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An approximate model of nonaxisymmetric vortices in a two-dimensional fluid is developed in 
which each vortex is assumed to consist of a nested stack of elliptical regions of uniform 
vorticity. The model is governed by a;set of coupled nonlinear ordinary differential equations 
for the aspect ratio,.orientation, and centroid of the bounding contour of each region. It also 
admits a Hamiltonian formulation and possesses all the invariants of the original system. In 
Part II [ Phys. Fluids A 3, 855 ( 199 1) 1, the model is extended to include disturbances to the 
elliptical shape of each contour. 

I. INTRODUCTION 

It is now widely recognized that coherent vortices are 
the dominant feature of a very broad class ofincompressible 
two-dimensional inertial flows with high Reynolds number. 
These structures are spontaneously generated in decaying 
turbulence with arbitrary initial conditions”’ or in forced 
turbulence with either deterministic or random forcing.3 
Their leading role was initially discovered within numerical 
simulations’6 and confirmed more recently within numer- 
ous experiments in real fluids (e.g., Refs. 7-l 1) . 

A significant amount of work has been devoted to the 
study of the stability of coherent vortices. It is, however, 
generally assumed that the basic vorticity profile is axisym- 
metric, a case for which the Euler equations are trivially 
satisfied. Many fewer results are available that deal with 
nonaxisymmetric structures, and most of these latter have 
been obtained only for patches of finite area over which the 
vorticity is uniform. For vortex patches, the Lagrangian for- 
malism of contour dynamics’2,13 is a well-adapted tool to 
describe the evolution of the patches and to obtain exact 
nonaxisymmetric equilibrium figures with one or several 
patches. i3-16 The simple figure of a single elliptical vortex, 
due to Kirchhoff, is an exact analytical solution of the Euler 
equations (Ref. 17, Art. 159)) and one for which the effect of 
external shear or strain can be easily taken into account. ***i9 
In the absence of shear or strain, the ellipse rotates with a 
constant angular velocity while maintaining a fixed aspect 
ratio. In the presence of shear or strain, the ellipse may oscil- 
late while changing its aspect ratio. 

A particularly important extension to the solution for a 
single ellipse is the second-order moment model of Melander 
et aI.” (hereafter denoted as MZS). These authors consider 
the interaction between several Kirchhoff ellipses and obtain 
a self-consistent model in which the aspect ratio and the 
orientation of each elementary elliptical vortex vary in re- 
sponse to the self-induced velocity field and that of other 
vortices. In reality, the elliptical shape of each vortex is not 
strictly preserved under the temporal evolution. Indeed the 
model is based on a second-order truncation of an expansion 

that describes each patch by its vorticity, the position of its 1 : .- 
centroid, and a series of moments with respect to its cen- 
troid. This truncation gives good results as long as the vorti- 
ces remain far apart. The model has been used to determine 
multipolar solutions and also has provided a simple criterion 
for symmetric vortex merging that falls within 10% of direct 
measurements. 

While sharp external boundaries (such as that charac- 
teristic of an elliptical patch) are really observed as a result 
of the stripping of low-lying vorticity from vortex edges by 
an external straining flow, 21*22 the restriction to vortices 
with entirely uniform vorticity is a serious limitation to our 
understanding of two-dimensional flows. However, apart 
from a few exceptions, such as the Lamb dipole,“3 nonaxi- 
symmetric, distributed solutions of the Euler equations have 
eluded straightforward analysis. 

Only recently, contour dynamics has been applied to 
distributed vortices, uncovering a variety of. stationary, 
translating, and rotating solutions with up to several tens of 
layers. I3 The monopolar, single vortex solutions obtained in 
this way exhibit vorticity contours that are very close to el- 
lipses even when the aspect ratio is small; a similar observa- 
tion had already been made previously in axisymmetrization 
experiments using a continuous distribution of vbrticity.‘4 It 
is thus natural to attempt to extend the approach followed by 
MZS to the dynamics of a distributed region of vorticity with 
elliptical contours. This, however, requires a radical rethink- 
ing of the problem because the method used by MZS is basi- 
cally designed for distant vortices and cannot be used here to 
make the required analytical calculations. The purpose of 
this paper is to present a new approach based on conformal 
transforms and complex integration that exactly extracts the 
part of the motion preserving each contour’s elliptical shape. 
This method is able to handle both cases of embedded and 
separated contours. In the following paper,= we allow for 
small departures from the elliptical contour shape and we 
apply the extended model to the stability of nonaxisymme- 
tric solutions and to the merging of vortices, with surprising 
success. 
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Section II presents the basic assumptions of the model 
and discusses the kinematics of evolving ellipses. We obtain 
an equation relating the evolution of the parameters of each 
vorticity contour to the leading coefficients of a trigonomet- 
ric expansion of the normal velocity along this contour. The 
following four sections, Sets. III-VI, show how these coeffi- 
cients can be calculated exactly, without any further as- 
sumption, for the four types of velocity fields acting, in our 
model, on an elementary elliptical vortex with uniform vorti- 
city. The ordering of these sections follows the increasing 
complexity of the calculation, beginning with the effect of an 
external straining flow in Sec. III, proceeding to the action of 
an external embedding elliptical vortex in Sec. IV, then to 
the action of an internal embedded elliptical vortex in Sec. V, 
and finishing with the effect of a separated elliptical vortex ins 
Sec. VI. Section VII summarizes the results by giving the 
elementary Hamiltonian for each interaction involved in the 
model and establishes that the model possesses all the invar- 
iants of the original equations. Some concluding remarks are 
offered in Sec. VIII. 

II. THE ELLIPTICAL ASSUMPTJON 

We consider any vortex or distribution of vortices that 
can be built up from a superposition of vorticity disks (Fig. 
1). Each disk, labeled with j, has area Aj and vorticity wj, 
both of which are conserved through the temporal evolution. 
The initial shape of each disk is elliptical with semimajor and 
semiminor axis lengths uj and bi, respectively. The aspect 
ratio is & = bj/uj and the orientation #j of the ellipse is the 
angle between the principal axis and an arbitrary reference 
axis. The center of the disk (Xj, Y;.) is denoted by the com- 
plex variable Z, = X, + iY1. Figure 1 shows the case of a 
single vortex with a monotonic profile of vorticity, but it is 
clear that several separated vortices can be described the 
same way and that nonmonotonic profiles can be obtained 
using a distribution of positive and negative values for wj. 
Owing to incompressibility and conservation of vorticity, 
the evolution of each disk is entirely described by the defor- 
mation of its boundary under its own action and the action of 
other disks. In addition we allow the vortex to be immersed 

FIG. 1. Structure of an elliptical vortex. The vortex is built as a superposi- 
tion of vorticity disks. Each disk DC of boundary JD, is described by its 
vorticity o,, its centroid Z,, its orientation #i, and its semimajor and semi- 
minor axes ai and b,. 

in a uniform external straining flow having arbitrary strain 
and background rotation rates, 

The basic assumption of the model is that disks stay 
elliptical during the temporal evolution, that is, the evolu- 
tion is fully described by the variations of Zj ( t) , /li (t) , and 
#j (t). We also assume that the boundaries of the disks do not 
cross. Unlike MZS, our model is not based directly on a 
moment expansion of the vorticity distribution. This formu- 
lation leads MZS to use a Taylor expansion of the velocity 
field around the center of each disk, resulting in estimates for 
the second (elliptical) moments which deviate more and 
more from their true values as the aspect ratio decreases. 
(This discrepancy is very sensible for the case of self-advec- 
tion and the interaction of superimposed disks. It is much 
less important in the case of distant patches of vorticity stud- 
ied by MZS. Furthermore, MZS avoids the problem of self- 
advection by using the exact solution that is known for an 
isolated elliptical patch of uniform vorticity.) We compute, 
instead, the exact contribution to the deformation of each 
disk boundary that preserves the elliptical shape (but shifts 
the center, rotates the disk, and changes the aspect ratio). 
The neglected terms lead to higher-order nonelliptical defor- 
mations; they give no contribution to the second-order mo- 
ments. We shall show that this approximation corresponds, 
indeed, to a truncation of the normal velocity field on each 
contour to the first two terms of an expansion in the elliptical 
azimuthal coordinate. 

The evolution of each disk boundary arises from five 
contributions: the first is due to the external straining flow, 
the second is due to the external disks belonging to the same 
vortex, the third is self-advection, the fourth is due to the 
interior disks, and the fifth is due to other vortices. As we 
shall see shortly, the first three contributions exactly pre- 
serve the disk’s elliptical shape while the fourth and the fifth 
give rise to higher-order deformations. The fourth and the 
fifth are also the most difficult to compute. 

For a given elliptical disk of vorticity, centered at the 
location Z, it is convenient to define the associated system of 

. elliptical coordinates w = f + iv as 

z = Z + e’@c cash w, (1) 
where z = x + iv is the complex Cartesian coordinate, 4 is 
the orientation of the disk with respect to the x axis, and 

-- 
c= Ja2-bb2 =~W-;~)A/VT 

is the distance of each focus from the origin. In this system, 
the coordinate lines are a family of orthogonal confocal el- 
lipses and hyperbolas, where the radial coordinatecparame- 
trizes the ellipses and the aximuthal coordinate 7 parame- 
trizes the hyperbolas (see Ref. 17, Art. 66 or Ref. 26, p. 502). 

We also use the complex Cartesian coordinate Z linked 
to the principal axis of the ellipse: 

;--ccoshw. Y- (2) 

Note that z is a coordinate in the fixed reference frame 
whilezand ware attached to a moving and deforming disk of 
vorticity. 

The velocity of a given material point with coordinate z 
is given by 
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( @ I a * i=i _ , (3) 
\ dz / 

where $ is the streamfunction (here defined as a real func- 
tion in the complex plane) and * denotes conjugation. In the 
time-evolving elliptical coordinates of a given disk, Eqs. ( 1) I 
and (3) give 

Ze-“4+?coshw+ctisinhw= I a4 * 
c sinh w* % ‘0 
- i& cash w. (4) 

Upon multiplying by c sinh w* and taking the real % and 
imaginary 3 parts, we obtain 

c9t[[ie.~.‘@]sinh~cos~+c~[[ie-‘@]cosh~sin~ 

i-+ccsinh26 +h’,$- --~---$-&‘sin2~, (5) 

+-12ccsin2v+h2$= +*++$c2sinh2c, (6) 
al 

where the scale factor h ’ is given by 

h’ = c2]sinh WI’ = &‘(cosh 2E - cos 277). 

In Eqs. (5) and (6)) we have assumed that the system of 
elliptical coordinates is changing with time under the evolu- 
tion of the vorticity disk with which it is linked. The evolu- 
tion of the elliptical coordinate system itself can be obtained 
from Eq. (5) by specializing it to the material points on the 
disk boundary and by applying the fundamental assumption 
of permanent elliptical shape. Denoting c = r as the radial 
elliptical coordinate of the disk boundary, the first step of the 
approximation is to use conservation of disk area, 
A +-c’ sinh 2I’, to obtain 

I? = - (c/c)tanh 2I’. (7) 
Replacing 8 by l? in Eq. (5 ) and using the following relations 
between the aspect ratio and the other variables 

sinh2I’=U/(l -A’), 

cosh2l?- (1 +A’)/(1 -A’), 

one readily finds that the resulting equation involves only 
the first two Fourier modes in 7. It is thus consistent that the 
second step of the approximation should be to truncate the 
Fourier expansion of $ on the ellipse g = r to its first two 
modes in 7. Denoting 7JG2 as this truncated streamfunction, 
we obtain 

a+<2 - --(r,77) = - &.+ cos 277 + -+c$ sin 277 
a77 

+ bLR[ie”‘4]cos 77 

+ KJ[[ie-‘“]sinr]. (8) 

The components of order larger than 2 are discarded. In this 
sense, our formal expansion is a low-order Galerkin-type 
approximation to full contour dynamics. The remaining 
task, in the next four sections, is to calculate gC2 for the 
various interactions involved in the model. So doing, we ex- 
actly retain the part of the motion preserving the elliptical 
shape. 

Ill. ACTION OF AN EXTERNAL STRAINING FLOW 

Let us consider first the effect of uniform strain, of value 
y, and background rotation, of value R, centered on the ori- 
gin as shown in Fig. 2. The streamfunction due to this flow is 
given by 

* = - gpsz’ + *z*“, + gJzz*, (9) 

where “/s = ye -*‘A and 4, is the orientation of the strain 
axes with respect to a tlxed frame. The derivative with re- 
spect to 17 on the disk boundary is 

+ fyc’(sinh 2r sin 2 (4 - $s ) cos 217 

+ cash 2r cos2(+ - 4s)sin 277). 
(10) 

This result is obtained without truncation, owing to the fact 
that $ is a quadratic function of x and y and does not have 
angular variations more rapid than 217. We thus recover the 
already known result (e.g., Ref. 19) that an external strain- 
ing flow preserves an elliptical shape. Note that ‘y, a, and $s 
may be arbitrary functions of time. 

The contributions of this flow to the centroid motion Z, 
the rotation rate 4, and the variation of the aspect ration /1 
are obtained by identifying Eq. ( 10) with the right-hand side 
ofEq. (8): 

i4- - iy,*Z* =+ iClZ, (11) 

&dl-~~~cos2(~-q5,~, (12) 

/i+-2yA sin 2($ - i$s>. (13) 

-4 pure strain is obtained with R = 0, and a pure shear with 
y= +a. 

IV. ACTION OF EXTERIOR EMBEDDING DISKS 

We now consider the effect of an advecting elliptical 
disk (Z ‘, il ‘, 4’) on an interior advected disk (2, it, 4). Here 
and in the next two sections, all primed quantities refer to the 

FIG. 2. The strain axes pass through the origin. The bisectrix makes an 
angle 4, with respect to the x axis. 
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advector, while nonprimed quantities refer to the advectee. 
In the coordinate system linked with the principal axis of the 
advector, Eq. (2), the streamfunction may be expressed as: 

* = p’(yp - fi.g2(~*2 + p)), (14) . 
--r - with E’E~( 1 -A ‘)/( 1 + /1 ) being the eccentricity of the 

advector. The coordinate systems of the advector and the 
advectee, both moving with the vorticity disks, are linked by 

y =~ee”Q-F) + (z-Z~)~-W, (15) 
hence one may readily obtain rj as a function ofZ. The differ- 
ential of $ with respect to t is 

+j.=${~* +e’+(Z-Z’)* 

- p(cje2f(b-@8’) + (z- zt)eiCd-21’))), 

from which, using Eq. (2) again, we obtain 

-$(r,v) = -J/c g[sinh(r + iv)e@ 

X{(Z-z’)*-A -2i&(Z-Z’))] 

+ gorc’~E’2 cos 2(q5 - #‘)cosh 2J7 - l}sin 27 

+$~W;c’e’2sin2($--~ct’)sinh21’cos2~ (16) 

on the advected vortex boundary. 
This field, too, is obtained without truncation, and pre- 

serves the elliptical shape of the advectee’s boundary. The 
contribution to i,i, and A are 

i+@‘{(Z- Z’) - d2eZig(Z -Z’)*}, (17) 

cp+o~ I- 1 ~t’*cos2(+d’) ) I (18) 

X+w’M* sin 2(+ - 4’). (19) 

Note that the action of an exterior ellipse and that of a 
straining flow are closely related. These actions can, in fact, 
be put into a single form. Comparing the expressions for the 
streamfunction, Eqs. (9) and ( 14)) the two can be brought 
into correspondence if we put a= 4~’ and y = +‘E)*. 

We also recover the correct result for the self-advection 
of a single Kirchhoff ellipse, when the advectee is identical to 
the advector. Then x = 0 and 

J=wX/(l+j1)2. 

V. ACTION OF INTERIOR EMBEDDED DISKS 

The case in which the advectee is exterior to the advec- 
tor is significantly more complicated but, as we shall see 
shortly, is still amenable to a closed form analytical solution 
in terms of elementary functions. The streamfunction out- 
side the advecting ellipse is 

7)=d(~‘+$e-2E’cos2f), (20) 
where~’ = A ‘wr/2n- and we recall that (6 ‘, v’) are the radial 
and azimuthal elliptical coordinates linked to the advector. 
Equation (20) matches Eq. ( 14) on the ellipse boundary up 
to a constant factor that is irrelevant here. 

Since the flow due to the advecting ellipse is irrotational 
outside its boundary, one may consider that g(z) is the real 

part of a complex streamfunction V!(z) (see Ref. 26, p. 2 15 ) . 
Here, \v can also be written as a function ofw’ = { ’ + iq’ and 
the complex form of Eq. (20) is 

y=~(~‘~+Je~-~“‘). (21) 
The complex elliptical coorditiate w = 5 $ iv linked to the 
advectee is related to w’ by 

with Y= ice’+. Thus we also have 

dw’ A sinh w 
dw sinh w” 

with A=v/Y’ and we can differentiate V with respect to w to 
obtain 

g = 2hK’e’- w’ sinh w. (22) 

It is easy to see that the imaginary part of Eq. (22), 
- &,UJv, does not contain terms varying more rapidly than 

cos 27 and sin 217 on the boundary c = J? of the advectee if 
and only if the two ellipses possess the same foci. In this case, 
we have ws w’, and the contributions to 2 and 2 vanish 
while the contribution to 4 is given by 

4-“K’~ (1 f#. 

Generally, c?$/~v on 6 = l? may be written as a Fourier se- 
ries in 77: ‘. 

- Ew,n) = 2 (I, sin rnv + J, cos m7j). (23) 
m=l 

All terms with m > 2 are discarded under our basic assump- 
tion and the remaining terms are used with Eq. (8) to obtain 
the contributions to the evolution of the advectee. The quan- 
tities I, and J,,, can be computed by two contour integrals 
along the advectee’s boundary: 

I,-’ J 2= - a+ sin (777 rnv dv, 97 0 
J,z--' J 2r a+ 

- cos rnv dv. 77 0 d?j 
It is easier to handle these integrals in their complex repre- 
sentation, in which 

J, -+iI,,, = 

(24) 

d+m(w-r) dz 

, (25) 

where C is the boundary of the advectee. 
The integrands are multivalued functions of z with 

branch cuts on the segments connecting the two pairs of foci. 
The integration contour around the exterior disk encom- 
passes these two cuts and there do not exist other branch,cuts 
or poles at finite distance outside the integration contour. In 
addition, it is shown below that the Laurent series in z of the 
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integrands have an algebraic bound (i.e., do not diverge fas- 
ter than a polynomial). Thus .I,,, and I, can be computed 
along a closed contour that tends to infinity, and it is suffi- 
cient for that to get the l/z term in the Laurent series of the 
integrands. One finds easily that the second integrand in Eq. 
(25) behaves as dz/z” + ‘, so that the second integral is zero 
for m >O. The first integral is calculated using a further 
change of coordinate, from w to 2’. The expansion of the 
exponential terms as a Laurent series in f and z’ is derived 
from Eq. (2). We obtain 

e _ wf Cl i d3 1 P ; . . ., 
==yiy 813 162” 

p2-Lcl- . . . 
c 22 8.y 

> 

e2w~-Iz”-2-2T.Y- . . . . cf 42 
Using Eq. ( 15)) we eliminate Z and obtain 

ew--ul=; . . . _ c’w--‘f + ... 
2vT 

> 

e zlv-llf = . . . + 
( 

2c(z-z’)2+L--c’ 
2h2 > 

J-+ -a-. 
Z 

Therefore 

J1 +il, ===iIfI_e ‘(Z-Z’), 
‘V 

(261 

J2 +i12 = -iKe- 2f(Z-Z’)2 
ti 

- id( l/h2 - 2)e-“. (271 

The J,,, and I,, for m > 2 are needed in Part II and can be 
computed in the same way. 

From Eqs. (26) and (27) and using Eq. (8)) a few alge- 
braic manipulations lead to the required contributions to the 
evolution of the advectee: 

’ Z+ E$L{(Z- Z’) - 2eZi+(Z- Z’)*), 

a+ 2$c A 2 

(1 -R2)(1 +/2)2 
%[(Z-Z’)2e-2i+] 

+02 A ‘,I 
A(1 $-R)2 

2-A’/Z(1-zZ’*) * 
M’(l--;12) 

cos2(1-~‘> , > 
(29) 

/i.+ -9 (1 ;;)2 3 
+o,A’2R.2(1 -;1’2) 

A’A’(1 +i1)2 

[(Z- Z’)2e-2ib 

L sin 2(4 - 4’). (30) 

The case of a single Kirchhoff ellipse is again obtained in 
the limit when the advector is identical to the advectee. 

VI. ACTION OF SEPARATED DISKS 

We now add the final stage of complexity by considering 
the interaction between separated vortices. At first sight this 
case does ndt appear more complicated than the one treated 
in the last section, so one would expect very similar calcula; 
tions to apply. A serious difficulty, however, arises in the 

Cr 

Ce 

FIG. 3. The figure shows the disk boundaries and the branch cuts connect- 
ing the foci when the two disks are separated. It also shows why the contour 
C, around the advectee is not homeomorphic to a contour at infinity C, as 
when the advector is embedded within the advectee but encounters the ad- 
vector around the contour C,. 

calculation of I,,, and J,,, : the branch cut of the advector in 
the z plane is now exterior to the advectee, and hence it is no 
longer possible to obtain the two integrals as a residue on a 
contour at infinity. As illustrated in Fig. 3, one cannot avoid 
integrating around one of the two branch cuts. As a conse- 
quence, the integrals cannot be reduced to a combination of 
elementary functions but are complete elliptic integrals of 
the third type with complex modulus and arguments. After 
some transformations, a closed form expression can be ob- 
tained in terms of Weierstrass elliptic functions. This expres- 
sion is not, however, particularly useful and we thus turn 
towards an approximate calculation of this interaction with 
more physical insight. 

The approximation to be used consists of replacing the 
effect of the advector by the effect of afinite number of point 

vorticity disk 

n . 

FIG. 4. The contour C, is homeomorphic to the combination of the con- 
tours C, and C, needed for the computation of the velocity at z,, due to the 
vorticity disk. Since the integral around C, cancels (see text), the vorticity 
disk can be replaced by a sheet distribution of vorticity along the segment 
connecting the two foci. 
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vortices whose strengths and locations are chosen to obtain 
the most accurate results possible. This approach is based on 
the equivalence between an ellipse of uniform vorticity and a 
vortex sheet with a particular strength distribution connect- 
ing the two foci of the ellipse. This result, which is apparently 
new, is easily established for the complex velocity field at any 
point z, exterior to the advectihg ellipse (Z, R, 4). First ap- 
plying the Cauchy theorem to the contour C, surrounding z, 
(see Fig. 4), we obtain 

$(,J =~.-=Gd = iK eww(z)dz. 
2’ %-w f 

(31) 
c, z - zmo 

By deforming this contour as shown in Fig. 4, one may com- 
pute the integral around C, from a sum of two integrals, one 
taken around the contour at infinity, C,, and the other 
around the contour C, surrounding the branch cut connect- 
ing the two foci of the ellipse. That is, 

The integral around C, cancels because e - w-~/z there, so 
we are left with 

?z(zo) 2L$ .,-mz, 
2nV c, z-z0 (32) 

or exactly the velocity field induced by a vortex sheet having 
the strength distribution 

p(s) =$JrzT, - lr;s<l, 

where s parametrizes the segment connecting the two foci of 
the ellipse. Thus, 

+1 
\u(z) = 

I 
cp[s)log (z - z - 2VS)dS. (33) 

-1 
Note: 

( 1) This result is only valid for the domain outside the 
ellipse; this representation is not valid inside where the ve- 
locity field is rotational. 

(2) As this representation is purely static, the evolution 
of the vortex is not exactly given by the velocity on the vorti- 
city sheet between the two foci. We show later in this section 
that this velocity provides, though, a very good approxima- 
tion of the vortex motion. 

( 3 ) This result can be generalized to an advecting vortex 
of any shape provided one knows the branch cuts of the con- 
formal transform mapping the vortex boundary onto a cir- 
cle. The vortex can be replaced by vortex sheets along the 
cuts ofthe Riemann surface which induce the same distribu- 
tion of velocity outside the vortex. 

Having shown that the vortex can be exactly replaced by 
a single sheet, an accurate approximation can be obtained by 
discretizing the vorticity sheet as a family of point vortices. It 
is shown in Appendix A that an optimal discretization in K 
vortices is obtained by placing vortices at the locations 

Sk =cos(?rk/(K+ I)), (34) 
and assigning them strengths 

;UkK=----- 2K (l-s;), 
k’+1 

for k = 1, 2 ,..., K. 

The effect of the advector on the advectee is approximat- 
ed by summing the elects of the corresponding point vorti- 
ces. These effects superpose, so it is only necessary to consid- 
er the effect of one point vortex for the moment. Let the 
strength of this point vortex be denoted K@ and its position 
denoted z. . The effect of this point vortex on the advectee is 
calculated from the integrals 1, and J, defined by Eq. (25). 
The calculation is made in Appendix B and we obtain 

I,,-= -2~~ coshm l?%[e-““a], (36) 

J,,, = -2~~ sinhmr.%[e-“‘a]. (37) 
where Ga is the location of the point vortex in the elliptical 
coordinates of the advectee. 

The complete effect of the advector on the advectee, 
therefore, is given by replacing I,, J,, 12, and J2 in Eqs. (23) 
by their expressions in Eqs. (36) and { 37) summed over the 
number of point vortices, with K@ = P~K’, i%. - ii, , and 

’ Za =Z’ + skc’ei@ = Z + ce” cash w for k ===? T K. 
We can now give the contributionk of a separitLi’:dveo 

tor to the motion of the advectee: 
. - iK’ K 

Z+-- 
v* c 

ok e -.. G, 
k=l 

(38) 

& -2w,& AC1 +A21 
A (1 -A2)2 jlpx Wf.e-2’klt (39) 

xc f4w’A A (1 “‘n2, &h z[e- 2zT (40) 

Note that the previous model of MZS2’**’ can be recov- 
ered by representing the advector by a single point vortex at 
its center and by keeping only the leading terms in the corre- 
sponding version of Eqs. (38)-(40) up to order 3 in 
AZ = Z ’ .- Z. We then have 

i+-“- idA(1 -il’)e-*‘+ 
AZ* ~T/ZAZ*~ ’ 

$+ -d=&$pJ, 

;z++&+-$. [ 1 
These contributions are identical to the coupling terms in 
Eqs. (3.19), (3.20), and (3.24) of MZS. The present meth- 
od therefore represents the full extension of the second-order 
moment model, enabling us to recover the exact elliptical 
results to any accuracy desired. 

The neglected terms in the elliptical assumption arise 
from 1, and J, with m > 2. It is shown from Eqs. (36) and 
(37) that these terms vary as (Z - Z’) - m and, thus, can be 
neglected for large enough separation. 

It is shown in the following paper2’ that Eqs. (38)- 
(40), with as few as five point vortices used in the represen- 
tation of a given disk, produce very satisfactory results in a 
number of illustrative cases when compared with reference 
solutions obtained with contour dynamics. Utifortunately, 
these equations also possess the undesirable property, estab- 
lished in the following section, that the global centroid, the 
angular impulse and the kinetic energy are not exactly con- 
served by the motion. These quantities are invariants of the 
original problem and it is desirable to preserve their conser- 
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vation in any approximate model, especially if one is inter- 
ested in statistical properties or in Hamiltonian structure 
(see next section). Nonconservation in Eqs. (38)-(40) is 
basically due to the lack of symmetry in the approximation 
applied: the advectee is treated exactly while the advector is 
represented as a series of point vortices. Symmetry is re- 
established, and conservation follows, as we shall see in the 
following section, if the advectee is submitted to the same 
level of approximation as the advector. In practice, one has 
to expand e - &just as we had e - w’ (see Appendix A), i.e., 

K - iu, 
=& 

F 

Pl 
e 

, cash C& - s1 

=,g (Z’--Z) :is d-2SY’ (41) 
k I 

Using the same discretization, we.obtain the following ap- 
proximation for e - 29: -. 

e - ziiJ#& 
4 coshTl - s, 

=j, (z~-z;s;ss:r/-2s,y. 
(42) 

Note the error term in Eq. (41) is of the type given in Eq. 
(AlO) but this is not the case in Eq. (42). An optimal repre- 
sentation of e “- % would require a different distribution of 
points between the two foci. 

Replacing e ~= Q and e - 2mk by the above expressions, 
Eqs. (38)-(40) become 

a- - iKlk15, ,g (Z’ _I z)* “+“; y’* _ 2s y* ’ (43) I 
$3+ - 4d+ ;;‘_:2;; k$, ,&PISi 

x% 
[ 

Y 1 (Z’-Z) +2&Y’-2s1Y ’ (44) 

i, + + 80/A’ 
A. (1 “12) kg, [$,ILkprSI 

X3 
[ 

Y 
* (Z’-Z) +2S,l/-2QY 1 

VII. INVARIANTS OF MOTION 

For a family of nonaxisymmetric distributed vortices, 
the two-dimensional Euler equations possess a series of glo- 
bal invariants all of which are preserved by the elliptical 
model. 

We first observe that the total vorticity and the integral 
of any functional of the vorticity over a given disk are con- 
served by the very hypothesis the model is based on. We 
cannot, however, refer to vorticity conservation for each 
particle, because the particles located between two contigu- 
ous ellipses are indistinguishable. Such a notion is reestab- 
lished in the limit where the increment of each disk is infini- 
tesimal and the vorticity profile becomes continuous. 

In order to establish the conservation of the vorticity 

centroid, the angular impulse, and the total energy, it is most 
convenient to observe that the model can be described as a 
set of conjugate Hamiltonian equations. For each of the in- 
teractions described in Sets. III-VI, the evolution equations 
can be deduced from an associated elementary Hamiltonian. 
We must here consider the auto-advection of a disk as a 
separate case, but we can group together the cases of an exte- 
rior embedding disk and of an interior embedded disk into a 
single case. Hence we are left with only four cases. The ele- 
mentary Hamiltonians are as follows. 

( 1) Auto-advection of a single elliptical disk: 

‘2?; = -+ n-2 log (1 -IAl 
A * (46) 

(2) Interaction with an external straining flow (Sec. 
III): 

x1 = - 2Te2i’sZ*2 _ L!fE(+ _ A)cos 2(4-- 4,) 
8~ 

+;~lzl’+n$ $+A 
( 1 

. (47) 

(3) Interaction of two embedded elliptical disks (Sets. 
IV and V) where the primed disk is the internal one: 

CT2 = *{lZ-Zr12--t’W[(Z-Zr)4 2’@]} 

+ 7TKK’ log (’ +/ -pK$+++) 

+K’~(+)cos~(~-4’). (48) 

(4) Interaction of two separated elliptical disks [Sec. 
VI, Eqs. (43)-(45)]: 

<p.3 = % 277KK’ i $‘J& 
k=l [=1 

Xl0g(Z’ - z + 2S,Y’ -- 2&Y) . I (49) 

From the above expressions, one may verify that the 
evolution equations described in Sets. III-VII can be recov- 
ered as 

&Yi 
-+-. 

a4 

(50) 

(51) 

(52) 

Note X3 is identical to the Hamiltonian coupling the 
two families of point vortices used in the representation of 
the two vortices. But the point vortices are not free to move 
independently; they are linked in a collective state described 
by the discretization (34)) in which the only degrees of free- 
dom are Z, il, and 4. 

The total Hamiltonian X for a system of distributed 
vortices is obtained as the sum of the elementary Hamilto- 
nians for all possible couplings. It can be written symbolical- 
ly as follows: 
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2 = &ll disks (X0 +F11 

+ Td, couples ofembedded disks pi 

+ Zall couples ofseparated disks x3 * 

It is clear from Eqs. (50)-( 52) that &” is the excess kinetic 
energy of the system. I6 

The global vorticity centroid is defined as 

s ,= &I disks Kz 

&41 disks K 

This quantity is conserved by the combination of Eqs. (17) 
and (28) for a couple of embedded disks; it is also conserved 
by Eq. (43) for a couple of separated disks [this is not true 
using Eq. (38) except in the limit K-+ CO 1. Note it is impor- 
tant that all vortices be discretized with the same number of 
points. Nonzero external strain does not conserve the global 
centroid. 

One can see from Eqs. (5 1) and (52) that il and 4 are 
not canonical variables for p. Canonical variables p and 4 
can be obtained here from/z and 4 by a change of variables 
satisfying 

aP &l JP f% AK 1 1 -----=- -- . 
a4 a;l ( >  a; la$$ 4  i12 

(53) 

One choice of particular interest is 

p=&fK(1/;1 +A ), 

4  = 24, 
for which 

(54) 

(55) 

i ax 
p= -zr 

We obtain a simple expression for the total angular impulse 
in terms of 2 and p, 

x-r JJ w(x2+y2)dxdy= c (2mIZ~2+ 4p), 
all disks 

(56) 

from which we can show by a straightforward calculation 
that the elementary Hamiltonians X0, X2, and zs con- 
serve X. Nonzero external strain breaks conservation of 3  
as well. 

Another choice of canonical coordinates is useful for 
numerical purposes. It was observed by MZS that either (;1, 
4) or the above choice of canonical coordinates are singular 
when R becomes equal to 1. These authors introduced the 
following set of nonsingular canonical coordinates: 

(D,G) = (KA /J/2) “‘( 1  -A) (cos 24, sin 24). 
The singularity can also be removed using the complex non- 
canonical coordinate tc’e - 2i@ for which particularly useful 
simplifications occur in the equations. The derivation of the 
corresponding equations is left as an exercise for the reader. 

VIII. DISCUSSION AND CONCLUSION 

The elliptical model of two-dimensional vortex dynam- 
ics approximates the evolution of a  family of distributed vor- 
tices immersed in an external straining field. It is based on a 
Lagrangian formulation of the dynamics of the vorticity 
contours of vortices that are assumed to remain elliptical for 

all time. We  have limited the scope of this paper to a compre- 
hensive presentation of the various types of interactions in- 
volved in the elliptical model. The assembly of all contribu- 
tions into a single set of equations is performed in the 
following paper.= 

The assumption that vorticity contours remain close to 
ellipses is a  priori valid only when the contours of a  given 
distributed vortex are almost confocal and when separated 
vortices are far apart. The nonlinear effects of neglected 
terms. cannot be, however, easily determined within the 
framework of the elliptical model. The practical utility of the 
model and its advantages with respect to existing formula- 
tion are established by the results of a  series of numerical 
tests, presented in Ref. 25, in which the elliptical model is 
compared with state-of-the-art contour dynamics. 

The present model isa step en route to an approximation 
theory of vortex dynamics. The following paper25 describes 
an extension to small perturbations of the elliptical shapes. 
The incorporation of tin&e nonelliptical deformations re- 
quires a generalization of the conformal transform used here 
in order to deal with higher-order deformations.29 A clear 
limitation of the elliptical model lies in the problem of strip- 
ping and filamentation. a’8 Although stripped filaments of 
vorticity are not explicitly described within the model, they 
could be handled by computing the location of comoving 
criticalpoints and appropriately removing the exterior vorti- 
city contours of the vortex. Work in these directions is cur- 
rently in progress. 

This model and its future extensions are potentially use- 
ful as a theoretical apparatus for the investigation of vortex 
dynamics and as a tool for the interpretation of numerous 
experimental structures, such as the vortices produced in 
shear layers to name but one. The model provides a compact, 
simple representation of the essential features of a  flow 
dominated by coherent vortices. 
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APPENDIX A: OPTIMAL DISCRETIZATION OF THE 
VORTEX SHEET 

Consider the problem of finding the locations and 
strengths of K point vortices that represent the exterior ve- 
locity of the advector as accurately as possible. Letp,, ,u~,..., 
pK denote the dimensionless strengths of the point vortices 
and s s 1, 2,...,sK denote the dimensionless positions (made 
dimensionless on c) . Then the point vortex representation of 
the complex velocity due to this distribution is given by 

$= 2rCsinh w’E(w’), 

with 

E(w’) =+ t cosh’l,: - s , 
k 1 k 
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and where we use the elliptical coordinate system linked APPENDIX B: EFFECT OF A SINGLE VORTEX ON A 
with the advector. SEPARATED ELLIPSE 

We want to choose the,uu, ands, to make E( w’) as close 
as possible to the exact value, e - ““. Symmetry dictates that 
the ,u~ should be distributed symmetrically with respect of 
the center of the vortex and the sk antisymmetrically. As a 
consequence, E(w’) has the expansion 
E(w’) =e”““’ +c,e-3u” + c,ew5”‘+ ***,sotheobjectisto 
choose the ,uk and sk in such a way as to annihilate as many 
higher-order terms in the expansion of E( w’) as possible. 
For Kvortices, we can annihilate K - 1 terms; formally, we 
do this by demanding 

The effect of a single point vortex (z~ , K@ ) on a sepa- 
rated ellipse can be computed using Eq. (24) again. NOW V! 
is the streamfunction due to the single vortex, and we pass to 
z coordinates by 

dz sdw=tcn -. 

s 

Ei-Zfri 
E(w’)eCzm+ ‘jw’ dw’ = 0, m = 1,2 ,..., K - 1 

E 
(Al) 

and 

1 
s 

E-b z+rf 
- E( w’)ew’ dw’ = 1, 
297-i E 

(A21 

dW lzJ z-z0 

The integration is performed around the boundary of the e 
advectee. We thus have to sum a contribution from the con- 
tour at infinity, as we did in Sec. V, with a residue at each 
vortex location. The contribution at infinity is obtained from 
the asymptotic behavior of e - ““/(z -z. ) and 
em”/ (z - z. ). The first quantity is of order l/z” + I, so the 
second integral in Eq. (24) again does not produce any con- 
tribution from infinity. The second quantity does have a 
term of order l/z. It can be determined by first noting, from 
Eq. ( 1 ), that emw can be written as 

where E is an arbitrary real positive quantity. With the sub- 
stitution u = e”“, Eqs. (Al ) and (A2) may be evaluated on a 
closed contour using the calculus of residues, leaving 

e mm=P(Z) +R(z-‘‘), 
where P is a polynomial of order m and R is an integer series 
with zero constant term. Thus, the principal term in 
e”“/(z - z. ) is P(z@ )/z. Now, note that since cash mw is a 
polynomial in z and cash mw - sinh mw = 0( l/z” ), we 
have 

i pk ‘PI; 1 ;ff ’ = SnlO, 
k-1 

where a,,,, is the Kronecker delta symbol, and 

zkk =sk fidCSf=eeipk. 

(A3) 

cash mw = iP(z) 

and 

The division in Eq. (A3) is easily carried out, and we are left 
with the sequence of conditions 

K 1 
F/b cos2pk = -T 

k=I 
(A61 

K 
y pk cos 2mp, = 0, m = 2,3 ,..., K - I. (A7) 

k-=1 

sinhmw=$P(z) +R(z-‘). 

As a consequence, we obtain the contribution 

Ko --mr J, + iI,,, - -s 

=; - 2iKae- mr cash rnG&, 031) 
where Iija is the location of the point vortex in the elliptical 
coordinates of the advectee; it is determined from the solu- 
tion of 

Remarkably, these conditions are satisfied by 
qk =Tk/(K+ 1) and,uk =2sin2pk/(K+ l),or 

2 + cei@ cash itr, = zo, 
which can be put in the form of a quadratic equation for 

n-k Sk = cos 
K+l’ 

2 
- (1 -&I, Pk=K+l 

(A8) em&@. 
In addition, from Eq. (24)) the residues at each vortex 

(A9) 
location give the contribution 

for k = 1,2 ,..., K. 
The leading-order error term .f”,’ ““E( w’)eCzR f ‘jrd dw’ 

is easily evaluated along the same lines. It is 

J, + iI,,, ~iK~(e-mrem’“g - e ml- -m@ e 1. 
Combining Eqs. (Bl ) and (B2), we obtain 

I, = - 2Ka coshmr %[e-mna], 

(B2) 

(B3) 

ki, ,Uk (i,“, -I- .?k ) = $5, pk cos 2&Q = - l* 
J,,, = -2~~ sinhmI‘3[e-“&o]. (B4) 

Hence, 
E(W’)=e-‘“‘(l-e-‘K’“+...)e (A101 

This last result shows that the point vortex approximation 
has excellent convergence properties. In terms of the z’ vari- 
able, we have retained the first 2K terms in the Laurent series 
of the velocity field. 
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