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In Part I [ Phys. Fluids A 3, 845 ( 199 1) ] approximate equations were developed that describe 
the basic evolution of vortices in a general strain field. These equations take the form of a set of 
coupled, nonlinear ordinary differential equations describing the time evolution of the 
centroids, aspect ratios, and orientations of a nested set of elliptical contours representing each 
vortex. Here, in Part II, the model is extended to include disturbances to the elliptical shape of 
each contour, disturbances that are excited naturally by the interaction with other vortices. 
This interaction is worked out explicitly for the first time. The final equations obtained 
decouple into sets of equations for each mode symmetry, allowing for a very simple description 
of the disturbance evolution. Numerical tests show remarkable agreement between the 
elliptical model and the full equations of motion in four problems: ( 1) the equilibrium contour 
shapes of a multicontour family of vortices, (2) the linear stability of this family, (3) the 
equilibrium, nonelliptical shapes of two corotating vortex patches, and (4) the interaction 
between two symmetrical vortex patches, including merging. 

I. MODEL ASSUMPTIONS 

We begin with the approximate model developed in Part 
I.’ In this model, each vortex is represented by a stack or pile 
of elliptical patches of uniform vorticity, with no mathemat- 
ical limitation being placed on their number. Evolution 
equations are derived for the centroid, aspect ratio, and ori- 
entation of each ellipse by retaining just the part of the local 
velocity field that preserves the elliptical form. The veiocity 
field itself consists of an arbitrary external straining flow and 
contributions from every ellipse within every vortex. 

The imposition of a basic elliptical shape to each con- 
tour is not equivalent to a formal perturbation series devel- 
opment. A posteriori, one must rely on extensive compari- 
sons against contour dynamics to estimate the magnitude of 
the error. There are two principal sources of error. One 
arises from mismatched foci of the ellipses comprising a giv- 
en vortex. The instantaneous motion of a confocal set of el- 
lipses may be calculated exactly, in the absence of other vor- 
tices, although the time evolution will normally lead to 
mismatched foci. A second source of error arises from the 
interactions between separated vortices. This interaction 
leads predominantly to elliptical deformations, but there are 
also higher order deformations which are ignored in the ba- 
sic model. 

In Part II, we incorporate higher-order deformations. 
We assume, however, that their amplitudes are small, so that 
we can ignore quadratic disturbance interactions. Thus, 
there is no feedback on the basic elliptical evolution of the 
contours. Within a given vortex, disturbances having differ- 
ent azimuthal symmetries are assumed to be decoupled from 

each other, an approximation that requires approximate 
confocality of the basic ellipses (there is no coupling for a 
confocal set of ellipses). Between separate vortices, the pri- 
mary source of disturbance excitation is assumed to arise 
from the basic elliptical interaction of one vortex with the 
disturbances of the other. The neglected disturbance-distur- 
bance interaction can be estimated and is substantially 
weaker as long as the vortices remain well separated. 

II. PROPERTIES OF A SINGLE, DISTURBED ELLIPSE 
It is sufficient to consider irrotational or boundary-de- 

forming disturbances, since other types of disturbances can 
be rendered irrotational by a suitable choice of the basic 
flow. The streamfunction, $(x,y,t), due to a disturbed ellip- 
tical contour of semimajor axis a, semiminor axis b, and con- 
taining vorticity w in excess of that in the surrounding flow, 
@  split into a basic part $(x,y,t) and a disturbance part 
$(x,y,t). Both q(x,y,t) and $(x,y,t) have different expres- 
sions in the interior and the exterior, owing to the discontin- 
uous vorticity at the boundary of the ellipse. The basic-state 
streamfunction in the interior of an ellipse, oriented with 
semimajor and semiminor axes coincident with the positive 
x and y axes, is 

ij= cd 
Xl t-R) 

(Ax2 +y21, (1) 

where/z = b /a is the aspect ratio of the ellipse (see, e.g., Ref. 
2, Art. 159). In the exterior, the streamfunction is most sim- 
ply expressed in terms of elliptical coordinates (c,~), which 
are related to the original Cartesian ones by 
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x=ccosh4cosT 

(c&m). Then, 

and y = c sinh 4 sin 17 

+K(~+$e-%OS277) +K, (2) 

where K+ oab and K depends on w, a, and b, but not on 6 
or 7. This constant is unimportant and may be ignored 
forthwith. 

For the disturbance, considered to be an irrotational re- 
sponse to the deformation of the boundary away from the 
boundary, the interior disturbance streamfunction may take 
the general form 

3 = C cash rnc cos rn7 + D sinh rng sin rnq (3) 
with C(t) and D( t) as yet undetermined. We require that the 
velocity, whose components are proportional to &,J/G’l;l and 
a$/d{, be continuous across the boundary. Continuity of 
a@/Jq, to leading order in disturbance amplitude, requires. 
that the exterior disturbance streamfunction be of the form 

3 = e - “‘“(E cos rnq + F sin ml;r) (4) 
with 

E = Ce”’ cash mf;, F.= Demr sinh mf;; (5) 
where 5 = i? gives the undisturbed elliptical boundary. In 
terms of the eccentricity E note that 

-_ 
e -F=,=J(l -R)/(l +A). 

The actual disturbed boundary is denoted by 
lyqt) = F(t) + .F(qt), !i?giT 

Continuity of @/J{, which to first order in disturbance am- 
plitude is 

p,q, + I------ ,-. a2$F,q) + *cr;;,,, ay ag 
implies [using ( 1 )-( 5) ] that 

u)fi2 = - memF( C cos rnv + D sin mq), 

where z ’ =a2 sin2 77 + b ’ cos’ 7. Therefore, setting 

p(qt) =fi2 = A cos rnv + B sin m?;l, 
we obtain 

C= - (w/m)Aeem’, 

D = - iw/m )Be ~ ‘?“, 

E = - (w/m)A cash rnF, 
F= - (w/m)B sinh mF. 

(6) 

0) 
Ub) 

Note, 3 is a small normal.distance displacement out- 
wards from the undisturbed elliptical boundary. 

III. THE LINEAR DISTURBANCE EVOLUTION 
EQUATIONS 

We next derive the general evolution equations satisfied 
by A(t) and B(t) in (6). Here, we implicitly take into ac- 
count the presence of other contours (and vortices) as well 
as an imposed external straining flow, but leave explicit alge- 
braic computations to Sets. IV and V. 

The starting point is the equation governing the motion 
of a particle in the time-varying elliptical coordinates of a 
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given contour derived in Part I, Sec. II. Let 2 = X +‘iY be - .- 
the centroid of the ellipse, c = p- bT is the half-distance 
between the foci, and 4 is the orientation of the ellipse rela- 
tive to fixed axes. With respect to these fixed axes, the posi- 
tion of a particle is given by 

z=x+iy=Z+ce’4coshw, 

where w = 5 + iv is the complex elliptical coordinate of the 
particle. The motion of this particle is described by the 
equation 

- ie ‘$12 sinh w* 

- (c? + i$c2> cash w sinh w*, (8) 
where a dot stands ford /dt, r,J = z,& w,t), and * denotes com- 
plex conjugation. 

The basic flow evolution for the Z’s, /z ‘s, and 4’s is ob- 
tained from the real part of (8) evaluated along the undis- 
turbed contour, as described in Part I [see in particular Eqs. 
(5) and (8) in Part I]. An important quantity for the distur- 
bance evolution, however, is contained within the imaginary 
part of (8) evaluated along the undisturbed contour. This 
imaginary part yields the equation 

(9) 

where R 2 zab and 5 = dv/dt . Here, 5 is a basic state quan- 
tity determined much in the same way as %A, and 4 were in 
Part I (details may be found in Appendix A). 

The disturbance equations are contained within the real 
part of (8) evaluated along the disturbed contour, 

c2]sinh(I’+i~)121’= -*or]) 
a7 ’ 

-~ctsinh21’--~c2$sin2~ 

- s3t [ie - ‘$1 c sinh I7 cos 17 

- 3 [ ke ~_ “1 c cash I’ sin 7, (10) 
and are isolated by linearizing this equation about the basic 
flow. The algebraic manipulations are lengthy, and only a 
brief sketch is given here. One uses the relation 
dF/dt = _ (UcAtanh 2F, wkich expresszs conservation of 
area, zxpands dI’/dt into Jr/at + fi dI?//dy, and substi- 
tutes F = p/x ‘from (6) to find the remarkably simple result 

a*,, ap I a(@) -= --(T;,v). at a7 a7 
(11) 

Here, 1cl,2 =ti - $12, which is the streamfunction exclusive 
of elliptical deformations. Using the expression (6) forp and 
the fact that z is independent of 77 (see Appendix A), ( 11) 
becomes 

(A + mGB)cos rnq + (& - maA)sin my 

(12) 

for each integer m > 2. Here $;, is the streamfunction re- 
stricted to the cos rnq and sin rn7 components. 
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IV. NESTED ELLIPSES 

In this section, we explicitly calculate the contributions 
to Ik and b from the same and other contours within a single 
vortex. For a single ellipse, the analysis of Sec. II shows that 
a small boundary disturbance of the,foAm (6) has associated 
with it a streamfunction response q( l?,v) of the same azi- 
muthal symmetry, say m. Within this linear analysis, super- 
posed disturbances having different azimuthal symmetries 
n # m do not interact with each other.3 Nor in fact do they 
interact in the case of a confocal set of embedded ellipses (see 
below). Hence, coupling between modes of different symme- 
try only occurs as a result of mismatched foci. 

In the following analysis, we ignore this coupling but 
retain the leading-order effects of mismatched foci by com- 
puting the nonelliptical deformations excited by the basic set 
of ellipses. If we were to take into account the coupling of 
disturbances having different symmetries, for consistency 
we would then be forced to consider also the modification of 
the basic flow by disturbances, and this does not seem justifi- 
able in light of the numerical results presented in Sec. VIII. 

There are four sources of disturbance excitation: (i) 
self-excitation, (ii) interaction with disturbances on exterior 
ellipses, (iii) interaction with disturbances on interior el- 
lipses, and (iv) generation by mismatched foci. The first 
three sources arise from existing disturbances while the lat- 
ter arises from the basis set of ellipses. This latter source is 
the first of two that we wiIl encounter that pick up the nonel- 
liptical part of the velocity field discarded in obtaining the 
basic model. 

We turn first to the contribution from exterior ellipses, 
(ii), the simplest to compute. The auto-contribution (i) can 
be obtained as a special case of (ii) or indeed of (iii). The 
disturbance streamfunction interior to the advecting ellipse 
(Z’J ‘,#‘,A ‘,B ‘) duetoasingleazimuthal wavenumber mis 
given by ( 3) (supplemented by primes) : 

~=CC’coshm~‘cosm~‘+D’sinhm~‘sinm~’ 

E s%[(C’-iD’)coshmw’]. 

The coordinate system of the advectee is linked to that of the 
advector by the relation 

z = Z + ce’$ cash w = Z’ + c’e’# cash w’, 

giving 
cash w’ = A cash w + (Z - Z’)/~Y’, 

where we have introduced the notation 2~’ ~c’e’@ and 
A G Y/Y’. The cos mv and sin rnv components of $ are readi- 
ly seen to be 

%[(C’-iD’)A”‘coshmw]; 

which is 

(c/c’)m{(C’cosm(qS-qY) +D’sinm($-4’)) 
X cash rn,$ cOs m?;l 

+(D’cosm($-4’) +C’sinm(gl--4’)) 
x sinh rng sin mq). 

Of course, there also exist cos nv and sin nv components of 
$I for n < m, but these vanish for a confocal set of contours, 

for then A = 1 and Z = 2’ (in this case cash mw 
cash mw’). These terms are therefore neglected here. 

(Otherwise, disturbances would bring about a change to the 
basic flow through the n = 1 and 2 components of 3.) Using 
(7a), one then finds that the contribution to A and b is 

A- + u’(c/c’)me-‘mp(Br cos m(# - 4’) 

- A ’ sin m (4 - #‘))sinh rnr, (13a) 
b+- - u’(c/c’)me-mp(A’ cos m($ - 4’) 

+ B ’ sin m (q5 - qY ))cosh mT’. (1%) 
Next consider case (iii) when the advecting ellipse 

(Z’J ‘,#‘,A ‘,B ‘) is interior to the advectee. In this case, the 
disturbance streamfunction is given by~( 4) (with primes) : 

$=e-““‘(E’cosmr]‘+F’sinm’l;l’) 

- %[ (E’ -t- iF’)epmW’]; 

thus 
n 

-z =-X[ (E.’ + iF’)G] . (14) 

To extract the cos rnv and sin rnv components, it is neces- 
sary to calculate the following contour integrals taken 
around the undisturbed boundary of the advectee 5 = f;: 

------coshm(w--‘Z;)dw 

=+!E 

i=+ 2iu s e- mw’ sinh m (w - T;)dw, (15a) 
ri- T; 

de - ,,d 

~ sinh m(w - T)dw 
dw 

=+E c F;+2irr 

e - mw’ cash m(w - T)dw. (15b) 
. n- JP 

Using the integral expressions developed in Part I, Sec. 
V along with a few additional straightforward computa- 
tions, it is possible to show that 

~~=IIC=imh~“e-“‘, (16) 
which implies that the cos rnq and sin rnv components of 
de - ““‘/dw can be encapsulated in the particularly simple 
expression 

- mA- me- mw. 

Again, there are also cos ny and sin nl;l components for 
n # m, but these vanish for a confocal set of ellipses and SO 

are neglected in this analysis. (Again, otherwise we would 
have to take into account th_e change to the basic flow by the 
n = 1 and 2 components of q.) Using (7b) we can then con- 
clude that the contribution to k and b is 

A+- +w’(c’/c)me-mP(B’cosm(~-#‘) 

- A ’ sin m (4 - qY))sinh rni!‘, (17a) 
h- - t-J(c’/c)me-mf-(A ’ cos rn(q5 - 4’) 

+ B ’ sin m (4 - #))cosh rnp. (17b) 
Finally, we consider the contribution from mismatched 

foci within the basic set of ellipses. In Part I, it is proved that 
an exterior ellipse, like an external straining flow, induces 
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only elliptical deformations on an interior ellipse, so there is 
no disturbance contribution in this case. However, an interi- 
or ellipse does generally induce nonelliptical deformations 
on an exterior ellipse-this is indeed the reason why the ba- 
sic m~odel is approximate. This source of disturbance excita- 
tion is calculated next. 

From ( 12), it is clear that we have to consider the fol- 
lowing two integrals: 

r,-l -2u 8 
J - sin rn7 dr] 

7T 0 a’17 

which is the contribution to b, and 

J,,,zz--L Zr*cosmgd?;l 
J ri- 0 a?7 

=-8’ [ J 
F -+ 2irr &  

zcoshm(w-~)dw, 
I 

(19) 
IT F 

which is the contribution to 2. Here, irrotationality permits 
us to use, advantageously, the complex extension of the 
streamfunction @, defined in Appendix A, Eq. (A6). In Part 
I, Sec. V, Ir, and J,,, are evaluated form = 1 and 2 in order to 
obtain Z, A, and 4 [for example, $ = 21,/c2 - see Part I, 
Eq. (2911. 

The details of the calculation may be found in Appendix 
B, since the calculation for m > 2 is not significantly different 
from that for m<2 (described in Part I). For arbitrary m, 
however, it has not been possible to obtain a closed form 
expression for I,, and J,, (unless an approximation is 
made-see Appendix B) . A symbolic calculation was neces- 
sary to produce the results, and these are listed for m up to 10 
in Appendix B. In general, we have been able to determine 
that I,,, and J, are given by * 

J,, + iIm = - Wt?G, (P,Q), (20) 
with P= l/h = Y’/V and Q= (Z ’ - Z)/v, and where G, 
is a polynomial in P and Q with integer coefficients. In terms 
of G,,, , the contribution to d and & therefore, is 

A- -t~‘Ps$j[G,,], GW 
b+ -K’E~%[G,]. (2lb) 

V. SEPARATED ELLIPSES 
The validity of the basic model depends also on well- 

separated vortices. For well-separated vortices, the interac- 
tion of disturbances on one vortex with those on another 
turns out to be small compared to the generation of distur- 
bances by the nonelliptical part of the velocity field discard- 
ed in obtaining the basic model. (This is the second source of 
disturbance excitation arising from the basic set of ellipses.) 
As in the previous section, if we were to include disturbance 
interactions between separated ellipses, we would also be 
forced to include basic flow modifications caused by the dis- 
turbances. This does not appear justifiable at the present 
time-further remarks follow at the end of this section. 

We begin by examining the effect of the basic elliptical 
shape of one contour, the “advector,” on the disturbance 

a4 
0 b if--- 

W 

FIG. 1. A sketch of two interacting ellipses. 

evolution of another, the “advectee” (see Fig. 1 for defini- 
tions ) . The relevant integrals are 1, and J, defined above in 
( 18) and (19), with the understanding that the advector is 
not embedded within but separated from the advectee. To 
avoid the explicit appearance of elliptical functions of the 
third kind, an approximation is made that replaces the ad- 
vector by a linite set of point vortices distributed along the 
line segment connecting the advector’s foci [see Part I, Sec. 
VI, Eqs. (34) and (35) 1. The true exterior velocity field of 
the advector that is needed for the calculation of I,,, and J,,, is 
very closely approximated in this way. Let K~ denote the 
strength of one of these point vortices and z. its position. 
Employing the method developed in Part I (Appendix B) to 
calculate integrals of this form, elementary algebra leads to 
the simple result 

I,,, = - 2~~ cash rnF W [e - “&a], (22a) 

J,,, = - 2Ko sinh m~~[eemio,], Wb) 
for each point vortex. Here, aQ is determined from the solu- 
tion of 

Z + ceid cash iir GJ ‘20, (23) 

which is a quadratic equation for e - &a. 
For large separation distances, 

showing that disturbance excitation decreases rapidly with 
increasing azimuthal wave number. 

one can equally well determine the contribution to 2 
and B due to a disturbance riding on the advector, using 
a$/&‘~ in place of @/Jq in ( 18) and ( 19). The procedure is 
again to approximate the advector by a finite set of point 
vortices, only now the point vortices are slightly disturbed 
from their basic positions between the advector’s foci (in this 
way, the exterior velocity field of the disturbed contour can 
be accurately approximated). The full effect of the advector 
on the advectee then has the form already given in (22)) only 
thezo’s ofeach point vortex appearing in (23) depart slight- 
ly-by an amount proportional to the disturbance amplitude 
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on the advector-from their basic, undisturbed values. 
Thus, the effect of the advector’s disturbances is only to 
slightly change the interaction between the contours, as can 
be seen most clearly from (24). (There would also be a basic 
flow modification, and this we wish to ignore. Consistency 
then requires that we ignore all effects of the advector’s dis- 
turbances on the advectee. ) 

VI. THE COMPLETE ELLIPTICAL MODEL 

We can now write down the complete set of equations 
describing the evolution of a collection of vortices, under the 
assumption that the contours of each vortex remain nearly 
elliptical and do not cross. Let the subscripts a and fl specify 
distinct vortices, the subscripts j and I the contours within a 
vortex, and m the disturbance symmetry. Let vortex a have 
.JV, contours, and let there be S vortices altogether. 

With appropriate notation, the final expressions can be 
put in a compact form. Define 

and 
K 

C PkQt&ja* 
k=l 

Here, Y~,~.~, or qk for short, is determined as the smallest 
root (in modulus) of the quadratic equation 

d-2 
z,fi + 2skylo - zj~ 

25cz 
qk + 1 = 0, The disturbance equations are simplified by introducing 

a few more definitions: 

Thep, and s,+ are the dimensionless strengths and positions 
of the point vortices used in the separated contour computa- 
tions [see Part I, Eqs. (34) and (35)]. 

Next, define 

a,, =;1 @ja, 
fi2, sWj,/zi,/( 1 + A& )“? 

l/is z 4 oja 6-e - 2i4Jn, 

y, s ye - 2i$‘, 

pa E 51 + a,, ‘5’ Kin + cl;; 2% [ E, eZidim] 
I= I Kja 

$a --3/s + =ja + Na "/a + &ja * 
F - i 

Then, the basic-state equations take the form 

- Y.qL) 

+ i $J taZ,azjla - riZ$a) 
l=j 

+ i(fiZja - YzZE - ET/, 1, 

Aja = 2;lj,3 [ fla e2iea] , 

dja =f$ -~%[&e2i’i~]. 
JQ 

(254 

(25b) 

(25c) 

The last two equations are identical to those derived by 
Kida for a single elliptical patch upon suppressing all sub- 
scripts and superscripts. Therefore, & and f$ can be 
thought of as generalized strain and background rotation 
rates. 

.dmja s ( A,,,ja + iB,,,,, ) eim@“, 

i=ijc EE iTi& + &, 

ZZ fi + 2s1ejc :$I F + + l$j @la 
a 

- r$j 93 [ $ae2ibfcc] , 

r +jasJ(aja tbjm). 
Then, we find 

.kmia = imCi,ad,I, - i -Z!% 

( > rtja 
m~~K,~G-(~,~)-~i~j~{~~j~ +(2rmx,+} 

- + (z wIe [ (~)m.d,nla + (~)“d~l~ezim~~~z) 

(25d) 

The coetlicients G, are given in Appendix B. The sec- 
ond and third terms recover the nonelliptical part of the ve- 
locity field produced by the basic ellipses. 

VII. THE MODEL EQUATIONS IN A FEW SPECIAL 
CASES 

Theoretically intriguing sets of equations arise in several 
problems of fundamental interest. Consider first the equa- 
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I 
tions for two nested contours without a common center. Let 
the- index “1” refer to the interior contour and “2” to the 
exterior contour. In the absence of an external straining 
flow, the centroids evolve according to 

2, =i iw2(Z,2 - ~Z;IIZe”‘@z), (2W 
i, = f iC0,(K,/K2) (z,, - &Z;,e2i’1) (26b) 

or 
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i2, = 4 k+(KJK* + 1) (22, - .gz2:e2i,+2), C-Xc) 
K*i, + K2i2 = 0, (26d) 

the last equation expressing conservation of linear momen- 
tum. Let Zz, = Re”. Then, for the aspect ratios, 

x 2 = w2< sin 2+,,, 4 (2%) 

(2%) 

Here, one can verify K&,/jl, + K2C;&/;12 

+ ~&K,K~/(K, + K*) = 0 - this is a consequence of an- 
gular momentum conservation. And, for the orientations, 

4, =&* ++w, (- I-+.$ 4 cos 2412 s 

> 

WW 

1 

42==~& +n,~(2-(~)2cos2~21 
C2 

- = 2cos2(42-8) 
( > 

. 
c2 I 

(28b) 

Conservation of energy (see Part I, Sec. VII) further 
reduces the number of independent variables to four. In ad- 
dition, these equations only depend on the angular differ- 
ences 4, - 4, and $2 - 0, so that just three independent 
variables remain. As such, this system may be an interesting’ 
one to explore chaotic vortex motion. 

A second system leading to three independent variables 
is found in the motion of two symmetrical vortices in a uni- 
form external straining flow. Each vortex, a single contour, 
has identical vorticity w, circulation K, aspect ratio ;1, and 
orientation 4, but opposite centroids (at Zand - Z). In this 
case, the centroid of one vortex evolves according to 

i==i(nz-yz*-zg, (29) 
where 2, = Kv - ?E= , pk qr, Y = 1 ce+, and each qk is de- 
termined as the smallest magnitude root of 

4”k - 2(s, - z/Y)& + 1 = 0; 
in addition, 

A. = W(ysin24 + a[&e”+]), (30) 
and 

+n,+n-5 (ycos24+tJt[X e”+]) 2 * (31) 

There are therefore four real variables. Conservation of an- 
gular momentum is violated by the external straining flow, 
but conservation of energy still holds, provided one takes 
into account an interaction energy between the straining 
flow and the vortices (see Part I, Sec. VII and Ref. 3, Appen- 
dix). So, there are only three independent variables in this 
system. (Note: strict conservation of the invariants can only 
be obtained if we approximate the advectee in the same way 
as the advector, that is by an equivalent number of point 
vortices. This leads to a different expression for the Z, 
terms-see Part I, Sets. VI and VII for further discussion. ) 

VIII. MODEL TESTS 
This section presents comparisons between the elliptical 

model (hereafter EM) and the full (contour dynamics) 
equations of motion (CD) in a few simple cases. Compari- 
sons are also made with the moment model (MM) of Ref. 5, 
where possible. Four topics are examined: ( 1) the equilibri- 
um contour shapes of a multicontour family of vortices in 
uniform strain; (2) the linear stability of this family; (3) the 
equilibrium boundary shapes of two identical corotating 
patches; and (4) the time evolution of two symmetrical, un- 
steady patches, including merging. 

A. Equilibrium contour shapes of a multicontour vortex 
in strain 

We specify the vorticity distribution by the area en- 
closed by each contour, S-R j’, j = 1,2,...,N, and the vorticity 
jump across each contour, wj. The vortex is subjected to an 
external straining flow characterized by y = 6/65 and 
fi = 0. The results below are obtained with N = 8 contours 
and with all the w, equal to l/N. We choose the areas within 
the contours to correspond to the vorticity profile used by 
Melander etal.’ (see Ref. 7 for details, including the numeri- 
cal method used to obtain the CD results). It is sufficient 
here to note that the YTR f depend parametrically on a quanti- 
ty S, such that when S = 0, all of the contours lie on top of 
one another (and the equilibrium shape is then an ellipse of 
aspect ratio 2/3 for the value of y given above8), and when 
S = 1, the contours are most distinct (the corresponding 
vorticity profile then resembles a Gaussian). 

The EM results are calculated by solving the set of si- 
multaneous nonlinear equations, $j = 0 (with +j = 0), for 
the/Zi, j= l,...,N (N= 8). Thisisdone by using the known 
solution at S = 0 as a first guess in an iterative Newton meth- 
od for the solution at S = 0.01. Solutions for greater values of 
S are generated in the same way, using previous solutions as 
first guesses. Disturbances can be included later by solving 
.&,,i = 0 for the .&,i. But, by symmetry, only cosinusoidal 
disturbances with even wave numbers m will be excited (so 
B,,,/ = 0). The A,, for even m, are determined from the 
special form of (25d) applying here, 

miijA,j = ++-)m~~+m(~,O) 

N r”+ I -I- r”_ { 
++c A 

l=j P+, 
ItIt, (32) 

where o = l/N, and fij is defined in Sec. VI. Wave numbers 
m = 4, 6, 8, and 10 are included in the following results. 

Figures 2(a) and 2(b) show the equilibrium contour 
shapes for S = 0.5 and S = 0.98; the three curves correspond 
to CD (solid), EM (basic model onlyj dashed), and EM 
(full model; dotted). (The MM is,inapplicable in this case 
since it cannot handle embedded contours. ) At S = 0.5, the 
close spacing of the contours results in very close agreement 
between all of the results. Quantitatively, the full EM gives 
the best agreement; for example the’x intercept of the outer- 
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FIG. 2 A comparison of CD, basic EM, and full EM nested equilibria (sol- 
id, dashed, and dotted lines, respectively) for two values of the profile steep- 
ness: (a) 6 = 0.5 and (b) 6 = 0.98. Only one quadrant of the vortex is 
shown-the rest is mirror symmetric about the x and y axes. 
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most contour is x = 1.10124 for CD, x = 1.100 60 for the 
full EM, andx = 1.097 36 for the basic EM. At 6 = 0.98, the 
maximum value of S for which the iterative scheme used to 
calculate the EM equilibria could be made to converge 
(owing to the presence of nearby external stagnation 
points), the agreement is poorer, although the inclusion of 
disturbances within the EM again leads to significant im- 
provements. The remaining differences between the full EM 
and CD must be due to the neglected disturbance coupling 
with the basic flow and with disturbances having different 
symmetries (as discussed in Sec. IV), as well as neglected 
nonlinearity. 

o t f.r.Tz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ::: 
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(al 

6 

2.5 

u 

6. Linear stability of a multicontour vortex in strain 

The equilibria just examined are next subjected to small 
disturbances. The linear stability results for CD were ob- 
tained numerically using a highly accurate matrix method 
(see Ref. 9 for details). In this method, the disturbance on 
each contour is represented by a 32-term series in cos m9- 
and sin ma, where 8 is a coordinate proportional to the trav- 
el time of a fluid particle from a fixed position around an 
undisturbed contour. The computed eigenvalues change by 
less than one part in lo5 upon doubling the number of terms 
from 32 to 64. T% EM results were obtained by substituting 
.PZ’,, = -2,, +- dmjeiUf into (25d) and finding the eigenval- 
ues of a complex matrix of size 8 x 8 (this matrix is one 
thousand times smaller than the matrix used to obtain the 
CD results, owing to symmetry decoupling within the EM). 
Here, the g,,,) refer to the equilibrium values computed in 
Sec. VIII A above. 
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6 

FIG. 3. A plot showing the eigenvalues D as a function of the width of the 
vortex edge; proportional to 6, for a particular family of distributed-vorti- 
city equilibria; (a) as computed using CD, and (b) as computed using the 
EM. All of the eigenvalues shown are real, implying neutral stability, except 
those of the lowest curve, labeled M = 1 in (b)for which we plot only the 
real part- The instability of the m = 1 mode reflects the fact that a small 
initial displacement in the vortex centroid can be compounded by the exter- 
nal strain. Other m  = 1 modes lie along the line (T = 0, and the whole dia- 
gram is mirror symmetric across this line. 

The results are compared in Fig. 3. Strictly, it is only 
possible to identify the bands of modes corresponding to 
each “pure” symmetry m in the EM, since each eigenfunc- 
tion depends on just one m value. Each band is characterized 
by N- 1 ( = 7) “internal” neutral modes having “critical 
levels” between successive pairs of contours, and one “exter- 
nal” mode having a critical level beyond the vortex edge. In 
the figure, the internal modes can be seen to be stemming 
from the same source when S = 0 and spreading’out gradual- 
ly as S is-increased. The external mode takes a significantly 
different route as S is increased. Comparing the results, we 
see small discrepancies only when S approaches unity, when 

the demands on the EM are greatest. Given the complexity 
of the linear stability diagram, the overall agreement 
between the EM and CD results is not insignificant. 

C. Equilibrium contour shapes for a pair of identical 
corotating vortex patches 

The problem of finding corotating equilibria was first 
examined by Saffman and Szeto” and later reexamined and 
extended to more than two vortices by Dritschel.” Each 
vortex has unit vorticity and possesses twofold symmetry. 
The closest distance between one vortex and the origin about 
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which it rotates is given by a,, and the distance to the farthest 
point on its boundary from the origin is unity (see Fig. 4). 
The problem is to determine the boundary shape of half of 
one vortex and the background rotation fi = - &, that 
keeps the vortices stationary. Using CD, this problem is 
tackled using a nonlinear iterative scheme. The results pre- 
sented below use the method described in Ref. 11, with a 
numerical resolution sufficiently fine to make JL, accurate to 
six figures. 

Using the EM, with disturbances, we specify the dis- 
tance between centroids r, assuming each patch has area 
equal to r, and calculate the basic-state aspect ratio il and 
steady rotation R = - $, from the conditions ? = 0, or no 
centroid movement, and 4 = 0, or no vortex rotation (iand 
2 are automatically zero on geometrical grounds-see Fig. 
4). We then calculate fi and the disturbance amplitudes A,, 
the latter from the condition b,,, = 0 (again k, = 0 = B, 
automatically). From this, we can obtain the boundary 
shape, inclusive of nonelliptical deformations. For compari- 
sons, we search for the EM equilibrium with the dimension- 
less ratio of angular momentum to squared area equal to that 
of the CD equilibrium, and then shrink the EM equilibrium 
until it has the same area as the CD equilibrium. 

In detail, the procedure is as follows. Each vortex has 
cr) = R = 1 and thus K = l/2. Referring to Fig. 4, let the left- 
hand vortex be the advectee. Then the condition of no cen- 
troid movement is 

f=-$-Qor-$k$,~kqk ==0, 

where qk = r/c + sk - {(r/c + s, >’ - 1 )1’2, while the con- 
dition of no vortex rotation is 

$=.n, -no--+-2+Z) i; 
kZ!l 

pclkq; = 0. (34) 

The simultaneous solution of these equations gives il (r) and 
a,,( T) (a simple interval-dividing method is used, with accu- 
racy to better than ten significant figures). Given ;1 and 
Q,(r), the disturbance quantities are readily computed. 
Here, fi is given by 

0 
f I I +------m---v 

a w 
X 

w 
a0 

. 
1 - 

FIG. 4. Equilibrium configuration of two corotating vortices. 
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i=i’=n, f-$(C2-EZ) 5 /I&q;, 
k=l 

and the A,, m = 3,4,... are determined from 

-+(l+e+f, 

(35) ! 

+Em) i pkd? 
k-1 

(36) 

We used K = 10 and calculated A,,, up to m = 20 to obtain a 
minimum accuracy of six significant figures in the boundary 
shape. 

Figure 5 compares the boundary shape determined us- 
ing CD (dashed contour) with that determined from the 
EM (solid contour) for three values of a, corresponding to a 
small separation between the vortices: (I~ = 0.3 (top), 
a, = 0.2 (middle), and cue = 0.1 (bottom). The percentage 
errors in the rotation rate K&, for these values of a, are 0.054, 
0.25, and 1.2, respectively. Again, we find surprisingly high 
accuracy for the elliptical model. 

a0 = 0.3~ 

(I- 
+ 

a0 = 0.2 

:-“‘:I u + 
a0 = 0.1 

FIG. 5. The boundary shapes of one of a pair of identical corotating vortices 
for three close separation distances. The dashed lines were computed by 
CD, and the solid lines from the EM. The plus sign marks the center of 
rotation. 
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0. Unsteady, symmetric vortex patch evolution 
We next attempt to follow the evolution of interacting 

vortices using the EM. The governing model equations are 
given by (30) and (3 1 ), for the basic evolution, and the 
specialized form of (25d), for the disturbance evolution. No 
external straining flow is assumed to be present 
( y = bl = 0). We begin with two precisely circular vortices 
(with unit vorticity and radius) separated by a distance d 
from center to center. This is the now well-studied problem 
of symmetric vortex merger going back to Zabusky et aLI2 
On the basis of CD calculations, the vortices merge only if 
d < 3.4. Here we examine the two cases d = 4 and d = 3. 

The EM results are compared with CD simulations 
done at sufficiently high resolution to ensure that the plotted 
results are accurate to within the plotted linewidth (see Ref. 
13) for support; the algorithm parameters used in the calcu- 
lations presented are ,u - 0.03 and At = 0.05). The EM 
equations are solved by combining (30) and (3 1) into a sin- 
gle equation for the complex variable f c’e - 2id. The advan- 
tage of this is that the resulting equation does not have singu- 
lar coefficients when jl = 1. Here, k’ z= 5 point vortices are 
used to represent the liow field of the advector, although 
K = 1 was also used to verify that K = 5 gives significantly 
better results (larger values of K, on the other hand, do not 
lead to noticeable improvements). (It was pointed out in 
Sec. V that these equations do not strictly conserve the invar- 
iants of motion unless a further approximation is made, yet, 
in the first numerical simulation shown below, the angular 
momentum changes by only one part in 10” ; in the second, 
it changes by one part in 10”. ) A fourth-order Runge-Kutta 
scheme was used for the time integration, with time step 
At = r/80. A similar numerical code was written to solve 
the moment model (MM) equations14 to enable compari- 
sons between the two approximate models. 

Figure 6 (a) for d = 4 compares the evolution computed 
by CD (solid contours) with that computed by the EM with- 
out disturbances (dashed contours), and Fig. 6(b) shows 
the improvement one gets by including disturbances in the 
model. See also Fig. 6(c)for a close-up view at t - 4.5, in- 
cluding a comparison with the MM. The full EM is virtually 
indistinguishable from CD in this example. Even without 
disturbances, the EM does better than the MM-the quanti- 
tative results given in Table I indicate at least a threefold 
improvement in this case and in another for d = 3.5. 

Figure 7 (a), for d = .3, shows vortex merger computed 
using CD. Figures 7(b), 7(c), and 7(d) show the corre- 
sponding model results, obtained with the MM, the basic 
EM, and the full EM, respectively. Here, the assumptions 
underpinning both models eventually break down as the vor- 
tices merge, since both models require that the elliptical fo- 
cal separation 2c be small compared to the distance between 
the vortex centroids. Nevertheless, the full EM does capture 
the early stages of merging, including substantial nonellipti- 
cal deformations. 

The results obtained with the basic model are interesting 
in their own right. In particular, the criterion for “merging” 
in the EM is qualitatively the same one observed in CD. 
Arguably, the same similarity exists between the MM and 
CD. However, there is an apparent difference between the 

two approximate models: the EM exhibits periodic, recur- 
sive behavior while the MM exhibits centroid collapse in 
finite time (this is noted in Ref. 14). Both behaviors are 
consistent with an integrable two-degree-of-freedom system. 
Centroid collapse within the MM is interpreted as merging 
by Ref. 14, and on this basis, the MM predicts merging when 
d < 3.2 (recall that the result for contour dynamics is 
d < 3.4). The EM, on the other hand, never exhibits centroid 
collapse for any admissible value of the initial centroid sepa- 
ration d. Something else occurs. Compare Figs. 8(a) and 
8(b), for two calculations beginning with slightly different 
centroid separations, d = 3.35 and 3.351, respectively. After 
t = 4, the two solutions bifurcate, in one case the vortices 
become more elongated and in the other they begin return- 
ing to their initially circular shape. Note that the bifurcation- 
is characterized by a reversal in relative phase rotation, 
A(n=$ - 8, with 8 defined by Z = Re”. That is, for 
d = 3.351 [Fig. 8(b)], Ad1 remains positive thi-oughout the 
evolution, whereas for d = 3.35, Ad1 reverses sign around 
t = 4. There is a critical value of d, near 3.350 275, for which 
the vortices settle into a steadily rotating configuration, but 
an apparently unstable one. [In the context of the D-G dia- 
gram presented in Ref. 14 (effectively a plot of the excess 
energy Pas a function of the real and the imaginary parts of 
c2e2’(@ - “, for fixed angular impulse X), merging is a conse- 
quence of the existence of a saddle point in this diagram, not 
of centroid collapse. It just so happens that a saddle point 
allows solution trajectories to turn toward a finite time sin- 
gularity in the MM. ] Now consider the CD simulations. 
Figure 6(b) for d = 4 shows that Aa> 0 throughout the 
evolution, and the vortices do not merge. Figure 7(a) for 
d = 3 shows that AR < 0 immediately before merging. An 
extensive series of CD simulations closer to the critical merg- 
ing distance (see Waugh” ) confirms that nonmerging cases 
are all accompanied by AR > 0, while merging cases are ac- 
companied by Al1 ~0 at some stage before merging. Be- 
tween these cases, in the range 3.3 1 <d < 3.43, the vortices 
partly merge and then break apart again, sometimes repeat- 
ing this several times. In this range, the time dependence of 
Afl is more complicated (see Ref.. 15 for details). The con- 
clusion is that the appearance of negative AR occurs in CD, 
in the EM, utid in the MM, and it indicates merging. Fur- 
thermore, of the two approximate models, the EM gives the 
most accurate criterion for merging, in terms of critical ini- 
tial separation distance. 

IX. DISCUSSION 

By representing vortices as stacks’of nested patches of 
uniform vorticity, each patch being nearly elliptical, we have 
arrived at an approximate set of equations both radically 
different from and vastly less expensive to solve than the full 
contour dynamics equations. These approximate equations 
should afford many simple investigations of fluid motion in 
two dimensions and should make possible some investiga- 
tions which are at present too costly for full contour dynam- 
ics simulations. 

We have arrived at the model equations on the primary 
assumption that contours within vortices remain very nearly 
elliptical in the velocity field induced by the same and other 
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FIG. 6. (a) A comparison of a CD simulation (solid lines) and a basic EM simulation (dashed lines) for two initially circular vortices separated by four 
vortex radii from center to center. -Time (in units of 2?r/o) proceeds to the right and downwards. (b) Same as in (a) except the full EM is used. (c) 
Comparisons at t = 4.5 between CD and the MM (left), between CD and the basic EM (middle), and between CD and the full EM (right). 

TABLE I. Quantitative comparisons between the MM, the EM, and CD in two examples of unsteady vortex patch evolution.” 

MM Basic EM CD 

Comparison at r = 4.5 for patches initially d = 4 radii apart 
Z - 0.443 946 + 1.942 9971’ - 0.447 340 + 1.941 651i - 0.449 050 -f- 1.941036i 
cei+ - 0.295 782 + 0.766 209i - 0.289 757 + 0.785 946i - 0.286 895 + 0.787 164i 
% error in Z 0.274 0.091 . . . 
9% error in ce’+ 2.72 0*371 . . 

z 
cd+ 
% error in Z 
7% error in ce’+ 

Comparison at t = 5.5 for patches initially d = 3.5 radii apart 
- 1.691 889 + 0.359 29% - 1.692 596+ 0.325 498i 

‘- I.044001 +0.111 396i - 1.104 705 + 0.212 129i 
2.84 0.87 

13.4 3.66 

- 1.693 776 + 0.310 503i 
- 1.097 812 + 0.252 770i 

. . . 

. . . 

“Note: The percent error in a complex quantity Q is defined as 100) Q,,,,,, - Q,, I/[Q,, I,The elliptical parameters were extracted from the CD simulation 
by computing the second moments ofone vortex, defined by J’Jd, ~-soy’, and .fJ oxy, relative to the centroid ofthat vortex, and finding the ellipse with the 
same second moments. 
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FIG. 7. (a) A CD simulation ofvortex merger starting from initially circular vortices separated by three vortex radii. (b) The corresponding MM simulation. 
(c) The basic EM simulation. (d) The full EM simulation. 
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contours. In the basic model, all contours evolve under the 
constraint that they remain precisely elliptical, so a part of 
the velocity field set up by these ellipses is discarded. In the 
disturbance model, this discarded part of the velocity field is 
used to generate disturbances. Nonlinear effects such as cas- 
cading and feedback on the basic flow are not retained (the 
full model is thus non-Hamiltonian) . 

It is noteworthy that we have not from the outset ex- 
panded in some small parameter or parameters to obtain our 
model set of equations by perturbation theory. Instead, we 
have performed a Galerkin expansion, using the centroid 
and the elliptical parameters as our expansion “functions.” 
This has nevertheless yielded a self-consistent model, one 
which appears to be significantly more accurate in fact than 
the moment model, judging by the comparisons shown in 
Sec. VIII. (Perhaps this is not surprising since the moment 
model can be obtained as an approximation of the elliptical 
model-see Part I, Sec. VI.) Ultimately, the validity and 
utility of the elliptical model must rest on its comparison 
with contour dynamics as well as with other approximate 
models. 

At present, work is in progress to examine vortex merg- 
er in an external straining flow, in an effort to understand the 
conditions for and efficiency of merger in two-dimensional 
vortex dynamics. A study is planned which combines con- 
tour dynamics/s’urgery with the elliptical model to investi- 
gate turbulence at essentially infinite Reynolds numbers, in 

FIG. 8. (a) An EM (basic) simulation beginning with two circular vortices 3.35 radii apart. (b) Same as in (a) except the vortices are 3.351 radii apart 

order to obtain statistical information such as the rate of 
growth of vortex structures, without the usual limitations of 
vorticiy and vorticity-gradient decay. The combined model 
offers the attraction of inexpensive computation over the 
bulk of the fluid, as only a small percentage of the vortices 
are expected to be engaged in the merger process at any one 
time, Efforts are also being made to incorporate some non- 
conservation effects, such as the loss of filaments through 
stripping9 while remaining wholly within the basic elliptical 
model. Other extensions are being contemplated, including a 
3-D, quasigeostrophic model to be used in studies of atmo- 
spheric and oceanic dynamics. 
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APPENDIX A: DETERMINATION OF ti 
For a single elliptical vortex patch, it turns out that 6 is 

independent of 7, despite the forbidding appearance of (9). 
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This is true even in the presence of an external straining flow, 
when the aspect ratio and orientation generally vary with 
time.3 This property greatly simplifies the linear disturbance 
evolution for a single elliptical patch, because it allows the 
modes of differing symmetries m to decouple, and only 2 
ode’s are necessary to describe the disturbance evolution for 
a given symmetry m. 

For embedded ellipses within a single vortex, ;ii] for each 
ellipse is independent of 7 if the ellipses are confocal. So, in 
general, 17 dependence is the result of mismatched foci. Sepa- 
rated ellipses also contribute 7 dependence. We can ignore 
both of these effects at the expense of introducing error, but 
this is justifiable since this is on the same footing as ignoring 
higher-order deformations within the basic model. To see 
why, in Part I, we have used only the cos 2~ and sin 217 -- 
components of the basic-state streamfunction $( l?,~) to de- 
termine the basic flow evolution. If fi in (9) is to be regarded 
as a basic-state quantity, then it can only utilize the part of 
the $(?(,v) retained in Part I. But since i; ’ in (9) depends on 
17 p2=ga2-+b2) -f( a” - b’)cos 2771, only the con- 
stant part of h --? 6$&/d{ is strictly a basic-state quantity. 
Therefore, we may approximate a by 

(Al) 

expression for the streamfunctioir inside an ellipse. Hence, it 
follows immediately that the straining flow contributes 

~,2yR.cos2(~--~)/(1--;12). (A51 
When the advecting elliptical vortex (Z ‘, R ‘, 4’) is inte- 

rior to the advected elliptical vortex (Z,A,qb), the computa- 
tions are significantly more demanding. Since the induced 
flow of the advector is irrotational, we may use to our advan- 
tage the complex extension of the streamfunction, namely, 

V(w’> ==K’(W’ + 4 @‘. 2w’). (A61 
The contribution to a is then determined from a contour 
integral taken around the boundary of the advectee, 
w = F + i7, 

1 +.I 
F+Ziw 1 dip 

2T i= 
-zp--&dW -4. 

I 
(A7) 

However, q is a function of w’, so we must change coordi- 
nates. A common point in the two coordinate systems is 
given by 

Z ’ + de’@’ cash w’ = Z + ce@ cash w, 

giving 

coshw’=Acoshw+(Z-Z’)/2v’, CAB) 

There are five sources contributing to fi for each ellipse: 
(i) an external straining flow (defined below), (ii) exterior 
embedding ellipses, (iii) the ellipse itself, (iv) interior em- 
bedded ellipses, and (v) separated ellipses. Contribution (i) 
from an external straining flow is very similar to that from an 
exterior ellipse, so we turn to contribution (ii) first. 

When the advecting elliptical vortex (2 ‘,/z ‘,#‘) is exteri- 
or to the advected elliptical vortex (Z&5), the induced flow 
is given by 

$(z’) = g &2z’3* - p(3*2 + p)), (442) 
where Y refers to the coordinates linked to the principal axes 
of the advector [see ( 1) 1. We must change to the Z coordi- 
nate system of the advectee to determine the contribution to 
fi. The two coordinate systems are related by 

y = (z-zjje-W +~efO-F8’)e 

We can then evaluate a$/%, and we get a$/&$ by a further 
change of coordinates to the elliptical ones linked with the 
advectee. Evaluating the resulting expression on the bound- 
ary of the advectee, ‘1;, the resulting expression is easily inte- 
grated in (Al ), and we obtain, after subtracting the part of 4 
due to the advector alone [see Part I, Eq. ( 18) 1, the contri- 
bution to 6 from an exterior ellipse: 

a+o’&2A cos 2(q5 - q5’>/( 1 - ;1 2). (A3) 
For the external straining flow, the procedure is very 

similar. The external straining flow is prescribed by 

q = $( 2flzz* - y,2 - ez*‘>, (A4) 

with ys = ye - ‘j’%, y(t) being the strain rate, 4s (t) being the 
orientation of the strain axes, and a(t) being the back- 
ground rotation. If we replace R by 4 w’ and y% by ~w’E” in 
(A4), the resulting equation becomes identical to (A2), the 

v=Jce’+ and ,%-Y/Y’. 

Hence, dw’/dw = A sinh w/sinh w’, and we can now calcu- 
late L@/aw in (A7) by the chain rule. The result is 

- 
$! = 2K’he- w’sinh w. 
dW 

While w’ still appears explicitly, the integration methods de- 
velopedin Part I, Sec. V do not require any further substitu- 
tions. There is one last point that must be made before we can 
evaluate the integral in (A7). Note that @/aw evaluated 
along the boundary of the advectee will in general contain 
terms varying more rapidly than cos 2~ and sin 277. In Part 
I, we neglected these higher-order terms in order to retain 
the part of the flow which would keep the advectee elliptical. 
Hence, in (A7), we are not justified in retaining terms in 
L%/~w that vary more rapidly than cos 277 and sin 277. It 
follows that we can truncate the expansion of z -’ at the 
cos 2r] term, i.e., 

cos 27. 

Hence, we are left to calculate 

[l +28cosh2(w-F)]e-ddz’ -4. 1 
C-410) 

Now, since 2 cash 2( w - T) = .?ezw + E- 2e-2w, the calcu- 
lation reduces to finding the residues of e - Id, e .- w’e2w and 
e we-2w (see Part I, Sec. V for general integration meth- 
ods). The residue of e ‘- M is 4 c’, that of e - “‘e2w is 
Jc’[ -2-t l/A*+ (Z-Z’)2/?],andthatofe-“‘e’-2”is 
0. Combining these results and subtracting the part of 4 due 
to the advector alone [see Part I, Eq. (29) 1, we finally obtain 
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2+(1++[ -2+($~+(7?7]) 

(All) 
as the contribution to fi from interior contours. 

Finally, we turn to the contribution from separated el- 
lipses. The procedure is quite similar to that just described 
for an interior ellipse. We can begin with Eq. (AlO), with 
the understanding that the contour integration must be done 
differently (see Part I, Sec. VI). In fact, one cannot avoid the 
appearance of elliptic functions unless one approximates 
further. An accurate approximation is described in Part I; in 
which the advector is approximated by the effects of a finite 
set of point vortices lying along the line segment connecting 
the foci. Further details can be found in Part I, Sec. VI. In the 
following, it is sufficient to note that the strength of one of 
these approximating vortices will be denoted K~ and its posi- 
tion zo. 

The contour integral in question can be integrated ex- 
actly for each point vortex. The components of this integral 
have already turned up elsewhere [Sec. V, Eq. (22b)-Jo 
and Jz in particular], so it is easy to put these components 
together to obtain 

a+ - (2Ko/R2j2sinh2F%(e-2’@) -4, 

[where cash L& = (z. - Z)/~Y] . Or, using the expression 
for 4 obtained in Part I, Eq. (39), we get 

fi _ 2/i 4K; t --AJqe-%] 
l-/I2 2 CA121 

for the contribution from each point vortex within the advec- 
tor. See Sec. VI for the complete expression for z. 

APPENDIX B: GENERATION OF DISTURBANCES BY 
MISMATCHED FOCI 

In this appendix, we present- both an exact and an ap- 
proximate calculation of the effects of mismatched foci. The 
exact calculation ultimately surrenders to a symbolic manip- 
ulation program, so a closed form expression for arbitrary m 
is not available. The approximate calculation is valid for all 
m, but it is then only approximate. 

The task is to evaluate-the integrals I, and J,, defined 
by Eqs. (18) and (19). As shown in Part I, the problem 
reduces to finding the residue of a certain function, involving 

I 

the product of e -~ w’ and emw [see Part I, Sec. V, particularly 
Eq. (24) and the subsequent text]. Indeed, we have 

J, + il, E - K’p - 
P 

e -.- W’(?)e~W(Y) dy, 
77C 

031) 

using?= (z - Z’)e @‘, i.e*, the complex coordinate linked 
with the principal axes of the advector. Here z’ is related to 
w’ through the relation 8’ = C’ cash w’ (which may be re- 
garded as a quadratic equation for e “‘) . Similarly, for the 
advectee, Z = c cash w, so using the fact that z is the same 
point in both coordinate systems, we have E = ze’(@’ - @) 
+ (Z’ - Z)e - ‘#a We can therefore also express emw in 

terms of 5’. The intermediate results are 

e --& z.z z’/c’ - ~/pyz-i 

and 

ew=.2/c+J(3/c)2- 1. 

The contour integral in (B 1) can be taken around infinity, so 
we simply need to determine the coefficient of l/5 in the 
expansion ofe - ti’Q)emw(z) for large 3. The value of the con- 
tour integral in (B 1) is 277-i times this coefficient. If we intro- 
duce the notation zil = c/Z and d = cl/Y, then the problem 
is to determine the coefficient of d in the expansion of 

F(d) =2 I-KiF l+Ji-=~ m 
d > 

(I321 
m 

for small d, given 

(B3) 

where P= l/A = V’/Y and Q= (Z’ - Z)/Y. Denoting this 
coefficient by G,,, (P,Q), we have 

J, + il, = - idEmGm (P,Q). (B4) 
Then, from ( 18)) ( 19)) and (B4), the contribution to k and 
b is 

iif+- +K’c’?~[G,], CBS) 
b+ -K’G’?[G,]. Wb) 

We have not been able to find a closed form expression 
for G,,, (P,Q) for arbitrary m, so we have used a symbolic 
manipulation program (checked by hand up to m = 4) to 
calculate the first ten coefficients. These are 

G, = Q, 
G2= -2+P*+Q’, 

G3=Q(-3+3P2+Q2), 
Gd=2-4P2+2P4+Q2( -4+6P2+Q2), 

G5 = Q [5- 15Pz+ 10P4 + Q’( - 5 + 10P2 + Q*)], 
G6 = - 2 + 9P2 - 12P4 + 5P6 + Q2(9 - 36P’ + 30P4) + Q4( - 6 + 15P2 + Q2), 

G,=Q[ -7+42P*-70P4+35P6+Q2(14-70P2+70P4) +Q4( -7+21P2+Q2)], 
G,=2- 16Pz+40P4-40P6+ 14P8+Q2( - 16+ 120P2-240P4+ 140P6) 

+ Q4(20 - 120P2 + 140P4) + Q6( - 8 + 28P2 + Q2), 

G9 = Q [9 - 90P2 + 270P4 - 315P6 + 126P* + Q’( - 30 + 270P2 - 630P4 f 42OP”) 

+ Q4(27 - 189P* + 252P4) + Q6( - 9 + 36P2 + Q*)], - 
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G,. = - 2 + 25P2 - loop4 + 175P6 - 14oP” + 42P” + Q’(25 - 300P2 + 1050P4 - 1400f’6 + 630f’8) 

+ ~4( _ 50 + 525P2 - 1400P4 + 1050P6) + Q6(35 - 280P2 + 420P4) + Q8( - 10 + 45P* + Q2). 

We can find a closed form expression if we introduce an 
approximation, namely to replace the advector by a finite 
string of point vortices distributed betfieen the foci, just as 
we had done earlier in the separated ellipse calculations (see 
Part I, Sec. VI and Appendix A, and Sec. V in this paper). 
Denote the strength of one of these vortices by K@ and its 
position within the advector by z. . Because each point vor- 
tex is contained within the advectee, the computation re- 
duces to a contour integration taken around infinity. This 
computation, however, has already been done explicitly in 
Part I (Appendix B), it being a part of the computation 
required for the interaction of separated ellipses. The re- 
quired integrals I, and J, can be taken over directly from 
Part I, Eq. (Bl 1, restated here as 

J,, -t iI,,, = - 2itcaEm cash mGa, 036) 
withcosh r%@ = (z. - Z)/2v. Hence, the contribution tok 
and B from each point vortex is. 

A-J,,, = + 2!rO&“S[coshm%a], Wa) 

BeI,, = - 2KOe”%[cosh m&@]. W’b) 
The seemingly close connection between (B7) and (B5) 

is bridged if we identify Q with 2 cash go and G, with 

I 

2 cash mGa. With Go = 2 and G, = Q, the remaining G, 
can be generated recursively by G,,, + i = QG,,, - G, - , . 
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