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ABSTRACT

Large-scale vortices, i.e. eddies whose characteristic length scale is larger than the local

Rossby radius of deformation Rd, are ubiquitous in the oceans, with anticyclonic vortices

more prevalent than cyclonic ones. Stability properties of already formed shallow-water

vortices have been investigated to explain this cyclone-anticyclone asymmetry. Here the

focus is on possible asymmetries during the process itself of generation of vortices through

barotropic instabilty of a parallel flow. The initial stage and the nonlinear stage of the

instability are studied by means of linear stability analysis and direct numerical simulations

of the one-layer rotating shallow water equations, respectively. Several parallel flows are

studied : isolated shears, the Bickley jet and a family of wakes obtained by combining

two shears of opposite signs. The flows are characterized by a small Rossby number and

by relative deviations of isopycnals ranging from small (quasi-geostrophic regime) to finite

(frontal-geostrophic regime).

Results show that the barotropic instability of shears, jets and wake flows favors the

formation of large-scale anticyclonic eddies. This cyclone-anticyclone asymmetry occurs

either during the linear stage of the instability or only later, during the nonlinear stage.

For instance in the frontal regime, an anticyclonic shear flow has higher linear growth rates

and is much more unstable than a cyclonic shear flow. The nonlinear saturation then leads

to the formation of almost axisymetric anticyclones, while the cyclones tend to be more

elongated in the shear direction. However the coupling between shears of opposite signs

may supress, at the linear stage of the instability, the cyclone-anticyclone asymmetry. If

the distance separating two shear regions is larger than two or three deformation radii, the

barotropic instability develops independently in each shear, leading in the frontal regime
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to a significant cyclone-anticyclone asymmetry at the linear stage. Conversely, if the two

shear regions are close to each other, the shears tend to be coupled at the linear stage.

The most unstable pertubation then resembles the sinuous mode of the Bickley jet, making

no distinction between regions of cyclonic or anticyclonic vorticity. Nevertheless, when the

nonlinear saturation occurs, large-scale anticyclones tend to be axisymetric while the cyclonic

structures are highly distorted and elongated along the jet meander.
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1. Introduction

In-situ measurements and general circulation models have shown that large-scale vor-

tices, i.e. eddies whose characteristic length scale is larger than the local deformation radius,

are ubiquitous in the oceans (Olson (1991); McWilliams (1985)). A striking characteristic of

these large-scale and long-lived structures is that anticyclonic vortices tend to be more preva-

lent than cyclonic ones. Large-scale anticyclones are frequently observed in the lee of oceanic

archipelago such as Hawaii (Mitchum (1995); Flament et al. (2001)), the Canaria (Sangrá

et al. (2005)) or in the vicinity of the Alghulas (Olson and Evans (1986)) or the Brazilian

currents. For all these various configurations the coastal boundary of the archipelago or a

cape induces significant shear flows in the open ocean far away from the coast.

In order to explain the predominance of anticyclones among large-scale eddies, several

studies were devoted to the specific stability of anticyclonic vortices in rotating shallow-water

flows (Arai and Yamagata (1994); Stegner and Dritschel (2000); Baey and Carton (2002)).

Moreover, stable anticyclones tend to remain coherent among a turbulent flow (Polvani et al.

(1994); Arai and Yamagata (1994); Linden et al. (1995)) and they were found to be more

robust to external strain perturbations than cyclonic eddies (Graves et al. (2005)). Taking

into account the weak beta effect, which may affect large-scale oceanic eddies, reveals that

only anticyclones could resist for a long time to the Rossby wave dispersion (Matsuura and

Yamagata (1982); Nycander and Sutyrin (1992); Stegner and Zeitlin (1995, 1996)).

However, very few studies investigate how the generation process by itself may induce

an initial selection between cyclonic or anticyclonic eddies. Most of the mesoscale oceanic

vortices are formed by the unstable meanders of shears, jets or wake flows occurring in
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coastal regions or in the open sea. The instability of oceanic currents has often been modeled

using Quasi-Geostrophic (QG) theory since they typically have small Rossby number. Using

the QG equations, valid for small Rossby and small isopycnal displacement, there is no

distinctions between cyclonic or anticyclonic vorticity regions. Therefore, the baroclinic or

the barotropic instabilities of a jet or a wake flow generate eddies of both sign having the

same size or intensity. Nevertheless, the departure from the QG regime (finite isopycnal

displacement and/or finite Rossby number) may induce a specific asymmetry.

A recent study (Poulin and Flierl (2003)) has investigated the linear stability of a Bickley

jet and its nonlinear evolution in the framework of rotating shallow-water (RSW) equations.

At the linear stage, the most unstable mode is sinuous and the jet meanders with no distinc-

tion between the cyclonic and the anticyclonic side. However, beyond the quasi-geostrophic

regime, when the Rossby number becomes finite and induce large isopycnal displacements

due to the cyclogeostrophic balance, the nonlinear evolution of the instability lead to an

asymmetric eddy formation: the cyclones tend to be elongated and stretched in compari-

son with almost circular anticyclones. Other recent papers have investigated, by means of

laboratory experiments (Perret et al. (2006a)) or stability analysis (Perret et al. (2006b)),

the large-scale wake of circular islands. For the frontal geostrophic regime (Cushman-Roisin

(1986); Cushman-Roisin and Tang (1990)), i.e. small Rossby number and finite isopycnal

displacement, a significant asymmetry occurs in the wake between cyclonic and anticyclonic

vortices. For some extreme cases, coherent cyclones do not emerge at all, and only an anti-

cyclonic vortex street appears several diameters behind the circular island. This asymmetry

was first explained by the linear stability analysis of parallel wake flows in the framework

of RSW equations (Perret et al. (2006b)). Indeed, in the frontal regime, the most unstable
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mode is fully localized in the anticyclonic shear region. Hence, the anticyclonic perturba-

tions, leading to large-scale anticyclones, have the fastest growth rates. Direct numerical

simulations show that the nonlinearities exacerbate the dominance of the anticyclonic mode

linearly selected. Here again, when they are formed, the cyclones tend to be stretched and

elongated in comparison with the large circular anticyclones. Anticyclonic predominance was

also found in a fully stratified simulation (ROMS model) when the island size becomes larger

than the local deformation radius (Dong et al. (2007)). Hence, both the linear and/or the

nonlinear instability of parallel jets or wake flows may induce an asymmetric eddy formation.

The main goal of the present work is to understand how the barotropic instability of vari-

ous parallel flows (shears, jets and wakes) may favor the formation of large-scale anticyclonic

eddies. In which dynamical regime will the anticyclonic predominance become significant ?

Why does this asymmetry appear at the linear stage for a parallel wake flow (Perret et al.

(2006b)) and at the nonlinear stage for the Bickley jet (Poulin and Flierl (2003)) ?

In Sec.II we discuss the dynamical parameters governing the RSW model and the numer-

ical methods used for the linear stability analysis or to compute the full nonlinear equations.

As a first step, we study in Sec. III the linear and the nonlinear stability of localized cyclonic

and anticyclonic shear flows. In Section IV, the stability of the Bickley jet is investigated

from the quasi-geostrophic to the frontal geostrophic regimes. In section V, various wake

profiles are constructed as a combination of two localized shears. At this stage we introduce

a new dynamical parameter to quantify the distance between the two shears and analyze

its impact on the stability of the parallel wake flows. We then discuss and summarize the

results in Sec. VI.
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2. Model

a. Rotating shallow water equations and dynamical regimes

As a first approximation of oceanic flows, we used a reduced gravity model, also known

as a 1 1/2-layer model, assuming a thin upper layer above a motionless deep bottom layer.

According to Cushman-Roisin (Cushman-Roisin (1986)), if the ratio of the upper layer depth

to the total depth of the ocean is smaller than min(1, Bu), the upper layer will not be affected

by the bottom layer dynamics. Hence, the upper layer motion follows the RSW equations.

We use below the dimensionless form of the RSW model on the f -plane :

Ro
(

∂V

∂t
+ (V · ∇)V

)
+ fn×V = −Bu

Ro
∇η + Ro

Re
∇2V (1)

(
∂η
∂t

+ V.∇η
)

+ (1 + η)∇.V = 0 (2)

with n the upward-pointing unit vector, V = (u, v) the horizontal velocity scaled by the

typical velocity V0 and η the surface deviation scaled by the unperturbed layer depth h0.

We define the Rossby number Ro, the relative surface deviation parameter λ, the Burger

number Bu and the Reynolds number Re as follows :

Ro =
V0

fL
, λ =

Ro

Bu
, Bu =

(
Rd

L

)2

, Re =
V0L

ν

where L is the characteristic length scale of the flow, Rd =
√
gh0/f the deformation radius,

f = 2Ω the Coriolis parameter, g the gravity acceleration and ν the kinematic viscosity.

The Rossby number is assumed small and fixed at Ro = 0.1 in the whole study. Therefore,

the geostrophic balance is satisfied at leading order, imposing the surface deviation to balance

the Coriolis term in Eq. (1). Thus, the dominant balance imposes η ≃ λ, meaning that the

amplitude of the (dimensional) surface deviation scales like LV0f/g.
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Depending on the value of the Burger number, one distinguishes two dynamical regimes

at small Rossby number. The classical quasi-geostrophic regime (Pedlosky (1987)) is defined

when Bu = O(1) or equivalently λ = O(Ro) ≪ 1 . In that limit the symmetry V →

−V and η → −η holds at the leading order meaning that cyclones and anticyclones obey

the same equation. Even if the Rossby number is not asymptotically small in this study

(Ro = 0.1), cyclones and anticyclones are expected to follow roughly the same evolution

when Bu = O(1). The second regime corresponds to the frontal regime and is defined by

Bu = O(Ro) ≪ 1 or equivalently λ = O(1). In this regime, the flow is expected to follow at

the leading order the frontal geostrophic (FG) asymptotic model (Cushman-Roisin (1986);

Cushman-Roisin and Tang (1990)). In that model the surface deviations are order unity,

the symmetry V → −V and η → −η does not hold and the evolution of cyclonic and

anticyclonic structures should differ strongly.

For a given steady and parallel velocity (Fig. 1a) or vorticity profile (Fig.1b), the relative

surface deviation (Fig.1c) satisfies the geostrophic balance and increases when the dynamical

regime is varied from a quasi-geostrophic to a frontal regime. Moreover, when the width L

of the shear becomes larger than the deformation radius, the amplitude of the potential

vorticity fluctuation is also modified (Fig.1d).

In order to study the stability in a wide range of parameters from the QG to the FG

regime, the parameter λ is varied from λ = 0.1 to λ = 1.0 while the Rossby number is kept

fixed at Ro = 0.1.
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b. Stability criteria for the QG and the FG balanced models

The QG model (3) and the FG model (4) corresponds to the quasi-geostrophic (λ =

O(Ro) ≪ 1) or the frontal regime (λ ≃ 1, Ro≪ 1) asymptotic expansions truncated at the

first order in Rossby number.

∂

∂t
(∆η − Bu−1η) − J(η, ∆η −Bu−1η) = 0 (3)

∂η

∂t
− J

(

η, (1 + λη)∆η +
1

2
(∇η)2

)

= 0 (4)

Notice that we distinguish in the present paper between the dynamical regimes and the

balanced asymptotic models. Unlike the RSW equations which could induce ageostrophic

fast wave motions, the standard QG and FG models corresponds to balanced equations where

inertia-gravity waves and other ageostrophic motions are filtered out. The simplification of

the balanced models allows relatively simple stability criteria. The Rayleigh inflexion-point

criterion for two dimensional parallel flows (Drazin and Reid (1981)) can be extended to

both the QG model and the FG model (see Appendix A). In both regimes, it is found that

a parallel flow Ū(y) = − 1
λ

∂η̄
∂y

obeying the geostrophic balance will be linearly stable if the

corresponding potential vorticity q is monotonic, i.e. if:

∀y ∂q

∂y
6= 0 (5)

where q = ∆η − Bu−1η in the QG model and q = 1/η in the FG model. As can be seen in

Fig.1d, the potential vorticity of a parallel shear flow is non-monotonic for both QG and FG

models. Hence, such global stability criteria will not give useful indications on the stability
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properties of parallel flows (shears, jets and wakes) in the FG model. A complete stability

analysis is therefore needed to understand the cyclone-anticyclone asymmetry of large scale

flows.

c. Numerical resolution

For each parallel flow we perform a temporal stability analysis and compute the nonlinear

evolution of the perturbed flow in the framework of the RSW equations.

1) Linear stability analysis

To perform the temporal stability analysis, the shallow water equations are linearized

around a parallel basic state in geostrophic balance (Ū(y), η̄(y)). Assuming that the instabil-

ity mechanism is inviscid, we consider the RSW equations without viscous terms. The pertur-

bation field is expanded in normal form: (ũ(x, y, t), ṽ(x, y, t), η̃(x, y, t)) = ( ˆu(y), ˆv(y), ˆη(y))ei(kx−ωt),

with ω = ωr + iσ the complex eigenfrequency and k the real wavenumber. We then obtain

the following eigenvalue problem:











−kλ−1 ∂η̄
∂y

i
(

λ−1 ∂2η̄
∂y2 +Ro−1

)

Ro−1λ−1 k

−i Ro−1 −kλ−1 ∂η̄
∂y

iRo−1λ−1 ∂
∂y

(1 + η̄)k −i
(

∂η̄
∂y

+ (1 + η̄) ∂
∂y

)

−k ∂η̄
∂y











︸ ︷︷ ︸











û

v̂

η̂











= ω











û

v̂

η̂











L

An approximation LN of the matrix of the linear operator L is computed in a spectral basis

with periodic boundary conditions. With N Fourier modes, LN is a 3N × 3N matrix which
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we diagonalize using the LAPACK linear algebra package (Anderson et al. (1999)). This

provides the full eigenvalue spectrom of LN (3N complex eigenvalues), among which only 0,

1 or 2 have a positive real part σN .

The convergence of solutions is obtained for a resolution varying between N = 256 and

N = 2048, depending of the basic state and the dynamical regime. Starting with N = 256,

we double N and monitor the relative difference between successive approximations of σ.

Specifically we compute

εN =

∑

j (σ2N (kj) − σN (kj))
2

∑

j σ2N (kj)2

where the kj are a number of wavevectors spanning an interval [kmin, kmax] of interest. We

stop doubling N when εN becomes of the order of 10−4.

2) Nonlinear evolution

The nonlinear evolution of the instability is studied by computing the nonlinear evolution

of the perturbed parallel flows. The rotating shallow-water equations are discretized in space

with a pseudo-spectral method and in time with a second-order Leapfrog scheme. In order

to lower the computation time, the domain is reduced to two wavelengths of the most

unstable mode in the streamwise direction, as determined from the linear stability analysis.

The resolution, in the spanwise direction is 256 and the boundary conditions are periodic.

The basic state is parallel with the same velocity profile extended to the entire domain.

The Reynolds number is fixed at Re = 9000 to reduce viscous effects. When a numerical

simulation is initialized with a parallel basic velocity profile, without external perturbation,
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the flow stays parallel and the velocity diffuses slowly. The basic state velocity is then

initially perturbed with a random perturbation field whose fluctuation level is about 0.1%

times the velocity amplitude. Furthermore the initial surface deviation is in geostrophic

balance with the initial velocity deviation in order to avoid gravity wave emission.

3. Localized shear flow

a. Basic flow

The hyperbolic tangent velocity profile (Vx(y) = V0tanh(y/L)) was often used as a generic

flow to study the stability of a single two dimensional shear flow (Drazin and Reid (1981);

Johnson (1963)). However, in the framework of the RSW equations the stability of such shear

flow may strongly depends on the domain size. Indeed, due to the geostrophic balance, the

constant velocities values, away from the shear zone, control the surface deviation in the

central shear zone. If the domain size is too large outcropping (vanishing layer depth) may

occur. In order to avoid this unpleasant influence of the domain size, the velocity field

should vanish far away from the shear. Therefore, instead of using a standard hyperbolic

tangent shear flow, we study in this section the stability of a localized shear flow defined, in

a dimensionless form, by:

η̄(y) = Vx(y)
V0

= cy e−2y2

Ū(y) = η(y)
h0

= c
λ

4
e−2y2

where c = 2e1/2. With this normalization coefficient, the localized shear flow is anticyclonic

and extremum velocity values Vx/V0 = 1 and Vx/V0 = −1 occur at y = 1/2 and y = −1/2.
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In this case, the minimal vorticity value 1
f

∂U
∂y

(0) = −cRo < 0 is negative and centered in

y = 0, while two positive vorticity peaks (having weaker amplitudes) correspond to the

lateral shears (Fig. 18b). We easily get a cyclonic shear when c = −2e1/2. In Appendix

B, we show that these lateral shears have little influence on the growth rate of the most

unstable mode.

b. Linear instability in the QG and FG regimes

A resolution of N = 256 was shown to be sufficient to get convergence (ε256 = 1.6.10−4).

However, as the unstable normal mode may present strong discontinuities in a frontal regime

(Fig. 2f), it was necessary to increase the number of collocation points for these computa-

tions, up to N = 2048. Fig. 2 compares the unstable growth rates (b,e) and the leading

normal modes (d,f) of an anticyclonic (a) and a cyclonic (d) localized shear flow.

In the quasi-geostrophic regime, corresponding to λ = 0.1, the growth rates and the

wavelengths of the most unstable perturbations in the cyclonic and the anticyclonic shear

are very close. The slight differences in the growth rate are due to small ageostrophic effects

since the Rossby number in our simulation is small but finite Ro = 0.1. The stability

calculation performed with a standard QG model (i.e. Ro → 0) using the same stability

solver showed no discrepancy between the stability of the cyclonic and the anticyclonic

localized shear flow.

In a frontal regime, corresponding to λ = 1, the dimensionless growth rate of the cyclonic

and the anticyclonic shears differ greatly. While the growth rate in the anticyclonic shear

decreases by only 30% from its quasi-geostrophic value, the unstable growth within the
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cyclonic shear strongly decreases. For the latter the maximum growth rate in the FG regime

is only 6% of the maximum growth rate in the QG regime (Fig.2d). For an easier comparison

with oceanic observations we compute, for these geostrophically balanced shear flows (Ro =

0.1), the exponential growth time of the perturbations. This latter will stay around 2 or

3 days for the anticyclonic flow while for the cyclonic one the growth time will goes up to

35 days when the isopycnal displacement become finite (λ = 1). Hence, in the linear stage

of the instability, large-scale (i.e. Bu = 0.1) cyclonic and anticyclonic shears have different

stability properties. The frontal regime stabilizes the cyclonic barotropic shear and therefore,

favors the development of unstable perturbations in the anticyclonic shear. In all the cases,

the leading unstable mode extends throughout the whole shear zone (Fig.2c,f) and its shape

is not affected by the deformation radius variations.

For the incompressible two-dimensional shear instability (Drazin and Reid (1981)), the

unstable wavelength is controlled by the width of the shear layer L. For a barotropic shear

in the RSW model, the unstable wavelength could be controlled, at least, by two horizontal

scales: L and the deformation radius Rd. We plot in Fig.4a (resp. 4b) the most unstable

wavelength normalized by L (resp. Rd). According to Fig. 4a the unstable wavelength of

the anticyclonic shear is proportional to L and is weakly affected by the variation of the

deformation radius from Bu = 1 (i.e. λ = 0.1) to Bu = 0.1 (i.e. λ = 1) while the unstable

wavelength of the cyclonic shear increases significantly. According to Fig. 4b, the most

unstable wavelength is always larger than the deformation radius and this ratio increases

from 2π/k = 3.5Rd in the quasi-geostrophic regime up to 2π/k ≃ 10Rd for the anticyclonic

shear and 2π/k ≃ 18Rd for the cyclonic shear in the frontal regime.
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c. Nonlinear evolution

The nonlinear evolution of the instability and the vortex formation are studied by direct

numerical simulations. The nonlinear evolution of both shear flows are computed in the

quasi-geostrophic regime (Fig. 5) and in the frontal regime (Fig. 6). In agreement with

the linear analysis and as expected for the quasi-geostrophic regime (λ = 0.1), the nonlinear

saturation of the shear instability does not induce a cyclone-anticyclone asymmetry. The

distance between two emerging vortices 4L is very close to the most unstable wavelength

2π/k = 3.5L.

In a frontal regime (Fig. 6), the growth of the perturbations differs significantly between

the cyclonic and the anticyclonic shear. Vortices appear in the anticyclonic shear at t/T0 =

20 whereas the emergence of cyclonic vortices only occurs at t/T0 = 200 ∼ 250, where

T0 = 2π
Ω

is the rotation period. Besides, once they are formed within the unstable shear,

cyclonic eddies tend to have a larger extension along the shear than anticyclonic ones as

expected from the linear stability analysis. Indeed, in the frontal regime, according to

figures 2b and 2e the wavelength of the most unstable cyclonic mode is twice longer than

the anticyclonic one. An axisymetrization process generally occurs during the nonlinear

saturation but here, the coherent structures remain elongated in the cyclonic shear while

axisymetric eddies are formed in the anticyclonic shear (Fig. 6). According to previous

studies (Arai and Yamagata (1994); Graves et al. (2005)), the axisymetrization process

was found to be much weaker for elliptical cyclones beyond the QG regime. The mean

cyclonic shear may amplify this tendency. Morever, if we analyze the vorticity field during

the nonlinear stage of the instability, we can detect some differences between the cyclonic
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and the anticyclonic structures (Fig. 7). Indeed, when the isopycnal deviations become

finite, the vorticity seems to be strongly perturbed in the core of cyclonic eddies while

anticyclonic eddies remain coherent and circular (Fig. 7b). This could be a signature of the

cyclonic sensitivity to external strain perturbations, induced here by the mean shear and the

neighboring vortices, as suggested by the recent study of Graves et al. (Graves et al. (2005))

4. Bickley jet

a. Basic flow

The barotropic instability of two-dimensional Bickley jet has been extensively studied

(Lipps (1962); Howard and Drazin (1964); Maslowe (1991); Engevik (2004)). For large or

finite Burger numbers (i.e. two-dimensional or QG models) unstable jet generates cyclonic

and anticyclonic eddies symmetric in their size, strength and shape. For finite Rossby num-

bers, the recent study of Poulin and Flierl (Poulin and Flierl (2003)) exhibit a significant

cyclone-anticyclone asymmetry . In order to explore the large-scale effect on the jet sta-

bility, we study here the linear and the non-linear destabilization of a barotropic jet in the

frontal regime (small Rossby Ro = 0.1 but finite isopycnal deviation λ = 0.5). In order to

allow easier comparisons with previous stability analysis and analytical results, we use the

geostrophically balanced Bickley jet (Fig. 8) defined as follows:

Ū(y) = cosh−2 y + u0

η̄(y) = −λ
(

tanh y − y

yb
tanh yb

)
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where the lateral extent of the domain is 2yb = 20. Due to geostrophic balance and periodic

boundary conditions, the mean velocity must vanish and the central jet is surrounded by a

weak reverse flow u0 = − tanh yb

2yb

. The velocity, the vorticity, the surface deviation and the

potential vorticity of the Bickley jet for λ = 0.1 and λ = 0.5 are plotted on Fig. 8.

b. Linear stability in QG and FG regimes

In order to check the convergence of the stability analysis, we compute the growth rate

for different resolutions in the classical quasi-geostrophic regime Bu = 1.0 and Ro = 0.1

(Fig. 9). For N = 256 collocation points, we recover the curve obtained by Poulin and

Flierl (Poulin and Flierl (2003)) for the same parameters (see their Fig. 3). A first bump is

observed at dimensionless wavenumber k = 1.5 and a second one at k = 1.8. The maximum

dimensionless growth rate σ is slightly different, σmax = 0.062 in our stability analysis while

they obtain σmax = 0.05. This difference may be due to the different boundary conditions.

Indeed, in our case, we impose periodic boundary conditions while Poulin and Flierl impose

no-slip conditions. Moreover, decreasing the total streamwise extent, from 2yb = 20 to

2yb = 10 increases the growth rate. Therefore the confinement of the jet as well as the

boundary conditions may have an influence on the growth rate.

When the spatial resolution is increased, the bumps observed for N = 256 disappear.

Therefore, we assume that these bumps do not have a physical signification, but are due to a

lack of resolution. In what follows the simulations are performed with N = 1024 collocation

points.

In Appendix C, we derive analytically the neutral eigenmodes of the QG asymptotic
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model along the lines of previous work (Lipps (1962); Howard and Drazin (1964); Maslowe

(1991); Engevik (2004)). This leads to two neutral eigenmodes: k =
√

1 −Bu−1 and k =

√
4 − Bu−1. In the non rotating case (Bu = ∞) there exists a sinuous branch of instability

for k < 2 and a varicose branch for k < 1. The above results show that in the quasi-

geostrophic case, these bounds are modified into
√

4 −Bu−1 and
√

1 − Bu−1, respectively.

These bounds provide a good test of the accuracy of the numerical procedure, since it is well-

known that near-neutral modes are almost singular and difficult to approximate numerically.

For Bu = 1 (λ = 0.1), the neutral mode wavenumber kRd = 1.733 satisfies the QG prediction

kRd =
√

4 − Bu−1 with a very good accuracy (0.1%. deviation). This further illustrates the

stabilizing effect of a small Burger number Bu = (Rd/L)2, i.e. a small deformation radius.

In the framework of the QG model, the varicose branch of instability disappears for Bu < 1

while the sinuous branch disappears for Bu < 0.25. In this work we let Ro = 0.1 hence

we expect the varicose branch to disappear at λ = Ro/Bu > 0.1 and the Bickley jet to be

completely stabilized if λ > 0.4 .

As for the localized shear layer we first study the linear stability properties of the flow

within the RSW model from the quasi-geostrophic regime (Ro = 0.1, λ = 0.1) to the frontal

regime (Ro = 0.1, λ ≃ 1). As expected, for the whole range of the parameter studied

we get only one unstable mode, corresponding to the sinuous mode, This normal mode is

mainly localized in the center of the jet and despite a small shift of the secondary PV peak

the unstable mode keeps the same shape (Fig. 10b). As expected from the QG analysis,

the Bickley jet is strongly stabilized in the RSW model when the frontal regime is reached.

The growth rate strongly decreases and the unstable wavelength increases when the surface

deviation parameter λ becomes finite (Fig. 10b). In the RSW model, the Bickley jet is
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completely stabilized when λ > 0.6.

As far as linear stability is concerned, the Bickley jet is always destabilized by a symmetric

sinuous mode and there is no signature of a selective destabilization of anticyclonic vorticity

region in the frontal regime.

The evolution of the dimensionless growth time 1/(σmaxT0) and the dimensionless wave-

length 2π/(kRd) as a function of the relative surface deviation λ are plotted in Fig. 11. The

growth time of the sinuous mode of the barotropic Bickley jet increases from 20 to 250 days

when the relative deviation becomes finite λ = 0.5. We should note here that these values

overestimate the observed growth of large scale oceanic jet. The Gulf Stream, for instance,

exhibits a short growth time between 3 to 6 days (Watts and Johns (1982); Kontoyiannis

and Watts (1994)) and a longer one about 12 to 25 days (Lee and Cornillon (1996)). This is

probably due to the barotropic limitation of the RSW model. The baroclinicity of oceanic

jets has a strong impact on their stability. In a wide range of parameters Baey, Riviere

and Carton (Baey et al. (1999)) show that the baroclinic instability can be more efficient

to create vortices than the barotropic instability. Hence, if the frontal regime stabilizes the

barotropic jets, we could expect that the stability of large scale oceanic jets are controlled

only by the baroclinic processes.

c. Nonlinear evolution

As for the localized shear flow, the nonlinear evolution of the jet instability and the

vortex formation are studied by direct numerical simulations. The dynamical evolution of

the unstable Bickley jet are computed in the quasi-geostrophic regime (Fig. 12a) and in
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the frontal regime (Fig. 12b). As expected, for the quasi-geostrophic regime (λ = 0.1), the

nonlinear saturation of the sinuous mode does not induce any cyclone-anticyclone asymmetry.

Vortices of both signs are formed with the same size, shape and amplitude. However, for

finite isopycnal deviation (λ = 0.5) once coherent vortices are formed, the cyclonic eddies

tend to be stretched in an elongated boomerang shape while the large-scale anticyclone

remains coherent and almost circular (Fig. 12b). A similar behavior was found by Poulin

and Flierl (Poulin and Flierl (2003)) when the Rossby number reaches finite values. In

this cyclogeostrophic regime the surface deviation becomes finite as for the frontal regime.

Hence, even if the linear growth of unstable sinuous mode does not lead to cyclone-anticyclone

asymmetry the nonlinear evolution of the system does.

5. Parallel wake flows

a. Basic flow

Unlike the Bickley jet, parallel wake flows may exhibit a significant cyclone-anticyclone

asymmetry at the linear stage of the instability. According to both numerical (Perret et al.

(2006b); Dong et al. (2007)) and laboratory studies (Perret et al. (2006a)) when the defor-

mation radius become smaller than the typical width of the wake (i.e. in the frontal regime)

the wake flow tends to have the same stability properties as two independent shear layers.

The most unstable mode is localized in the anticyclonic shear and the convectively unstable

flow behave as a noise amplifier (Perret et al. (2006b)). Hence, in the following stability

analysis, we construct various parallel wake flows as a combination of two localized shear
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flows having the same amplitude. The typical width of the wake D is defined as the distance

between the two shears, i.e. the distance between the two vorticity extrema. For an oceanic

or a laboratory wake, the typical width D will corresponds to the mean island diameter

or the cylinder diameter. As in section 3 the extent of each localized shear is L and we

introduce the dimensionless wake parameter δ = D/L. The parallel wake flow is divided

here in three regions (Fig. 13a): two lateral shears separated by a central region of extent

d = D − L having a constant velocity Vx/V0 = −1. Hence we study a family of wake flow

profiles having various widths δ according to:

y ≤ −δ − 1

2
Ū(y) = −c (y + δ/2) e−2(y+δ/2)2

|y| ≤ δ − 1

2
Ū(y) = −1

y ≥ δ − 1

2
Ū(y) = c (y − δ/2) e−2(y−δ/2)2

where c = 2e1/2 is a normalization coefficient. The relative surface deviation of this parallel

wake flow family is derived from Ū(y) according to the geostrophic balance condition (Eq.

1). The typical variations of the relative surface deviation and the potential vorticity, for a

wake profile corresponding to δ = 2.5, are plotted in Fig. 13 for the quasi-geostrophic regime

(λ = 0.1) and the frontal regime (λ = 0.5) .

b. Linear stability in the FG and QG regimes

The linear stability of a parallel wake profile corresponding to δ = 2.5 is studied for various

Burger numbers while the Rossby number is kept small Ro = 0.1. In the quasi-geostrophic

regime (Bu = 1 corresponding to λ = 0.1) the two most unstable modes have roughly the

same growth rates: σaL/V0 ≃ 0.52 and σcL/V0 ≃ 0.45. Theses values are very close to the
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growth rates of the anticyclonic and the cyclonic localized shear layers found in section 3 (Fig.

2). The differences between the growth rates σa and σc are probably due to small ageostrophic

effects induced by the small but nevertheless finite Ro = 0.1. The eigenmode called mode

A (mode C) corresponds here to an unstable perturbation preferentially localized in the

anticyclonic (cyclonic) shear region of the wake profile as shown in Fig. 14. However, in this

quasi-geostrophic regime, each eigenmodes (A or C) extend spatially in both shears. Hence,

unstable perturbations will grow exponentially at the same rate on both sides of the wake. On

the other hand, for a frontal regime Bu = 0.2, corresponding to significant surface deviation

λ = 0.5, the most unstable eigenmode (mode A) is strictly localized in the anticyclonic shear

region (Fig. 14d) and the mode C has a reduced growth rate σcL/V0 ≃ 0.14. Hence, in this

case, the unstable perturbations will grow much faster on the anticyclonic side of the wake.

We recover here the results previously found (Perret et al. (2006b)): the linear stability of

large-scale wake flow induces a selective destabilization of regions with anticyclonic vorticity.

If we reduce the central region (d → 0 corresponding to δ → 1) the parallel wake flow

becomes similar to a parallel jet flow. In this case, as for the Bickley jet, we expect the most

unstable eigenmode to be a sinuous mode and therefore the cyclone-anticyclone asymmetry

should disappear at the linear stage of the instability. Hence, in order to study the influence

of the width parameter on the wake flow stability, we compare the previous case where

δ = 2.5 with the case where δ = 1.22 (Fig. 15). As expected, Fig. 15b shows for the quasi-

geostrophic regime (λ = 0.1) that the most unstable branch corresponds to a symmetric

mode (i.e. a sinuous perturbation) and the second branch to an antisymmetric mode (i.e.

varicose perturbations). In this regime, the maximum sinuous growth rate σsL/V0 ≃ 0.6

is significantly higher than the maximum varicose growth rate σvL/V0 ≃ 0.35. Hence, like
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the Bickley jet, the most unstable mode corresponds to a symmetric perturbation even if

the growth rates of the antisymmetric perturbations (varicose mode) are not negligible.

When the isopycnal displacement becomes finite the wake enters the frontal regime (λ = 0.5

corresponding to Bu = 0.2). In this case, the symmetry properties of the two most unstable

eigenmodes change. The unstable modes corresponding to the sinuous branch (resp. varicose

branch) remain almost symmetric (resp. antisymmetric) in the center of the wake, but not

on the border of the jet. The amplitude of the most unstable modes of the sinuous branch

are amplified on the anticyclonic side of the wake, while the unstable modes of the varicose

branch tend to be amplified on the cyclonic side of the wake. Therefore, at the linear stage of

the wake instability a cyclone/anticyclone asymmetry starts to appear in the frontal regime,

but the amplitude of the asymmetry depends on the relative width of the wake δ. When

the width of the wake is large (δ = 2.5) the cyclonic and anticyclonic shears of the wake

are less connected and for smaller deformation radius (frontal regime) the most unstable

perturbation is fully localized within the anticyclonic shear (Fig. 14d). For smaller width

(δ = 1.22) even for large-scale flows (Bu ≪ 1) the unstable perturbation may destabilize

both sides of the wake (Fig. 15d). Hence, the cyclone-anticyclone selection of the unstable

modes at the linear stage of the instability depends both on the Burger number Bu and the

width parameter of the wake δ.
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c. Coupling of the cyclonic and anticyclonic shears

In order to quantify more accurately the coupling between the unstable modes on the

anticyclonic and the cyclonic sides of the wake, we introduce the correlation coefficient R:

R(q1, q2) =
Re

(∫
q∗mode 1qmode 2dy

)

√
∫
|qmode 1|2 dy

∫
|qmode 2|2 dy

where q∗ indicates the complex conjugate, Re the real part and q1(y) and q2(y) are the

spatial distribution of the potential vorticity of the two most unstable eigenmodes. When

R = 0 the two modes are uncorrelated spatially, while for R = 1 the two eigenmodes are

spatially identical. If R > 0.2 (this threshold is arbitrary) we say that the two eigenmodes

are coupled, while if R < 0.2 we say that they are uncoupled. Moreover, we define the

parameter γ = d/Rd = (δ− 1)/Bu1/2 which quantifies the relative extent of the central zone

of the wake separating the two shears on both sides of the wake. According to Fig. 16 the

boundary between the coupled and the uncoupled modes depends mainly on γ. At the first

order of approximation, the line γ = 2.5 defines reasonably well the separation between the

coupled and the uncoupled eigenmodes for a wide range of Burger numbers. When the two

shear layers of the wake profile are separated by more than two deformation radius (γ > 2)

the unstable eigenmodes tend to be uncoupled at the linear stage of the instability. If they

are not coupled, we can use the results of the first section on each localized shear flows

indicating that the anticyclonic shear of the wake is the most unstable when the isopycnal

displacement become finite.
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d. Nonlinear evolution

The nonlinear evolution of the instability of parallel wake flows and the vortex formation

are studied by direct numerical simulations (Fig.17). In agreement with our previous results

on the stability of parallel wake flows, the nonlinear interactions between vortices of opposite

sign enhance the cyclone-anticyclone asymmetry of large scale wakes (Perret et al. (2006b)).

Cyclonic vortices are stretched or strongly deformed into triangular shapes in comparison

with the anticyclonic vortices which remain robust and circular in the frontal regime (λ = 0.5)

. For a small width parameter (δ = 1.22) the first meanders lead to the formation of vortices

of both sign with a slight cyclone anticyclone asymmetry (Fig. 17f), then the nonlinear

interactions between vortices lead to a strong distortion of cyclonic structures (Fig. 17h).

Moreover, for both the quasi-geostrophic and the frontal regimes, the opposite sign vortices

are aligned along the same line, unlike the standard Karman vortex street. For a larger width

parameter (δ = 2.5) the first meander leads to a significant cyclone-anticyclone asymmetry

in the vortex formation (Fig. 17b). This is the signature of a selective destabilization of the

anticyclonic shear region of the wake at the linear stage of the instability. Indeed, for this

case (δ = 2.5 , γ ≃ 3.3 ), according to Fig. 14 and Fig. 17, the perturbations growing in

each shear layer are not coupled. Coherent vortices emerge first on the anticyclonic side of

the wake and once they are formed, the nonlinear interactions with the cyclonic shear lead

to the formation of distorted cyclones.
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6. Conclusion

The stability of various parallel flows was investigated in the context of the RSW model.

This simple model describes the barotropic surface motion in the upper thermocline and

neglects the baroclinic interactions of the surface and the deep oceanic flows. However, this

model captures the non-QG dynamics and the fast inertia-gravity wave motion. Several

aspects of the cyclone-anticyclone asymmetry of large-scale and parallel flows (shear, jets

and wakes) were then studied.

According to the various stability analysis performed on a wide variety of parallel flows,

we emphasize that the barotropic instability of oceanic shears, jets and wake flows favors

the formation of large-scale anticyclonic eddies. In the frontal regime (small Rossby num-

ber and finite isopycnal displacements), an anticyclonic shear flow will have higher growth

rates and be much more unstable than a cyclonic one. The linear stage of the instability

induces here a strong cyclone-anticyclone asymmetry and favor the development of unstable

perturbations in the anticyclonic shear. The nonlinear saturation leads to the formation of

coherent and almost axisymmetric anticyclones, while the cyclones tend to be more elon-

gated in the shear direction once they are formed. Besides, other studies on the stability

of isolated eddies have shown that, beyond the QG regime, anticyclones tend to be more

stable and coherent than their cyclonic counterparts (Arai and Yamagata (1994); Baey and

Carton (2002); Stegner and Dritschel (2000); Graves et al. (2005)). Hence, the opposite

stability properties of anticyclonic shear regions (unstable) and anticyclonic eddies (stable)

may explain the predominance of large-scale and long-lived anticyclones in the oceans.

The second result of this paper is to confirm that the cyclone-anticyclone asymmetry
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of parallel flows may occur respectively at the linear stage or at the nonlinear stage of

the instability. Two different mechanisms are then involved. Indeed, unlike a localized

shear flow the stability analysis of a Bickley jet, in the frontal regime, reveals no distinction

between regions of positive (cyclonic) or negative (anticyclonic) vorticity. The most unstable

perturbation corresponds here to a sinuous mode leading to the meandering of the whole

jet. However, when the nonlinear saturation occurs and coherent structures are formed,

large-scale anticyclones tend to be axisymmetric while the cyclonic structures are be highly

distorted and elongated along the jet meander. We recover here the patterns of non-QG

turbulent flows where several coherent structures interact together with a predominance of

large-scale (larger than the deformation radius) and robust anticyclones (Arai and Yamagata

(1994); Polvani et al. (1994); Linden et al. (1995)). The nonlinear mechanism involved here

could be the strong sensitivity of cyclonic structures to external strain perturbations studied

by Graves et al. (Graves et al. (2005)). The Bickley jet favors the emergence of robust

anticyclonic eddies only at the nonlinear stage.

Moreover, we demonstrate how the coupling between opposite shears may supress, at

the linear stage of the instability, the cyclone-anticyclone asymmetry. Assuming that the

deformation radius is a characteristic length scale of interaction between localized structures,

two localized shear flows will not “feel” each other if they are distant enough. We found

that if the distance D − L = γRd separating two shear regions is larger than two or three

deformation radius (γ ≃ 2.5) the two localized shears will be linearly uncoupled. In such

case, if the width L of the shears are large enough the flow will exhibit a significant cyclone-

anticyclone asymmetry. Hence, for large-scale wakes flows the linear perturbations will grow

much faster in the anticyclonic vorticity region. However, if the two shear regions are too
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close each other (γ < 2.5) the opposite shears will be coupled at the linear stage and the

most unstable pertubation will then be a sinuous mode. In such case, no distinction occurs

between the cyclonic or the anticyclonic vorticity region in the linear stage of instability, as

for the Bickley jet.

Even if the baroclinic instability is not taken into account, this study may contribute to

a better understanding of the preferred formation of large-scale anticyclones. In the frontal

regime (small Rossby number and finite isopycnal displacements) only large-scale anticy-

clones will emerge in a reasonable time if the barotropic shear instability is the dominant

mechanism of eddy formation. For realistic large-scale wakes, such as the Hawaiian or the

Canaria archipelago wakes the eddy formation is mainly governed by the barotropic shear

instability. However, for theses specific cases, both large-scale anticyclonic shear (width

larger than the deformation radius) and smaller cyclonic shear coexists. The large-scale

anticyclonic shear will corresponds to the FG regime but the cyclonic shear will obey to the

QG regime and eddies of both signs but different size will be formed. The cyclonic eddies

will then be smaller than the anticyclonic ones. Therefore, a more detailed study, taking

into acount the interactions and the relative stability between shears of different width and

intensity is needed to provide quantitative predictions on typical vortex shedding frequencies.
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APPENDIX A

Rayleigh criterion for the frontal geostrophic model

Here we extend the classical Rayleigh criterion for instability of parallel incompressible

two-dimensional flows to the frontal geostrophic model. The dimensionless frontal model is

written:

∂η

∂t
− J(η, (1 + η)∆η +

1

2
(∇η)2) = 0 (A1)

with η the surface deviation and J(a, b) = ∂xa∂yb−∂ya∂xb is the Jacobian operator (Cushman-

Roisin (1986)). Any parallel flow η0(y) is a stationary solution of (A1). To study the stability

of that flow, we decomposed the surface deviation η as follows:

η = η0(y) + η̃(x, y, t)

where η̃ is a small perturbation. The linearized frontal equation is then:

∂η̃

∂t
− (1 + η0)[J(η0,∆η̃) + J(η̃,∆η0)] − J(η0,∇η0.∇η̃) −

1

2
J(η̃, (∇η0)

2) = 0. (A2)

The perturbation η̃ may be decomposed into normal modes :

η̃(x, y, t) = η̂(y)ei(kx−ωt) (A3)

with k prescribed and ω and η̂(y) and complex unknowns. The solution has to be bounded

as x→ ∞, implying that k is real. Introducing (A3) into (A2) yields:

ωη̂ + k (1 + η0)

[
dη0

dy

(

k2η̂ − d2η̂

dy2

)

+ η̂
d3η0

dy3

]

− k

[(
dη0

dy

)2
dη̂

dy
+ η̂

d2η0

dy2

dη0

dy

]

= 0 (A4)
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Setting the phase velocity c = ω/k = cr + ici, one can write:

(1 + η0)
dη0

dy

d2η̂

dy2
+

(
dη0

dy

)2
dη̂

dy
−

[

c+ (1 + η0)

(
dη0

dy
k2 +

d3η0

dy3

)

− d2η0

dy2

dη0

dy

]

η̂ = 0 (A5)

Assuming that the basic state profile is monotonic, dη0/dy 6= 0, then one can divide the

previous equation by dη0/dy:

(1 + η0)
d2η̂
dy2 + dη0

dy
dη̂
dy

−
[

c
dη0/dy

+ (1 + η0)
(

k2 + d3η0/dy3

dη0/dy

)

− d2η0

dy2

]

η̂

= d
dy

(

(1 + η0)
dη̂
dy

)

−
[

c
dη0/dy

+ (1 + η0)
(

k2 + d3η0/dy3

dη0/dy

)

− d2η0

dy2

]

η̂ = 0

Assuming, moreover, that η̂ is a localized perturbation, then
∫ +∞

−∞
|η̂|2dy exists and limy→∞|η̂| =

0. Multiplying the equation by the conjugate of the perturbation η̂∗ and integrating between

−∞ and ∞, we get:

∫ +∞

−∞

η̂∗
d

dy

[

(1 + η0)
dη̂

dy

]

dy −
∫

∞

−∞

[
c

dη0/dy
+ (1 + η0)

(

k2 +
d3η0/dy

3

dη0/dy

)

− d2η0

dy2

]

|η̂|2dy = 0

(A6)

The first term may be integrated by parts:

∫ +∞

−∞

η̂∗
d

dy

[

(1 + η0)
dη̂

dy

]

dy =

[

(1 + η0) η̂
∗
dη̂

dy

]+∞

−∞

−
∫ +∞

−∞

(1 + η0) |
dη̂

dy
|2dy (A7)

The first term in the right hand side tends to zero at infinity, the equation A6 then becomes:

c

∫ +∞

−∞

|η̂|2
dη0/dy

dy+

∫
∞

−∞

(1+η0)|
dη̂

dy
|2dy+

∫
∞

−∞

[

(1 + η0)

(

k2 +
d3η0/dy

3

dη0/dy

)

− d2η0

dy2

]

|η̂|2dy = 0

(A8)

There is only one imaginary term in this equation, which must then vanish:

ci

∫ +∞

−∞

|η̂|2
dη0/dy

dy = 0 (A9)

Therefore, to be unstable (ci 6= 0), the flow has to have a non-monotonic basic state surface

deviation :

∃y0 /
dη0

dy
(y0) = 0.
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APPENDIX B

Sensitivity of an isolated shear to details of the

velocity profile

The isolated shear defined in section 3 has two lateral vorticity peaks (Fig. 18b). In

order to test the influence of the lateral shears on the stability of a localized shear flow,

we compare two parallel flows having the same central shear but different lateral ones (Fig.

18a, b). According to Fig. 18c,d, the growth rate and the wavelength of the most unstable

modes are weakly affected by the lateral shears. Hence, if we remain far from an outcropping

configuration, the central shear controls the instability of this localized barotropic flow and

the results of the following stability analysis can be extended to a large variety of shear flows.
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APPENDIX C

Neutral eigenmodes of the Bickley jet in a

quasi-geostrophic model

Any profile η0(y) is a stationary solution of the quasi-geostrophic equations (3). Inserting

η = η0(y) + ψ(x, y, t) into (3) and neglecting terms quadratic in ψ yields the linearized QG

equation :
(
∂

∂t
+ U

∂

∂x

)
(
∆ψ − Bu−1ψ

)
− ∂ψ

∂x

(
U” − Bu−1U

)
= 0

where U = −dη0/dy and U” = d2U/dy2. Considering a normal mode ψ(x, y, t) = φ(y) exp(ik(x−

ct)) yields the Rayleigh-Kuo equation:

(U − c)(φ′′ − (k2 +Bu−1)φ) − (U ′′ −Bu−1U)φ = 0. (C1)

¿From now on U(y) = cosh−2 y is the Bickley profile. A neutral eigenmode has by definition

a zero growth rate or equivalently a real phase velocity c. Hence we look for a real phase

velocity c and a real wave-number k such that Eq. (C1) admits a bounded solution φ(y).

Neutral eigenmodes of the Bickley jet have been found in the context of β−plane, incom-

pressible dynamics (Engevik (2004)). In that case the normal modes satisfy

(U − c)(φ′′ − k2φ) − (U ′′ − β)φ = 0. (C2)

Eq. (C2) is singular at the abscissa yc of the critical layer such that U(yc) = c, unless
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U ′′(yc) = β, i.e. β = (4 − 6c)c. Eq. (C2) then admits at least the following solutions :

φ1 = e−my
(
3 tanh2 y + 3m tanh y +m2 − 1

)
,

φ2 = emy
(
3 tanh2 y − 3m tanh y +m2 − 1

)
,

where m2 = k2 + 4 − 6c. For these solutions to be bounded when y → ±∞ we need

3 − 3m+m2 − 1 = 0, i.e. either m = 1 or m = 2, in which case φ1 is a multiple of φ2. This

leads to two neutral eigenmodes for each value of c (Engevik (2004)).

Now (C1) is of the form (C2) with β = Bu−1c. The quasi-geostrophic neutral eigenmodes

are found using simple substitution into the β−plane results. Since β = Bu−1c, the solutions

of β = (4− 6c)c are c = 0 (critical layer at infinity) and c = 2/3−Bu−1/6. The latter case,

the only one we consider here, leads to m2 = k2 +Bu−1. Finally m = 1 and m = 2 leads to

two neutral eigenmodes: one with k =
√

1 −Bu−1 and one with k =
√

4 −Bu−1 .

32



REFERENCES

Anderson, E., Z. Bai, and C. B. et. al., 1999: LAPACK Users’Guide. Society for Industrial

and Applied Mathematics, Philadelphia, PA, third edition.

Arai, M. and T. Yamagata, 1994: Asymmetric evolution of eddies in rotating shallow water.

Chaos, 4 (2), 163–175.

Baey, J. M. and X. Carton, 2002: Vortex multipoles in two-layer rotating shallow-water

flows. J. Fluid Mech., 460, 151–175.

Baey, J. M., P. Riviere, and X. Carton, 1999: Oceanic jet instability : a model comparison.

Third International Workshop on Vortex Flows and Related Numerical Methods., Vol. 7,

12–23.

Cushman-Roisin, B., 1986: Frontal geostrophic dynamics. J. Phys. Ocean., 16, 132–143.

Cushman-Roisin, B. and B. Tang, 1990: Geostrophic turbulence and emergence of eddies

beyond the radius of deformation. J. Phys. Ocean., 20, 97–113.

Dong, C., J. C. McWilliams, and A. F. Shchepetkin, 2007: Island wakes in deep water. J.

Phys. Ocean., 37, 962–981.

Drazin, P. and W. H. Reid, 1981: Hydrodynamic stability. Cambridge University Press.

Engevik, L., 2004: A note on the barotropic instability of the bickley jet. J. Fluid Mech.,

499, 315–326.

33



Flament, P., R. Lumpkin, J. Tournadre, and L. Arni, 2001: Vortex pairing in an unstable

anticyclonic shear flow : discrete subharmonics of one pendulum day. J. Fluid Mech., 440,

401–409.

Graves, L. P., J. C. McWilliams, and M. T. Montgomery, 2005: Vortex evolution due to

straining: a mechanism for dominance of strong, interior anticyclones. submitted to Geo-

phys. Astrophys. Fluid Dynamics.

Howard, L. and P. G. Drazin, 1964: On stability of parallel flow of inviscid fluid in a rotating

system with variable coriolis parameter. J. Maths and Phys., 43, 83–99.

Johnson, J., 1963: Stability of shearing motion in rotating fluid. J. Fluid Mech., 17, 337–352.

Kontoyiannis, H. and D. R. Watts, 1994: Observations on the variability of the gulf stream

path between 74w and 70w. J. Phys. Ocean., 24, 1999–2013.

Lee, T. and P. Cornillon, 1996: Propagation and growth of he gulf-stream meanders between

75 and 45w. J. Phys. Ocean., 26, 225–241.

Linden, P. F., B. M. Boubnov, and S. B. Dalziel, 1995: Source-sink turbulence in a rotating

stratified fluid. J. Fluid Mech., 298, 81–112.

Lipps, F. B., 1962: The barotropic instability of the mean winds in the atmosphere. J. Fluid

Mech., 12, 397–407.

Maslowe, S., 1991: Barotropic instability of the bickley jet. J. Fluid Mech., 229, 417–426.

Matsuura, T. and T. Yamagata, 1982: On the evolution of nonlinear planetary eddies larger

than the radius of deformation. J. Phys. Ocean., 12, 440–456.

34



McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. of Geophys.,

23(2), 165–182.

Mitchum, G. T., 1995: The source of 90-day oscillations at wake island. J. Geophys. Res.,

100, 2459–2475.

Nycander, J. and G. G. Sutyrin, 1992: Stationary translating anticyclones on the beta-plane.

Dyn. Atm. Ocean., 16, 473–498.

Olson, D. B., 1991: Rings in the ocean. Annu. Rev. Planet. Sci., 19, 283–311.

Olson, D. B. and R. J. Evans, 1986: Rings of the agulhas. Deep-Sea Res., 33, 42.

Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer.

Perret, G., A. Stegner, M. Farge, and T. Pichon, 2006a: Cyclone-anticyclone asymmetry of

large-scale wakes in the laboratory. Phys. Fluids, 18(3).

Perret, G., A. Stegner, D. T., C. J. M., and M. Farge, 2006b: Stability of parallel wake flows

in quasi-geostrophic and frontal regime. Phys. Fluids, 18(12).

Polvani, L. M., J. C. McWilliams, M. A. Spall, and R. Ford, 1994: The coherent structures

of shallow-water turbulence: deformation-radius effects, cyclone/anticyclone asymmetry

and gravity-wave generation. Chaos, 4(2), 177–186.

Poulin, F. J. and G. R. Flierl, 2003: The nonlinear evolution of barotropically unstable jets.

J. Phys. Ocean., 33, 2173–2192.
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