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The properties of turbulent flows are strongly rnodified by the presence of dispersive waves 
the period of which can be less than the eddy-turnover time of turbulence for suffciently 
large scales. Using a systematic method due to André, we show that the presence of such 
waves induces complex damping rates in stochastic models like for instance the Eddy- 
Damped Quasi-Normal Markovian model: in other terrns, turbulence acts to renormalise 
both viscosity and frequency. This method is applied to spherical Rossby waves; it is found 
that the relative correction to Rossby frequencies, negligible at planetary scales, might 
become important around 1000b.m and tends to a limit close to 0.3 for suffciently small 
scales. 

1. INTROBUCTION 

Geophysical fluid flows are greatly affected by turbulent processes whose 
predorninance in the çmaller scales is responsible for the unpredictability 
of the larger ones. It seems therefore attractive to apply the stochastic 
tools of turbulence theory to the problem of simulating the general 
circulation statistics of the atmosphere. The problem of large scale 
geophysical turbulence however exhibits severa1 specific features usually 
absent in turbulence theory. Baroclinicity is one of them: the way in which 
it modifíes the usual concept of two-dimensional turbulence has been 
studied in particular by Charney (1971), Salmon (1978) and others. Even 
for barotropic flow specific features arise due to the presence of linear 
terms in the basic equation, related to either orography (Herring, 1977) or 
variation of Coriolis parameter with latitude (Holloway and Hendershott, 
1977). We shall be interested here in the latter aspect of the problem, i.e. 
the way in which two-dimensional turbulence becomes modified in the 
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254 B. LEGRAS 

presence of Rossby wave propagation. We shall use the formulation of the 
spherical vorticity equation 

where 'P is the stream-function such that the velocity is u =  k x VY with k 
the unit normal vector; [ is the vorticity k.curlu; A and p are respectively 
the longitude and the sine of latitude, Y is a dissipation coeficient, F is a 
forcing term andfis the Coriolis parameter 2Qp; we suppose the radius of 
the sphere is unity. The natural geometry of the problem is spherical; 
however, if one is only interested in intermediate scales, a usual approxi- 
mation to (1) is the well known P-plane approximation which is especially 
attractive for oceanic problems: 

a i  a ( ~ , c )  av -+- + p -= vvy +F,  
at a(x,y) ax 

where the x direction is oriented westward. Various types of boundary 
conditions can be associated with (2 ) :  free-slip closed basin, x-periodic 
free-ship channel, doubly periodic domain, or vanishing at infinity. 

In the following, we shall consider mainly spherical geometry, while 
keeping an eye on the side on the planar analogues of our results in order 
to emphasize resemblances and differences. Rossby waves appear when 
one linearises the left-hand side of (1) or (2). In the space of spherical 
harmonics (cf. Section 2), the dispersion relation reads 

wf= -2Qm/I(I+l), 
instead of 

wk= - p k , / k 2  

in Fourier space. Rossby waves are therefore dispersive and strongly 
anisotropic: the phase velocity is always directed westward and no pro- 
pagation occurs in the purely meridional direction. The interested reader 
will find in Longuet-Higgins (1964, 1965) a detailed discussion of the 
geometrical properties of Rossby waves. 

From the standpoint of turbulence, one of the most important features 
of Rossby waves is that frequency grows with wavelength. If the relative 
enstrophy Z of the flow is less than LI2, the period of the larger scale 
waves is smaiier than the eddy-turnover time at the same scales (typically 
greater than 2-l''): one thus expects in that case a strong modification of 
turbulence by the waves. In physical space, where nonlinear interactions 
are essentially local, waves spread the energy of the large eddies before 
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ROSSBY WAVES 255 

they interact efficiently; one can also say that waves tend to organise the 
flow in competition with nonlinear instabilities which tend to disorganise 
it. Rhines (1975) distinguishes two regimes in the flow: a turbulent regime 
towards the smaller scales where waves are negligible and a regime 
dominated by wave propagation towards the larger scales. The separation 
is characterised by a transition wave number k, = (fl/2U)'12 estimated by 
equating the r.m.s. speed U of the flow to the phase speed of the Rossby 
waves. Rhines shows how the inhibition of nonlinear transfer within the 
larger scales yields, in the vicinity of k,, a strong weakening of the reverse 
energy cascade usually observed in two-dimensional turbulence, associated 
with a build up of anisotropy in the larger scaies from a supposedly 
isotropic initial state. 

Holloway and Hendershott (1977) have applied the technique of 
stochastic modelling to the p-plane problem. They use the Eddy-Damped 
Quasi-Normal Markovian approximation (EDQNM) and give an estimate 
of the characteristic time O,, for the relaxation of triple correlations in 
the presence of Rossby waves. What we propose here is a finer estimation 
of this characteristic time, taking into account the dephasing effects 
induced by waves at a11 orders of the hierarchy of the cumulant equations. 

2. SPECTRAL INTERACTIONS 
The spectral form of problem . ( i )  obtains by expanding a11 scalar 
functions, on the basis of the spherical harmonics %(A, p).t Vorticity 
expands in the form 

5 (4 u t 1 = c 5, ( t  1 %(A I 0 5  

i&= ( -  1 )mf, 

a 
with 

ensuring that 5 is a real field. 

tThe spherical hamionics are eigen functions of the laplacian operator 

vz r, (4 I r )  = - 4 (4 + 1 )%(A, P). 
We shall use the complex subscript a=l ,+im,  where the degree 1, and the order m, are 
integers with lak\mel. We thus have 

Conjugation and orthogonality rules for the spherical harmonics read 

Y%II)=(-  ~ ) m w A , p l ,  
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256 B. LEGRAS 

The spectral vorticity-equation is 

( d / d ' - i ~ a + v ! ~ ) L = i  Aapy4'Bly, 
8.  Y 

with 

ja=[ l~( la+l ) ] l~ ' .  

The interaction coefficients A,,, are real and defined as 

An expression of A,,, with Wigner's 3-1 symbols has been given by 
Thiebaux (1971): 

A,,, - jã ' )[ (21, + 1 )(21, + 1 )(21, + 1 )] ''' 
x [(i +L)(1 +L-21,)(L-21p)(L-21,)]'/' 

with L= I ,  + IP 4- I:.. A coefficient Azo;, is non-zero if and only if the triad 
(a, p, y) satisfies the following selection rules: 

m,+mg+my=O with m,,m,,m, not a11 zero, (7a) 

Ia 1 I,, 1, 

i, + I ,  + 1, odd, (7c) 

1, + I , ,  ( 7 4  

a # P  and a+y. (7e) 

are the sides of a true triangle, (7b) 

A a8r = - A - - - ,  aSY ( 8 4  c 
I, 

The symmetry properties of A,,, are easily deducible from (5) or (6) .  One 
obtains 

Relations (8c) and (8d) express the detailed conserkation of enstrophy and 
energy reçpectively in each triad hteraction. 
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ROSSBY WAVES 257 

It may be interesting to remember here the analogous formulation in 
planar geometry when problem (2) is formulated on the basis of Fourier 
harmonics, namely 

((x, t )  = 1 5 eik ", 
k 

We have thus 

with 

The selection rule reads 

k +  p + q  =O. 

The resemblance between (4) and (9) is of course not surprising. One 
difference between the two forms is the appearance of a factor i on the 
right-hand side of Eq. (4), arising from the fact that each complex 
exponential is derived only once in the jacobian of two spherical 
harmonics. The symmetry properties of A k m  are strictly analogous to 
relations (8), save on one point: the equivalent of @a) in the plane case 
reads 

Ak,p ,q=A -k -R -9, 

because of the absence of the factor i in this case. Note that the scale of 
motion associated with a given eigenmode is Ikl on the plane and the 
degree I of the harmonic on the sphere. These formal identities allow 
straightforward extensions of a number of results from planar to spherical 
geometry. For inviscid truncated systems ( I  5 lmaX < 00)  equipartition equi- 
libria obtain, of the following form: 

where a and 6 are determined from the values of total energy and 
enstrophy (e.g. Kraichnan, 1967). 

Some differences however between the two cases are worth noticing. In 
planar geometry, the only modes I k  with which two Fourier modes f p  
and f q directly interact are k, = p + q and k, = p - q; whereas in spherical 
geometry, relatíon (7b) allows two harmonics to interact directly with 
more than two others: for examples 5 + 3i and 3 - 2i interact directly with 

7+i, 5 + i ,  3 + i ,  7+5i, 5 + 5 i  and conjugate modes. 
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258 B. LEGRAS 

Therefore, one can point out that the processes which distribute energy 
throughout the spectrum are more eiiicient on the plane than on the 
sphere (Tang and Orszag, 1977). Another peculiarity of spherical geometry 
is that the concepts of homogeneity and isotropy are indistinguishable, 
since the displacement group contains rotations only. This remark has no 
consequence of interest for a problem formulated within the framework of 
homogeneity and isotropy. This is not the case here: Eq. ( 2 )  remains 
invariant within the group of translations, but not within the group of 
rotations, so that the only proper assumption to make is that of 
homogeneity; while Eq. (1) on the sphere, is invariant only within 
the group of rotations around the polar axis, the only proper assumption 
there being that of zonal homogeneity. In the former case, homogeneity 
warrants that statistical moments ( c k , ,  . . ., ckN), defined as averages over an 
infinite set of realisations of the flow, are non-zero only if k, +. . . + k, = O; 
in particular, the averages ([k) are identically zero and the only non-zero 
moments of order two are the quadratic terms ( i k 5 - k ) .  In the iatter case, 
the moments read ([[I.. . [ r )  and the zonal homogeneity implies only rn, 
+ . . . + mN =O;  thus, zonal averages ( c : )  and double correlations ([yC;,m) 
are allowed to be non-zero . . . etc. In this manner, spherical geometry 
implies the existence of a mean zonal flow and interactions with this flow. 
Even though such interactions are only second order in time if one 
considers the initial departure of the flow from a gaussian spectrum, they 
can be expected to play a noticeable part in fully developed turbulence. 
Nevertheless, since the proper processing of such terms in the equations 
can be achieved only at the price of a considerable increase in analytic 
complexity we have chosen in a first approach to neglect such in- 
teractions. This simplification allows a simpler analysis but without any 
doubt obliterates a part of the specific features of the spherical problem.? 

Boundary conditions may cause difficulties in the j?-plane: with infinite‘ 
boundaries, k varies continuously over spectral space, so that Rossby 
frequencies diverge as lkl+O, although they are bounded in the natural 
probiem.: 

tExistence of non-zero zonal averages (Cp) implies that terms like i([)([[[) are included 
on the right-hand side of the triple correlation equation. Since (i:) is real and varies over a 
larger time scale than ([cc), such terms are essentially dispersive for triple correlations: they 
add up to the Rossby wave term and modify accordingly the wave frequencies. Note 
however that the operator is not diagonal if one uses spherical harmonia as basis functions. 
A formulation easier to work with may be obtained with normal modes for the average 
instantaneous zonal flow but at the expense of greater complexity in practical calculation. 

$This diEculty disappears if one takes into account the upper free surface condition in a 
more realistic model. The L.ap1acian operator V2 is then replaced by V2 -,I-’ where i, is the 
interna1 deformation radius; Rossby frequencies are then given by oi, = - p k , / ( k 2  +i.-’) aiid 
no longer diverge as I k 1-0. 
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ROSSBY WAVES 259 

3. EQUATIONS OF MOMENTS 
The evolution equations for the statistical averages of the flow are easily 
deductible from (4). Defining the moda1 enstrophy Z ,  =?([,r,> one 
obtains 

(W + 2VU)ZU = c A,,, MC.T,C,,>. (10) 
8 ,  Y 

Triple order moments are governed by 

We use here the contracted notations 

wU1 + muz + . . . + o,, = .up5  vo':, +ZZ + . . . +i.',) = v,, . . . 

The equation for the nth order moment always includes a n +  1st order 
term. The whole set of equations thus reads as an infinite hierarchy of 
independent equations the closure of which, in the present state, requires 
semi-phenomenological approximations such as the EDQNM assumption 
(Section 4). Rotation does not appear explicitly in the enstrophy 
equation (10). However, a linear dispersive term is introduced in a11 
moment equations of order larger than 2 (with the exception of the 
resonant interactions), and in particular in the equation for triple cor- 
relations (11). Rotation thus acts on the energy spectrum by means of a 
modification of the dynamic transfer. Moreover, this modification is itself 
not confined to the propagative effect io,,,, which appears explicitly in 
(11). It also arises by mean of moments (CBCy&) from a11 kinds of 
changes induced by rotation on the dynamics of the whole set of higher 
order moments. 

4. EDDY-DAMPED QUASI-NORMAL MARKOVIAN 
APPROXIMATION (EDQN M) 

The assumption of zona1 homogeneity allows a simple formulation for (11) 

(d/dt  + iwupr + V a p y  K C u C B C y )  + iR,,,, Q,p,, (12) 
where 
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260 B. LEGRAS 

Qapy is a residual sum of fourth-order cumu1ants.t In the classical quasi- 
normal approximation, one neglects QuBy in Eq. (12) which amounts 
to a particular closure of the hierarchy of moments equations. Such a 
model, however, yields an unrealistic evolution of the energy spectrum 
with the occurrence of strong negative values (Ogura, 1963); it is also well 
known that a similar closure produces the same result when applied at 
any higher order in the hierarchy. This deficiency is mainly due to the 
lack of irreversibility (independently from viscous dissipation) in the 
moment dynamics of the'model (Orszag, 1970). Indeed, one can show 
(André, 1975) in the case of a non-gaussian flow that a typical effect of the 
nth-order cumulants is to relax the cumulants of lower order; this 
relaxation allows a convergence toward statistical equilibrium for an 
inviscid system with a finite number of modes. 

Leith (1971) and Orszag (1970) proposed to parameterise the relaxation 
effect of the fourth-order cumulants in the equation for triple correlations 
by introducing a turbulent damping coefíicient puB,( t ) :  

By integration of (13) and replacement in (10) we obtain 

t 

(d /d t+2vU)Z , ( t )=Jds  1 Re -(~,,~+ico,~,)(t-s) 
0 B . Y  

The markovianisation method consists in replacing the historical in- 
tegral on the right-hand side of (14) by a characteristic time O,,, 
(necessariiy posi tive). 

The markovianised equation reads 

where 

tSee the definition of the cumulants given in Section 5 on p. 264. 

D
ow

nl
oa

de
d 

by
 [

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
] 

at
 1

6:
31

 1
8 

Ja
nu

ar
y 

20
15

 



ROSSBY WAVES 26 i 

The EDQIMN equation (15) ensures that energy will remain positive at 
all times. This property corresponds to the fact that (15)-(16) can be 
obtained as the exact closure of a Langevin equation for a random 
vorticity field (Leith, 1971 ; Holloway, 1976) 

(17) 
Cdldt + ~ a ( t )  + i ~ a  + valiK(t)=f,(r 1 9  

( f a  (t)fK ( t ' ) )  = 6 (t - t' oa,y (t)aaBJ, (t)zy 
8. Y 

We still have to define OK,,(t) in order to completely specify the model. 
A first estimate can be 

where 

is the Green function associated to (13). Since dmSy is an integral time-scale 
for the triple correlation (5,5,5,), it can also be derived from (17), as 

t 

eKp,(t) = R e  J GK(t, s)G,(t, s)Gy(t, s) ds (18) 
O 

where Ga(t,s) is the Green function associated with (17). This compels us 
to take 

in order to obtain consistency between both definitions. 
The identification of the averaged Green function G,,, with the product 

of average Green functions GaGpG, is incorrect: Kraichnan (1971) and 
Sulem (1975) have shown that (19) indÚces an over-estimation of re- 
laxation by non-local interactions. This deficiency however can be cured if 
one uses a modified estimate derived from the Test Fieid Model, a 
spherical version of which is given in the appendix. We shall incorporate 
this correction at the end of Section 5. 

The markovianisation technique applied to Eq. (14) turns out to 
be only a slight modification if the relaxation time of the triple cor- 
relations proves to be negligible compared with the time of evolution of 
the energy spectrum. This assumption can be tested in the case of 
homogeneous and isotropic turbulence on an infinite plane. I n  the 
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262 B. LEGRAS 

enstrophy-cascading inertial range, the energy spectrum is E ( k )  
= C ~ - ~ ' ~ k - ~ ( l n  k/k,)-'/3 (Kraichnan, 1971), where E is the enstrophy 
dissipation rate and C a constant of order unity. The characteristic time 
of spectral transfers in the vicinity of k is about e-l13(ln k/k,)-'13, whereas 
the evolution of the energy spectrum is governed by the eddy-turnover 
time at the lower end of the cascade, approximately E - ' ' ~ .  These two time- 
scales differ by the ratio (ln k/k,)ll3, which justifies markovianisation. The 
assumption seems to be less justified in the k-5'3 inverse energy cascade, 
where the local turnover time of eddies is equal to the time required for 
energy to cascade from k, to k.  However, we know experimentally that 
the EDQNM approximation is able to develop both inertial ranges in 
high Reynolds numbers simulations (Pouquet et al., 1975). 

New diffculties due to the existence of waves appear in the present 
model. In the absence of waves (w,eO), and if the damping rate p U p y ( t )  
varies but slightly over the interval [s, t], the characteristic time is given 
bY 

O,,,( t)  = i 1 - expr - V,P, ( t ) I ) /V,B, ( t ) i  

e,, (t  1 = v,,y + Pupy  ( t  1. 

(20 ) 

where 

Relatisn (20) gives O,,,=t for short t [an estimate exact to O ( t 2 )  for a 
gaussian initial state], and Oaayz= l/v:ay for large t .  In a11 cases, O,,, is 
positive as long as pUav>0,  a condition which holds because b,,, is itself 
typically positive (André, 1974). In the presence of waves, (20) is replaced 
5Y 

Near t=O,  we have again Oa,r=t  and the model is still exact at first order. 
This first stage is followed by a transient stage during which the system 
keeps some memory of the initial state. O,,, is then affected by oscillations 
which can yield negative values if W , ~ ~ / V : ~ , >  16: we may consider this an 
evident failure of the model. Starting with a gaussian initial state, we see 
that it takes some time for the nonlinear transfers to become established; 
in fact they increase as O ( t ) ,  while propagative effects act instantaneously. 
Indeed, this initial prevalence of propagative effects in the dynamics of 
transfer renders somewhat doubtful the very idea of markovianisation, at 
least during the transient stage. 
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263 

Far from initial times, when turbulence is fully developed, expression 
(21) regains its full sense, at least from the formal standpoint, and reaches 
the stationary form already given by Holloway (1977) 

ROSSBY WAVES 

This expression is always positive and as required by realisability. When 
introduced in (16), (22) causes the damping rate to decrease in comparison 
with the case without waves, a behaviour which expresses the increase of 
the memory time of correlations. Simultaneously, nonlinear transfer is 
inhibited in (15). The particular set of triads which satisfy the resonance 
condition o,,, = O plays a very special part in the transfer : for such triads, 
the inhibition effect does not exist and one can expect a great portion of 
the transfer to be due to them. Such interactions only are retained in the 
Resonant Interaction model (RI) of Longuet-Higgins and Gil1 (1967) in 
the limiting case of weak modes on an infinite B-plane. However the RI 
fails to explain the growth of zona1 modes which are left unchanged by 
resonant interactions; it is thus necessary to involve higher order in- 
teractions where quartet resonances may occur (Loesch, 1978). 

Another problem still, pointed out by Holloway (1979), arises when the 
RI is applied to the discrete problem (periodic B-plane or sphere): the 
only resonances retained are then the intersections of the lattice of 
possible triads with the hypersurface of t3 which is the locus of resonant 
interactions. One caxi show easily that, save for a few pathological cases 
which disappear after taking in account the free surface condition, the 
only resonant interactions are isosceles interactions, the apex of which are 
zonal modes: in spherical geometry, they read (&,,O; i, m; i, - m). Such 
interactions produce only exchanges between (I,m) and ( I ,  -m), namely a 
simple phase rotation of the whole associated complex mode; the zonal 
mode remains unchanged. Thus, the RI applied to the discrete problem 
yields a completely linear system ; spherical harmonics (or Fourier modes 
in the f l  plane) are still eigenfunctions of the whole system, but the 
frequencies depend now not only on the zonal solid body rotation but on 
the whole zonal energy spectrum. This limit for weak modes or large j is 
obtained in numerical results reported in Section 6. Nevertheless, accord- 
ing to (22) resonance broadening occurs for finite amplitude modes: 
arnong a11 triads with at least one mode in the wave domain, the essential 
part of the transfer is due to the almost resonant ones which satisfy maBy 

"aBy * * This condition may be fulfilled in local triads where the three 
frequencies are of the same order. For nonlocal triads, the frequency of 
the mode of lowest degree, if non-zonal, dominates, and thus we are far 
from the resonance conditions; if the mode of lowest degree is zonal, while 

GAFD-D 
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264 B. LEGRAS 

the other two lie in the turbulent domain, we are close to resonance and 
the interaction is not inhibited. 

This suggests that dispersive effects yield more local transfer than 
expected in ordinary two dimensional turbulence; they systematically 
inhibit non-local transfer, save those driven by zona1 modes. 

5. COMPLEX DAMPING 

We have so far regarded the damping coeficient as real and positive. In 
the absence of propagation. effects, this property arises in a natural way 
from the vorticity equation which we write here symbolicallyt as 

(dldt  + v ) i  = Uii, 

in the spherical case; 1 stands for a real coefficient of interaction. If we 
suppose that in the initial state, a11 even order moments are real and ai1 
odd order moments purely imaginary, it is clear from (23) that this 
remains true during the ensuing evolution. In order to conserve this 
property in the EDQNM model, the relaxation rate of triple correlations 
must be real. 

Now, in the presence of waves, the vorticity equation reads (again in 
symbolic form) 

(24 1 (d /d t  + v + ia)[ = U[ [ ,  

so that propagative terms do exist at ali orders of the hierarchy. Because of 
the phase rotation they induce, a11 non-quadratic moments become 
complex during the evolution of the system, whatever the initial con- 
ditions, and the a priori obligation to obtain real relaxation coefficients 
disappears; it will be shown in what follows that one must indeed 
associate an imaginary part to the damping. In other words, the action 
of n+ 1st order moments upon nth order moments is not only character- 
ised by a relaxation but also by a phase displacement. Everything which 
has been said about our previous formulation of EDQNM extends at 
once to the complex damping case. In fact, only the real part of the Green 
function G,,, has been taken into account in (15). 

The method we shall follow relies on a formulation propounded by 
André (1974) leading to a systematic calculation of damping rates in the 
case of isotropic and homogeneous two-dimensional turbulence. In order 

t I n  planar geometry, one writes ( d / d t + v ) [ = l [ c ,  so that the argument is valid if he 
supposes all mornents initially real. 
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ROSSBY WAVES 265 

to clarify the ideas involved, we only give a symbolic exposition of the 
method, referring the reader interested in more technical details to the 
aforementioned paper. 

The statistical distribution of flow realisations may be described using a 
probability law I'((}, defined over the set ( of all allowable values for 
harmonic coefiicients. We are concerned with the moments T!:., ,a j  

= ( C a l . .  . Caj> which can be defined as derivatives of the first characteristic 
function, 

Yt-4 ) = eAcP(l)  d l ,  

in the form 

a w / a A , ,  . . . aAaj= TQ;,..~,. 

The cumulants Ct:...a, are defined as the derivatives of the second 
characteristic function P ( A )  =log Y ( A )  in the form 

8 9 / a A a , .  . . aAaj= cg. ..aj' 

It is easy to show that whenever the first order averages ( C x )  vanish 
cumulants are identical with moments up to the third order; at fourth 
order, the homogeneity conditions yield 

The major interest of using cumulants rather than moments in the 
formulation of the statistical theory of turbulence comes from the fact that 
cumulants all vanish beyond the third order for a gaussian distribution. 
They allow simpler formulations of high order closures when the flow is 
supposed to be almost gaussian. Denoting that jth order cumulant by the 
abridged form Cj, the complete heirarchy of cumulant equations reads 
symbolically 

(25.2) 
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266 B. LEGRAS 

(d/dt+v,+io,)C,=i l.C,C,+i ÂC,C,+i 1C6, 
FJ)-W (51 -6 )  151-16) 

(25.5) 

(d/dt+vj+ioj)Cj=i  ÂCICj+l-l+i ÂCj+i.  (25. j )  
j -  1 

ú’)-ú’+l} r = 2  ú3-lj+ 1) 

On the right hand side of Eq. (25.j) for the jth order cumulant, one 
finds a sum of (j+ 1)st-order cumulants and a series of products of lower 
order cumulants. The symbol o}-o+l} means building from the j-tuplet 
Q} a11 the (j+l)-tuplets fi+1} obtained by replacing one rnode of ti} by 
two other ones coupled with it in a triad. In addition, homogeneity 
implies that a number of cancellations occur in the first summation of the 
right hand side of (25.j). 

In André’s approximation, which can be considered as a weak form of 
the quasi-normal approximation, one neglects a11 products of cumulants of 
order greater than 3 in the right-hand side of (25.j). A simplified hierarchy 
obtains, whose general equation reads 

(dldt + vj + iwj)Cj= i ’ l.C,Cj- + i 1 ACj+ (26.j) 
o’l-ú’+ 1) cil+ti+1) 

We suppose that energy (namely cumulants C,) varies on a time xale  
larger than those of a11 other cumulants C j ,  j 2 3 ;  this assumption is a 
priori a11 the more true as j becomes greater. Thus, if one keeps the energy 
C ,  fixed, the simplified hierarchy is linear for ali orders greater than 3. 
Suppose now an Nth-order closure of eddy damping type, denoted by 

i 2  ÁCN+ 1 = - NpCN. 

This assumption is found consistent because it implies for a11 orders 
2 S j t N  

i C Á C j + ,  = -jpCj. (27) 

where j ,u depends only on j and the energy spectrum. Without rotation, jp 
must be real; here, we generalize it by allowing the existence of an 
imaginary part. The previous expression (27) may be replaced in (26.j) and 
gives 

(d/dt+vj+iwj+jp)Cj=i ACZCj- I ,  
ciI-.ci+ 1) 

D
ow

nl
oa

de
d 

by
 [

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
] 

at
 1

6:
31

 1
8 

Ja
nu

ar
y 

20
15

 



ROSSBY WAVES 267 

which is the jth order closure of the hierarchy. C j  is then eliminated in 
Eq. (26.í.j- 1)) using (28.j) and the markovianisation method in the 
same way as in Section 4 for triple correlations. One obtains 

(d/dt-t-vj-l+iwj-l)C,-l=i 1C2Cj-, 
u- 1 P U )  

which is consistent with closure (28.0'- 1)) if we assume the following 
recurrence relation 

j - lp=  iAC,/(ioj+ vj +jp), (29) 
u- 1)-U) 

or, more precisely, dropping the symbolic formuiation, 

where the symbol (alc+ai} represents the term obtaineâ by applying the 
prescribed permutation in the first bracket of the right-hand side. At this 
point, relation (30) defines a complex damping rate suitable for the whole 
truncated hierarchy if a boundary condition for p is provided at the 
truncation order j = N. Both effects, damping and dephasing, are present 
in (30) as expected. However, expression (30) is too complicated to be 
practically tractable: we thus need further simplifications. 

Suppose now that the damping of the cumulant C a l . - . u j  results from the 
addition of independent dampings for each mode. This implies 

i 
p a  . . . aj = j p a  + jpu2 + + * . + j ~ a  j >  

where jpa=j&. This assumption is analogous to relation (19), assumed for 
the EDQNM; it leads to similar diffculties, which we examine below. 
Consistency with relation (30) holds if one can identify ,pai with the first 
bracket of the right hmd side, Jpaz with the second one and etc .... We 
thus need to replace in the first bracket a11 terms which depend on 
az, . . .,aj- by mean quantities; we assume 

k2 + jPa3 + . . . + jpu,- I = (i - 2 ><jp>,, , 
v a 2 + v u 3 + .  . . +va j - l  * G - 2 ) ( v ) u 1 ,  

W a 2 + a a 3 + * * *  I 0 ' - 2 K a ) a l ,  
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268 B. LEGRAS 

where ( j p ) , ] ,  (v), and (w), are averages to be precised. One a priori  
expects Re('p,) to increase and ím(jp,)  to decrease on the average with 
the degree. The identification of Re( j - 'pu1)  to the real part of the first 
bracket of (30) is thus meaningful only if degrees IUi greatly superior to I,, 
are not present among l u z , .  . ., luj-l ; otherwise, Re( j -  'p,, ) would be 
dominated by Re( j - 'pui )  in the sum Re( j - 'p , , .  . . c ( ~ - ~ ) ,  and the identifi- 
cation would lead to an error of the same order as Re( j - 'pml ) .  On the 
other hand, identifying Z m ( j - l p u t )  with the imaginary part of the first 
bracket is only meaningful if degrees much smaller than i,, are not present 
among l u 2 , .  . ., iUj-*. This suggests defining ( v ) , ~  and ( 'Re(p) ) , ,  as the 
average of v and R e ( p )  over a11 modes of degree I ,  smaller than lml. For 
the imaginary part of the denominator, we assume the incoherence 
hypothesis 

(w),l=o, (ImjPL),, =o, 

which yields the following recursion relation 

(31) 

Like the usual EDQNM damping (19), reiation (31) overestimates the 
effects of non-local interactions. The most natural way of introducing the 
TFM correction in this new model is to repiace the coeficients busy in (31) 
by burrsy, derived in the appendix: 

In order to define the complex damping completely, one needs to  initiate 
the recursion process. For suficiently large values of j ,  the denominator of 
(32) is dominated by 0'- l ) [ ( ~ + l p ) u + ( v ) , ] ;  moreover, Rdp ,  is O(l/j) 
so that the term ( j + ' p ) ,  is ais0 negligible compared with (v),, and 
í d p ,  is O(l/j2). At higher orders, stochastic damping is dominated by 
viscosity and (32) can be completed by j"p,=O for a suficiently large j,. 

The damping 3pu can be used in a modifíed version of EDQNM: in the 
equation for triple correlations, the dissipative term is renormalised by the 
real part of the damping to give 

* -  
v,py - v,oy + W 3 P U  + + 3 P y ) ,  
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ROSSBY WAVES 269 

whereas the imaginary part renormalises the dispersive term which in turn 
yields 

a$, = %fiy + W 3 P e  + %/9 + 3P,J. 

The characteristic time Oaay becomes 

From the standpoint of resonance interactions theory, expression (33) is 
understandable as a broadening associated with a shift of resonance; in 
Holloway's expression (22), only broadening is present. The existence of a 
frequency shift is not surprising : indeed, one knows that deterministic 
systems with a few non-linear waves do show frequency shifts; as recent 
examples, one can refer to Loesch (1978) for the p-plane problem and to 
Chakraborty and Chandra (1978) for a wave problem in a cold plasma. 
The existence of an imaginary part of the stochastic damping is nothing 
but a statistical extension of these results. 

We are now interested in the behaviour of stochastic damping for high 
degree modes. If on the average, the real part of damping increases with 
degree, there must exist a degree I, beyond which Rep, dominates a11 
Rossby frequencies of the system, as well as frequency shifts; this defines 
Rhines' turbulent domain, within which damping by non-local processes 
dominate, like in two-dimensional ordinary turbu1ence.t In non-local 
interactions (ti; /3, y), I ,  4 I ,  - I , ,  Re(j+ ' p p )  is negligible compared to 
Re(j+'ps) which itself is very close to Re(j+'py).  Similar inequalities hold 
for the viscosity terms; moreover ('"p). and ( v ) ,  may be replaced by 
Re(j+'pc,) and v, respectively, after noting that modes of degrees close to 1, 
dominate within the averages. A simpler form of expression (32) thus 
reads : 

RgPacg2  ~ ~ ~ y Z , l [ j . ( R ~ + l ~ s + ~ s ) l l  (34 1 
/3# Y 
NL 

where summation is over nonlocal interactions. The contribution of non- 
local interactions to the imaginary part of the stochastic damping is 

W p , ) N L =  -g2 6 P r B y ~ p [ ~ , + ~ y + ~ m ( j + 1 p , )  
A Y 

+Im(j+ '~ . '~ ) ] / j~ [~e ( j+ 'p , )+v~~ .  (35) 

tNon localness is strictly valid for /i-' or steeper energy spectrurn. In a k-"' spectrurn, 
local transfers are not negligible. 
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270 B. LEGRAS 

Apparently, the terms with index /? dominate on the right-hand side since 
wq is large compared to o,. But in fact, to a non-local interaction ( E , / ? , ? )  
with I ,  -4 1, - I y ,  y close to a, one can generally associate another interaction 
(à,p,y’) with y’ again close to a ;  because of the regularity of 3-1 symbols 
involved in (A.6), the corresponding coeficients 6,,; and 6,p7, may be 
considered equal, so that when both interactions (a,P,y) and (a,fl,y’) are 
coupled in (35) the [oB +Irn(’+’po)]  terms cancel. One therefore gets 

J ~ ( ’ P , ~ , )  E -8’ C b ,̂q+pCwa 
P. Y 
NL + Z r n ( j +  ‘ p , ) ] / j 2 [ R e ( j +  ‘ p , )  + v J 2 .  (36) 

This contribution is large compared with the one coming from local in- 
teractions where a11 quantities of the same kind indexed by either k or /? 
have the same order of magnitude: therefore, the contributions from local 
(a’, a, a”) and nonlocal (a’, /?, a”) interactions typically differ by a ratio 
3Za/2Z,, which is small because i,< l u .  Thus 

Irn (’P, E Im (jpa.vL ). 

Relations (34) and (36) suggest a self-similarity hypothesis for stochastic 
damping: we suppose that both parts of the damping depend on order j 
only by a scaling factor 

Re(j+ ‘ p e )  = ejRe(jpa), 

From relation (34), one thus obtains 

Z r n ( j +  ‘ p e )  =fjZrn(’p,). 

Lej - (j + i )ej+ e j ]Re( jp , )  = [ í,j + 1 )ej - j ] v 4 .  

For large j ,  v, dominates Re(jp,) and we have e j = j / ( j +  1) 1 ; for small j 
and modes outside the dissipation range, Re(jp,) dominates dissipation, so 
that 

together with the recursion relation ejej+ =j /G+ i), which, iterated from 
e, = 1 gives e3 = 0.85. Thus 

with 1=0.63g since 6,,, is always close to unity for nonlocal triads. The 
coeficient 1, is given equal to 0.53 by Basdevant et al. (1977), which yields 
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ROSSBY WAVES 27 1 

g=0.84. Expression (37) is now used to eliminate Re(jpa) in (36). If 
viscosity can be neglected, one obtains 

with fj safisfying the recurrence relation fj=jej[(j /ej)+fji l  - l]-’, which 
iterated from f, = 1  gives f3=0.76 and Zm(3pa)= -0.30~~. In the turbu- 
lent domain, the ratio of frequency shift to Rossby frequency appears to 
be a constant over all modes. This constant, dependant neither on g nor 
on the spectrum (as long as non-localness applies), is equal to - 0.3 for j = 3. 
Notice that, since ej and fi are always close to 1, a good approximation 
for all j is Im(jpa)  = - o,/U + i ). 

6. NUMERICAL RESULTS 

To illustrate the results obtained in the last section, we have computed the 
stochastic damping as defined by (28) for several energy spectra and 
several values of the dispersion parameter. 

Since interactions between waves and turbulence occur essentially in the 
largest scales, it is unnecessary to require high resolution. We used a 
spherical model with triangular truncation at A,, = 21 ; 483 modes are 
thus retained, coupled by 100,701 triadic interactions in the TFM. Indeed, 
we can hardly reach much higher resolutions if we retain a11 interactions 
since their number grows as Lk,. 

To obtain 3pa, the damping which acts on triple correlations, we have 
iterated (28) from a purely viscous damping at order j ,  (jop,=O): j, has 
been chosen large enough to ensure convergence of the series. In every 
case-studied, the number of iterations has been no more than a few tens. 
The g factor has been taken equal to 1. We characterise dispersion by the 
Rossby number R,  = JZ/2!2 where 2 is the relative enstrophy, and dissi- 
pation by the Reynolds number R, = R 2 , / Z / v .  The spherical counterpart 
for the transition wavenumber kp of Rhines is ln= R; l .  In the atmosphere, 
Ro is close to 0.1; transition between waves and turbulence domains is 
thus expected to occur for i,- 10. 

inertial range with R ,  
=0.1 and RL=lOO,OOO. Sections of constant order m with respect to 
degree are drawn with a solid line. The homogeneous damping obtained 
for R ,  = CQ pure turbulence, is drawn with a discontinuous lhe. Clearly, 
the presence of waves induces a decrease of the damping more and more 
pronounced as one goes away from zonality (m=O). Damping is observed 
to drop near truncation due to the cutoff of interactions involving modes 

Figure 1 shows the real damping Re(3pa) for 
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Re3pa' 

0.4- 

0.3 - 

0.2- 

0.1 - 

B. LEGRAS 

m-ü 

I 1 I I I I I I I I I 1 1 1 1 1 1 1 1  e b O. 
1 2 3 4 5  7 10 1 5 2 0  

FIGURE 1 Real damping Re3p,  for an homogeneous isotropic j-' inertial range with R , ,  
=0.1 and R,=100,000. In solid lines: the sections of conçtant order, rn, drawn with respcci 
to degree. In dotted lines: curves obtained by setting i,,=lO. In discontinuous Iine: tl ic 
hornogeneous damping obtained with R,= m. 

beyond L,,,. The dotted line curves were obtained by setting L,,, = 10, 
everything else remaining as before; below 1=6 where the drop now 
occurs, the curves agree with the previous ones, obtained with L,,,=21. 
The value chosen for R, is not critical. Indeed, the damping remains 
almost unchanged for any value R, > 10,000; thus, the dissipation degree 
is I,> 100 for a j - 3  energy spectrum, largely beyond L,,,. Viscosity acts 
only as a germ from which the damping builds up by stochastic processes. 

Figure 2 reports the variation of damping with respect to R ,  for m =  
O- 1-2, using a spectrum again. For zonal modes, it remains of the 
same order as R, ,  decreases; one even observes an increase of damping at 
lower degrees as expected for the TFM (cf. Appendix). For non-zona1 
modes (here m = 1,2), the decrease of damping as R, decreases is more 
pronounced at lower degrees and higher orders. These curves are to be 
compared to those reported in Figure 3 for transfers q,.t One can clearly 
see the inhibition of zonal transfers: for R,=0.1, the ratio to the transfer 
in the absence of waves is 0.1; for R,=0.001 the ratio is only lO-' .  

tLet us state that 7. is the linear pari of the equation for Z,, viz. (16). The total transfer 
involves also terms like Z,Z, which can be considered as sources since they do not vanish 
with Z,. 
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102- 

10’- 

1- 

10-’- 

10-2- 

10-3- 

10-4- 

10-“ 

273 

1 
Re3pm 

10-1 

10-2 

10-3 

I 1 L I I I t , I 1 1 1 1 1 1 1 1 1 1 1  > 

1 2 3 4 5  7 10 1 5 2 0  

FIGURE 2 Real damping Re3p, for severa1 values of R,, with a j-’  inertial range. In solid 
lhe: R e 3 ~ : .  In short broken-line: Re3pf. In long broken line: ’p ; .  

/ R -0.001 

I I I I I I 1 1 1 1 1 1 1 1 1 1 1  e 
1 2 3 4 5 7  10 1 5 2 0 , *  

FIGURE 3 Transfers qm for a j W 3  inertial range. In solid line: q f .  In broken lhe: qi . 111 

mixed line: q:*. 
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274 B. LEGRAS 

- O L  
1 m 3 p  

0.1c 

0.078 

0.05 

0.025 

FIGURE 4 Frequency shift Im3pn for a j - ’  inertial range. Solid line: the section of 
constant order rn drawn with respect to degree. In broken line: curves obtained by setting 
l,,, = 10. Dotted lhe: negative of Rossby frequencies. 

1 2 3 4 5  7 10 1 5 2 0  

FIGURE 5 
line. 

Relative shift Im3p,?Jw: for a spectrurn. The slope 1’ iç plotted with a broken 
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ROSSBY WAVES 275 

Further, the inhibition is found to have autosimilarity for high degrees. 
On the other hand, the non-zona1 transfer rj: tends to a limit due to the 
existence of resonances which transfer energy between the two com- 
ponents of each complex mode (cf. Section 3). With such interactions 
dropped, the remaining transfer rj:* is inhibited and does not tend to a 
limit ; nevertheless, inhibition is smaller than for zona1 transfer, due to 
the effect of transfer by almost resonant triads. 

Figure 4 shows the frequency shift I n ~ ( ~ p , )  for the same values of the 
parameters as in Figure 1. On the same figure are plotted in dotted lines 
the negative of the Rossby fsequencies for R,=O.l; the shifts appear to be 
opposite in sign to the Rossby frequencies. On low order curves, the shift 
is maximum for I, =4 and decreases beyond I ,  as expected, since Rossby 
frequencies themselves decrease. At lower degrees, the shifts are negligible 
compared to the Rossby frequencies themselves, but it appears in Figure 5 
that their relative importance increases with degree. Figure 5 shows the 
relative shift I r ~ ( ~ p : ) / w :  for several values of R,. In the limit 
R,-tO, nonlinear effects become negligible (cf. Section 3), the prohlem 
tends to be linear and thus no shift at a11 can occur. It may be observed 
that the increase of the relative shift with degree follows approxirnately a 
j 3  law. In the high degree limit, the relative correction tends towards an 
asymptotic value equal to 0.28 which is very close to the value found in 
Section 5 .  The limit is reached very rapidly when R, is large enough, 
practically at Z=3 in the case R,=5.  Figure 6 reports the relative shifts 
obtained with several energy spectra. and with R=0.1. The curves 
associated with the j - 3  spectrum and energy equipartition respectively 
bracket the other ones; these extreme cases correspond to maximum and 
minimum concentration of enstrophy in the lowest degrees. The most 
interesting feature is that a11 curves tend towards a nearly identical limit; 
this confirms the independence of the limit ratio with regard to the 
spectrum even if interactions are strongly local as happens in the case of 
an energy equipartition spectrum. This behaviour seems to be more general 
than simply suggested by the results of Section 5 .  

7 .  CONCLUDING REMARKS 

We have shown the existence of a statistical dephasing effect, induced by 
turbulent processes on Rossby waves. An estimate of the shift, based on a 
simple model, shows that its relative value tends, as 1 increases, towards a 
limit which does not depend on the energy spectrum. This effect is 
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A 
1, 

10-1- 

RQ = 0.1 

Ri = í O Q  O 0 0  

1 2 3 4 5  7 10 1 5 2 0  

FIGURE 6 Relative shift lm3p,!/w: for severa1 energy spectra with Ro=O.l 

certainly not negligible, especially in the transition zone between wave and 
turbulence domains. 

Clearly, the easiest criticism to leve1 at the present method arises 
from the existence of high order resonances which are poorly taken in 
account by the simplifying processes which yield (31). In fact, high order 
resonances are less sharp than low order ones, since real damping is more 
important there. A refinement of (31) would consist in a more accurate 
estimate of the last iterations, near J = 3. 

One may hope that the use of renormalisation techniques, recently 
introduced in turbulence, will bring further clarification of this problem, at 
least from the phenomenological standpoint. 
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ROSSBY WAVES 277 

A ppe n d ix 

SPHERICAL TEST FIELD MODEL 

We do consider here the overestimation of damping in the EDQNM 
approximation. This problem can be considered independently from 
waves: it was originally pointed out by Kraichnan (1964) within the frame 
of the DIA equations. Non-linear interactions (i, 4 I ,  - Iy ) are largely 
dominated by simple advection of (, and (? by Ta: small scale oscillations 
observed from a eulerian standpoint are produced by this sweeping 
process rather than by intrinsic deformation of structures. By using the 
coeficients b,,, in building the damping mechanism, we do not separate 
the sweeping effect from the deformation effect and interpret it as a 
relaxation process although it is an extrinsic bias related to the observer’s 
viewpoint. Thus we overestimate the relaxation of correlations more and 
more as non-localness increases. 

The Test Field Model (Kraichnan, 1971; Sulem ef o/., 1975) remedies this 
problem in a semi-heuristic way. In the TFM, one notices first that the 
distortion of structures in non-local interactions is caused by the pressure 
term in the Navier Stokes equation. Since the same pressiire term is also 
qesponsible for the incompressibility of the flow, one can imagine evaluat- 
ing its effects by measuring the rate of growth of the compressible part of 
the flow when the assumption of incompressibility is relaxed. This is 
modelled by considering a vector test field U simply advected by the 
velocity field of the flow. 

We give below a brief sketch of the TF‘M formulation in spherical 
geometry, using scalar function notation. A description of the planar form 
of the TFM using the same notations can be found in Holloway (1977); 
we shall therefore reproduce here the principal results of this paper 
without demonstration. The incompressible advecting field is defined by a 
streamfunction Y ,  so that v=k x VY. The advected field possesses a 
solenoidal part and a divergent part: i t  is tlierefore defined by a 
streamfunction $ and a velocity potential x :  u = k x V$ + Vz. 

The advection equations in the inviscid case read 

(a/at)VZ@ +K(Y’, x)+ HW, i c / )  =o, (A.la) { (a la t )v2X-K(y ,~ )+H(yY,%)=0 ,  (A.lb) 

where H is an auto-advective operator which reduces to the jacobian if u 
=v and K a symmetric operator expressed as 
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on the plane, or 

B. LEGRAS 

(A.2) 
on the sphere (the subscripts here indicate derivatives). In (A.l) we are 
especially interested in the K-terms which give the distortion rate by 
coupling each part of the test field to the other: removing the self- 
advective terms expressei3 by the jacobians, we obtain 

(A.3a) 

(A.3b) 

It can be shown, by integrating by parts, that Eqs. (A.3) are 
conservative for the total energy of advected field; in planar geometry we 
have 

and in spherical geometry 

Conservation of energy is thus a simple consequence of the three-fold 
symmetry in (A.4). One must remark however that enstrophy is not 
conserved. 

In order to write the spectral equations in a consistent way with (4), we 
define the vorticities of U and V and the divergence of V by 

[ = V 2 Y ,  {=V2*, 6=V2X. 

The spectral equations then read 

(A.5a) 

(A.5b) 
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ROSSBY WAVES 279 

with the following expression for the real coeficient K in terms of 3-1 
symbols: 

Expression (A.6) can be obtained using the Wigner-Eckart theorem and 
relations between 3-1 symbols given by Edmonds (1974). The correspond- 
ing coeficient in plane geometry is more simply 

K,=lpxql 2 / P  2 2  4 * 

In planar geometry, the selection rules for non-linear interactions in the 
TFM and in the vorticity equation are almost identical, namely k + p + q  
=O;  the only difference is that isosceles triads are allowed in the TFM. In 
spherical geometry, the coeficient KUby is non zero if the triad (a,b,y) 
satisfies 

ma + ma + my =O, 
I ,  + I ,  + 1, even, 

(A.7a) 

(A.7b) 

Selection rules thus differ from those of the vorticity equation: the parity 
rule for the sum of degrees is inverted and the triangular inequalities are 
no longer strict. We shall see that this causes some ambiguity when waves 
are introduced in the TFM. 

The damping rate is calculated from (AS) in the same way as in Section 
4, After a few manipulations, one obtains 

(A.8a) 

where 

A consistent expression for êuay is once more 

&.a* = CPa + P, +&I - i* (A.8c) 
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280 B. LEGRAS 

It is indeed the positivity of hebSY which ensures the realizability of the 
model. g is a scaling factor, the value of which is adjusted by 
comparison of TFM results with other data. In two dimensional turbul- 
ence, one agrees to take g in the interval 0.7-1.0. 

At present, the TFM appears to be the most eficient operational 
closure for developed turbulence problems (Pouquet et al., 1975; Herring 
and Kraichnan, 1974). However, one may notice one important arbitrari- 
ness in the TFM formulation : for sufíiciently local interactions, advection 
distorts the structures as much as pressure does, so that TFM phenomen- 
ology is hardly relevant. The TFM applies strictly as long as non-local 
processes dominate in the non-linear viscosity effect ; this is true for 
homogeneous isotropic turbulence in two dimensions. Its validity, however, 
extends beyond this particular case: for example, the TFM has been 
successfully applied to homogeneous isotropic turbulence in three dimen- 
sions. This indicates that the TFM is able to give correct scalings even if 
the interactions are local. It is not obvious, nevertheless, that this remains 
true when finer effects like those due to anisotropy are studied. 

Keeping these considerations in mind, the most natural way of extend- 
ing the TFM to problems with viscosity and waves is to introduce the 
natural dissipative and dispersive terms in Eq. (AS) .  This modifi- 
cation replaces thus (A.8c) by 

o a p y  = 1p.z + + ~y + I ’apy  + i m a g y l -  ‘ 9  

where 

In planar geometry, the definition of vapy and waP7 is straightforward 
because TFM interactions and natural interactions act on the same triads ; 
this property is no longer true in spherical geometry where natural and 
TFM interactions are “interleaved” with alternating parity rules. This 
peculiar feature poses no real problem as far as the dissipative term vZp7 is 
concerned, because it is homogeneous and smoothly varying over the 
range of wavevectors. On the contrary, the dispersive term waPy oscillates 
rapidly over wavevector space and requires a more precise definition. By 
computing it on TFM triads, one is likely to introduce displacements of 
resonance. For instance, triads composed of three zonal modes do transfer 
energy in the TFM, and further, will be automatically resonant with such 
a definition; one can thus expect an overestimation of relaxation for zonal 
modes. 
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