between the different
simulations. We found that, irrespective of the Rossby number, disper-
sion is essentially nonlocal, except perhaps on a narrow range of sepa-
rations, as highlighted by the extended region of scale independent
FSLE and by the fast initial growth in time of the kurtosis of relative
displacements. As the FSLE, where constant, was found to be close to
the inverse large-eddy turnover time of the flow, we could show that
this apparently surprising result is due to the presence of large persis-
tent flow structures, which dominate the dispersion process. Overall,
the general picture emerging from different metrics of relative disper-
sion is that, in the present simulations, dispersion only weakly depends
on the intensity of the ageostrophic flow dynamics (i.e., Ro).
Nevertheless, when increasing Ro, the latter manifest in a small, but
measurable, increase in the separation rate at short times (and small
distances), due to velocity gradients becoming stronger, and in a subse-
quent slowdown of relative dispersion at later times, possibly arising
from the formation of temporary particle aggregations.

The occurrence of clustering events was demonstrated by com-
puting the averaged divergence experienced by particles (the dilation
rate22) and the pdf of cell areas from a Voronoï tessellation. The
decrease in the dilation rate to more and more negative values, and the
rise of the left tail of the Voronoï cell-area pdf, indicate that particles
are progressively more likely to be at small distances one from the
other, when Ro is increased. While this phenomenon is a direct conse-
quence of the compressibility of the ageostrophic flow component, it is
not straightforward to relate Eulerian and Lagrangian measures of
clustering, as already noted in previous studies of Lagrangian tracer
dynamics in compressible turbulence.45,46 Here, at a qualitative level,
we argued that clustering arises from the increased probability of very
large flow divergence values, at larger Ro, and hence the longer fraction
of time spent by particles in negative-divergence regions.

Determining where convergence, and thus particle clustering,
takes place in surface-ocean flows is of paramount importance, both to
predict the accumulation of biogeochemical substances or pollutants,
and to identify locations of large vertical velocities. To address this
question, we first computed the correlation dimension of the sets over
which particles concentrate, which is directly related to the probability
of finding a pair of them within a given distance. With increasing Ro,
this was found to decrease from D2 ¼ 2 (corresponding to uniformly
distributed particles) to smaller values, indicative of clustering and
pointing to less than 2D aggregates (possibly quasi one-dimensional
ones, for large enough Rossby numbers). To further understand in
what flow regions clusters can be found, we examined the divergence

conditionally averaged over vorticity and strain. This quantity was
recently introduced as a generalization of Okubo–Weiss parameter to
divergent flows, in order to partition 2D flows into regions with differ-
ent stirring properties.58 We found that divergence has an asymmetric
distribution in vorticity-strain space that reflects the cyclone-
anticyclone asymmetry. More interestingly, it is predominantly nega-
tive and large (in absolute value) where strain overcomes vorticity and
the latter is positive, which indicates that clusters form in cyclonic
frontal regions. Such a picture agrees with the results in more realistic
simulations of submesoscale dynamics in the Antarctic Circumpolar
Current, focused on the vertical fluxes of tracer fields.58 It may also be
useful to better understand observations of surface-drifter clustering in
cyclonic regions in the Gulf of Mexico.9

To conclude, the SQGþ1 system revealed a useful minimal model
to investigate some basic mechanisms, related to ageostrophy, control-
ling the separation and clustering of Lagrangian tracer particles at the
ocean surface. Ageostrophic effects only weakly affect the nonlocal rel-
ative dispersion while they are responsible of non-negligible clustering
in filamentary cyclonic regions. This is remarkably similar to the
observations from drifters in the Gulf of Mexico, which also indicated
both nonlocal dispersion43 and small-scale clustering.9 Note that, in
addition to ageostrophy, in the real ocean, other processes play a role
in the transport of particles in the surface layer, such as Ekman cur-
rents induced by the wind,64 or Stokes drift due to ocean waves. The
dispersion of floating material may also be affected by inertial effects65

or by the drag exerted by the wind (the so-called windage). A natural
perspective of this study is to extend the analysis to realistic simula-
tions, in order to explore the effects of the ocean fast variability, which
cannot be accounted for by the modeling framework considered here.

Finally, the present results also appear to us interesting in consid-
eration of the satellite data at high spatial resolution acquired by the
SWOT spatial mission.10 The weak dependence of pair-dispersion
indicators on the Rossby number suggests that the geostrophically
derived surface velocities may be essentially accurate for relative-
dispersion applications. On the other hand, to access finer details of
the particle dynamics, such as clustering phenomena, further informa-
tion on the ageostrophic flow components would clearly be required.
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