Directions et dilatations principales du tenseur de Cauchy

$$\underline{\underline{C}} = {}^{t} \underline{\underline{F}} \cdot \underline{\underline{F}} \quad avec \quad \underline{\underline{F}} = \underline{\nabla} \phi$$

Propriétés:

1. Le tenseur de Cauchy est symétrique et réel :

$${}^{t}\underline{\underline{C}} = {}^{t} ({}^{t}\underline{\underline{F}}.\underline{\underline{F}}) = \underline{\underline{C}}$$

2. La forme quadratique associée :

$$\forall X \in E \ \underline{X}.\underline{C}.\underline{X} = (\underline{F}.\underline{X}).(\underline{F}.\underline{X}) > 0$$

est définie positive.

Il en découle :

- 1. Les **vecteurs propres** sont **orthogonaux** et constituent une base de *E*. Chaque vecteur propre défini une **direction principale**.
- 2. Les valeurs propres (ou valeurs principales) sont réelles et positives.

Diagonalisation du tenseur des dilatations

On peut construire une **base orthonormée** $\{\underline{e_i}\}$ correspondant aux **directions principales**. Dans cette base, le tenseur $\underline{\underline{C}}$ est **diagonale** :

$$\underline{\underline{C}} = \lambda_i^2 \underline{e}_i \otimes \underline{e}_i$$

La valeur principale λ_i^2 , associée à $\underline{v}_i = \alpha \underline{e}_i$, $\forall \alpha \in \mathbb{R}$, correspond au carrée de la dilatation dans la direction principale \underline{v}_i :

$$\lambda_i = \lambda(\underline{v}_i) = \frac{\left|\underline{\underline{F}}.\underline{v}_i\right|}{|\underline{v}_i|} = \frac{\sqrt{\underline{v}_i}.\underline{\underline{C}}.\underline{v}_i}{|\underline{v}_i|}$$

Il en découle, $det(\underline{\underline{C}}) = (det(\underline{\underline{F}}))^2 = (\lambda_1 \lambda_2 \lambda_3)^2$ et donc $det(\underline{\underline{F}}) = \lambda_1 \lambda_2 \lambda_3$.

Propriété : L'image par \underline{F} d'une base othonormé propre $\{\underline{e}_i\}$ de \underline{C} est une base orthogonale $\{\underline{F}.\underline{e}_i\}$. **Réciproquement** tout trièdre othogonal dont l'image par \underline{F} est un trièdre orthogonal est constitué de vecteurs propres de \underline{C}

.

Décomposition polaire

Peut-on écrire le tenseur \underline{F} , vérifiant $0 < det(\underline{F}) < \infty$, sous la forme :

$$\underline{\underline{F}} = \underline{\underline{R}}.\underline{\underline{S}}$$

avec $\underline{\underline{R}}$ rotation et $\underline{\underline{S}}$ symétrique positif?

Solution:

- 1. On diagonalise $\underline{\underline{C}} = {}^t \underline{\underline{F}} . \underline{\underline{F}} : \underline{\underline{C}} = \lambda_i^2 \underline{e_i} \otimes \underline{e_i}$
- 2. Tenseur de *déformation pure* : $\underline{\underline{S}} = \sqrt{\underline{\underline{C}}} = \lambda_i \underline{e}_i \otimes \underline{e}_i$

Propriétés :
$$\underline{\underline{C}} = \underline{\underline{S}}.\underline{\underline{S}}$$
 et $\underline{\underline{S}}.\underline{e}_i = \lambda_i\underline{e}_i$

3. Le tenseur de **rotation** s'écrit : $\underline{\underline{R}} = \underline{\underline{F}} \underline{\underline{S}}^{-1}$

Propriétés :
$${}^{t}\underline{\underline{R}} = \underline{\underline{R}}^{-1}$$
 et $\underline{\underline{R}}.\underline{e}_{i} = \underline{e'}_{i}$