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1 The Holy Graal of rotating shallow-water flows

The rotating shallow water model (RSW) is probably the mestggogical and useful model
to understand geophysical fluid dynamics. Even if the RSWakgns are based on drastic
assumptions (hydrostatic balance, quasi-bidimensignaleak dissipation) it is a surprisingly
good model of many phenomena in the atmosphere and the oddéawertheless, as far as
laboratory experiments are concerned, one should keepnd that the dynamics of a rotating
and stratified fluid is given by the full three-dimensionalvi¢a-Stokes equations at the final
place. As it was shown in the chapter 1, the RSW equations ealebved from the primitive
equations according to an asymptotic expansion which shdemains valid for some restricted
range of dynamical parameters. However, this derivatiartsfrom the hydrostatic and non-
dissipative primitive equations (chapter 1), while bothitostatic and dissipative effects could
play a role in the laboratory. Hence, we recall in this Sectlee derivation of the RSW model
from the Navier-Stokes equations. The main purpose is tenstahd here which dynamical
processes are filtered out by the RSW model while they ocanesmes in real experiment.
Moreover, we will try to specify the value of the dynamicatg@aeters needed to be achieve in
laboratory experiments in order to be close to the RSW dyosimi

1.1 Single layer f-plane configuration

Let us consider first a single barotropic and incompresgibie layer in a rotating tank with a
flat bottom and a free upper surface, as shown figure 1.

FIGURE 1 Single water layer on a rotating turntablg = 10cm and D = 90cm.
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In order to get a dimensionless set of equations we lUsed H, as horizontal and vertical
scalesy" the characteristic time-scale for the flow evolutibhandU (H,/L) as horizontal and
vertical velocity scalesg H, as the charcteristic hydrostatic pressure scalepgbd. the scale
of pressure deviation from hydrostatic balange={ 2}, the Coriolis parameter). Using this
dimensionless formulation, the Naviers-Stokes equattansbe written as follows:

g0y + RoDu — v = =0, + EpAu Q)
edw + RoDv 4+ u = —0,m + EpAv (2)
o? [e0,w + RoDw] = —0,m + o*EpAw 3)

whereD = ud, + v9, + wd, andA = 9.2 + o*(9,2 + J,2). Besides, in this formulation
we decouple the hydrostatic pressuitg corresponding to the fluid at rest and the dynamical
pressurer (pressure deviation induced by the fluid motion) accordmng t

Ro
PIPH(’Z)—i_EW('rvyuZ?t) (4)

wherePy(z) =1 — z + Py and P is the dimensionless pressure at the free-surface.
In addition one should consider the continuity equation

O+ Oyv + O,w =0 (5)
with upper ¢; = 1 + A\n) and lower ¢, = 0) boundary conditions:

u(z) = v(z0) = w(z0) =0 (6)
Row(z1) = A [edm + Ro (udyn + vO,n)] (7
7T(£7y7217t) = %ﬁ(fca%t) (8)

wherer(z, y, t) is the dimensionless deviation of the free-surface.
We have introduced in this formulation the following nomadinsional parameters:

e The Ekman number E, = -7 fix the vertical scalep = VE.Hy = \/v/f of the
viscous Ekman layer, wheteis the fluid viscosity. According to the standard boundary
layer theory, this viscous layer cannot be neglected at ttim boundary where the
no-slip condition (6) must be satified (Gill, 1982; Pedlask987; Vallis, 2006). In the
laboratory, the thickness of this boundary layer is fixedydnl the rotation raté2, =
27 /T,. For typical values of)y ~ 1 — 10rpm we getdp ~ 1 — 2mm. Hence, as far
asH, > dg, we usually neglect viscous effects in the upper part of thd fayer ¢ >
2 — 36g). Nevertheless, the Ekman layer forces a secondary rakairen which induces
an efficient transfert of angular momentum from the boundaitie whole fluid domain
(Greenspan, 1968). For a fluid layer close to the geostrdmience the characteristic
decay time of this Ekman pumpingis; = Hy/\/vf = Ty/(47/E}) (Pedlosky, 1987).
Therefore, if we want to neglect this dissipative processrat least several rotation
periodT;,, the Ekman number should be quite sm&ll < 10~*. Such values can be
easily reached if the fluid layer is thick enough.

e The aspect ratio parametera = H,/L. While this parameter is generally small for
synoptic atmospheric or oceanic structuraes~ 10~2 — 10~?), this is not always the
case in laboratory experiments. Indeed, we could hardikwath ultra-thin layers. The
first limitation is due to the surface tension which acts onilimreter scale. The second
constraint is due to the Ekman pumping described above. diéygical layer depths in
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rotating tank experiments are about few tens of centiméfgrs 10 — 50 cm. Therefore,

in order to get a small aspect ratio (at least- 0.1) the characteristic horizontal scales
should be about. ~ 1 — 5m. To study the dynamics of multiple structures or to avoid
the end effects, the experiment should then be done on aayy turntable) ~ 10m.

A unique installation reaches such large scdle £ 13m), the Coriolis turntablein
Grenoble, France. However, for medium size experiments:(1 — 2m) the aspect ratio
parameter cannot be asymptotically small and is often dmsaity o ~ 1 .

e The classicaRossby numberRo = f% characterizes the importance of rotation in the
fluid layer. In order to be consistent, the horizontal sdale the Rossby numbeRo
should correspond to the characteristic scale of the hot@e@elocity gradient. In other
words, the Rossby number quantifies the ratio of the relatvecity ¢ = 0,v — d,u with
respect to the planetary vorticityz6 ~ (/f). For large-scale flows, the Rossby number
is generally small or finite in the atmosphere and the ocesatihg to the geostrophic
balance. It will exceed unity only for very intense vorticasich as hurricanes. This
parameter is usually well controlled in a rotating expeninand both small and large
values could be obtained. Nevertheless, to reach large vathich would exceed unity
an external forcing is generally needed. Indeed, withotereal energy source, from
any initial state the geostrophic adjustment process wiltkly lead to a mean flow in
geostrophic balance which implies small or finite Rossby bers Ro < 1).

e We introduce here thiégme evolution parametere = LT This parameter quantifies the
dynamical evolution of the flow. It depends on the flow resgdnghe initial condition or
to the external forcing. Hence, this parameter cannot be fiyethe experimental setup.
Classical textbooks (Gill, 1982; Pedlosky, 1987) usuatigsider the case of large-scale
and slow advective motion and therefore the time-evoluparameter and the Rossby
number are fixed to be of the same order Ro. However, for high frequency linear
waves (i.e. short gravity-waves)> 1 and Ro < 1 while for intense cyclone&o > 1
ande < 1. Hence, as far as experiments on geostrophic adjustmenbacerned, it is
useful to consider both the cases of slew 1) advective motion or fast(> 1) wave
motion independantly of the Rossby number value.

e TheBurger number Bu = (Ry/L)’whereR, = \/gH,/f is the Rossby deformation
radius. As far as we consider a relatively thick lay&y ~ 10 — 50 cm and a relatively
slow rotation rate2, ~ 1 — 10 rpm we get a large deformation radid > 50cm which
is usually close to the size of the experimental apparatesckl, with a single barotropic
layer, we can hardly obtain small Burger number values. @&y experiments using
high rotation speed}, ~ 60 rpm) reached small Burger number value within a single
layer configuration. However, in such case a parabolic Vésseeded to compensate
the resulting parabolic shape of the free-surface (Nedth@nezhkin, 1993; Stegner and
Zeitlin, 1998; von de Konijnenbergt al., 1999). For such setups the strong curvature
of the fluid layer induces, as in the spherical planetary ggoma strong beta effect.
Hence, such parabolic configurations are relevent to madgtiscale planetary flows, as
the Jovian atmosphere for instance.

e Therelative elevation parameter\ = r,/H, wheren; is the characteristic amplitude of
the free surface deviation. When the flow is close to geoktecdpalance, namely when
the dynamical pressure gardievitr is balanced at the same order by the Coriolis force,
the relative geopotential deviationdepends on both the Rossby and the Burger number
A ~ Ro/Bu (cf. Chapters | and ).

http://www.coriolis-legi.org



The RSW model is based on three main approximations: weakpdison, hydrostatic balance
and quasi-bidimensionality of the horizontal velocity. discuss, in what follows, when and
in which range of dynamical parameters these approximatonld be valid or not.

We first assume thRydrostatic balancefor the whole pressure field. The vertical accel-
eration in (3) could be neglected if bottf Ro < 1 anda?s < 1. Note that for rotating
flows, the shallow-water constraink (< 1) is not necessary to get the hydrostatic balance.
Indeed, a weakly viscous), < 1) slow (€ < 1) and geostrophicKo < 1) flow will fol-
low the hydrostatic balance even if the aspect ratio paraneets finite. Hence, hopefully
for the experimentalists, quasi-geostrophic motions caradruratley reproduced in a rotat-
ing tank whilea: ~ 1. Nevertheless, the shallow-water constraint is not a seifficcondition
that guarantees the hydrostatic balance. Indeed, if thersysupports high frequency waves
(¢ > 1) they could be a source of non-hydrostatic motion or in$itgbBesides, the case of in-
tense Ro ~ 1) shallow-water { < 1) vortices or jets is also complex. These intense structures
could exhibit in anticyclonic vorticity region an inertiat centrifugal instability which generate
three-dimensional and non-hydrostatic perturbationkiwithe large scale flow (Teinturiest
al., 2006). Such short-wavelength instabilities could any@ihall-scale perturbations (having
a finite aspect ratia,, ~ 1) with a rapid growth rates{, ~ 1). In such case, the cyclonic vortic-
ity regions may satisfy the hydrostatic balance, whilensgenon-hydrostatic motion occurs in
the anticyclonic regions (cf. figure 5 below).

However, when the evolution of a shallow-water flow (or itstable perturbations) is not
fast ¢ < 1) the hydrostatic balance is satisfied at the first order of@pmation and equation
(3) leads to:

0,mt=0 9

Then according to (8) the dynamical pressure becomes Wyingiportional to the free-
surface geopotential deviation:

m(z,y,t) = n(z,y,t) (10)

We then assume that the fluid layer experiencesak dissipation The viscous terms in
equations (1-2) could be neglected at a first order of appration if the Ekman number is
small enought, < 1. However, we cannot totally suppress the no-slip condiiothe bottom
and we should introduce an Ekman layer. This layer will theange the bottom boundary
conditions for the upper inviscid layer. It will allow a frestip condition for the horizontal ve-
locities ((zo), v(2o)) but will induce a non-zero vertical velocity. In the caségtirostatic and
slow geostrophic motions this vertical velocity is propamgal to the horizontal flow vorticity
(Pedlosky, 1987; Vallis, 2006) and the boundary conditi@should be replaced by:

@(&Cv — Oyu) = @C (12)

2 2

where( is the vertical component of vorticity. Hence, the horizdulissipation and the Ekman
pumping mechanism could be neglected/if/, < 1. Practically, in laboratory experiments
the dissipation will be a second order process whgr< 10~ at least.

The third approximation assumegaasi-bidimensional horizontal flow, in other words,
the vertical derivative$).u and 0.v are expected to be negligible. This assumption corre-
sponds to the Taylor-Proudman theorem which is valid ontia@limit of small Rossby number
(geostrophic flows). A similar approximation is made by thesare hypothesis (22) given in
the introduction, which decorrelate the vertical avergghthe horizontal velocity field. Then
integrating the continuity equation (22) along the vettarad using the boudary conditions (7)
and (11) we finally obtain the following dimensionless fotation of the RSW model :

w(zp) =

ediu + RoDyu — v = —0,1n 12)
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0w + RoDpv +u = —0yn (13)

Aedm + RoDypn) + (1 4+ An) Ro [0,u + Oyv] = RO\/?Q (14)
whereD,, = ud, + v0, and( = d,v — O u.

Strictly speaking, these RSW equations are valid in the asytic limit of slow quasi-
geostrophic flows even if the aspect ratio parameter is finite 1. However, this model is
often accurate beyond its limit of validity for finite Rossbymber ¢, < 1; ¢ < 1; Ro < 1)
and could be applied to a wide variety of laboratory expenitseThis will be indeed the case
if the vertical motions remain weak enough ( 1). This latter condition implies both the
hydrostatic balance (9) and a quasi-bidimensional hot&dlow. Nevertheless, in such case,
high-order terms should be added in (11) to account for mweal Ekman pumping (Sanson
and van Heijst, 2000; Hart, 2001).

1.2 Influences of the centrifugal force

Since the Newton’s bucket experiment (1689) it is well knawat the free-surface of a fluid
layer in solid body rotation is deformed under the actionhef ¢entrifugal force. The surfaces
of constant pressure for a fluid at rest in the rotating frainee ¢ quipotential surfacels = C'st)
are given by the potential function:

1
®(R, Z) = —59332 +9Z (15)

Hence, the free-surface of a rotating fluid layer satifiesralpalic shape. Moreover, according
to (15), all the equipotential surfaces corresponds to #mesparaboloid simply translated
along the rotation axis (figure 2(a)). We use in what follovasraensionless formulation where
H, is the mean thickness of the layé,is the tank diameter and, = ¢/Q2 is the curvature
radius at the center of the parabola. In cylindrical cocates, the equation for the unperturbed

free-surface can be written as :
Z 1 1 15 1
hi(r)=—=1 R2P— D) =1+ =50 - = 16
(r) e +2HOZC( 3 ) +2a(r 3 ) (16)

We have introduced here two dimensionless parameters:

e Thedimensionless tank diameterd = D/L. The experimentalist tend to use a large
tankd > 1 in order to satisfy the shallow-water constraint and to dwbe boundary
effects. However, for such case, the influence of the cemgifforce could become non
negligible close to the wall.

e Thecurvature parameter g = L/Z. quantifies the influence of the curved equipotential
surfaces on a dynamical structure of horizontal dizé&or the atmosphere or the oceans
an equivalent parameter is induced by the spherical geofattevhereZ. is replaced
by the earth radiugy. It is therefore natural to chose a coordinate system sctlieat
unpertubed water surface, or any equipotential surfasegiven byz = Cst. Hence,
paraboloidal coordinates should be used for rotating Etlooy experiments (Nycander,
1993) while spherical coordinates are used for planetawsfi@Pedlosky, 1987). How-
ever, for small values of the curvature paramete( 1) the tangent plane approximation
is generaly made. In other words, a cartesian system of pwiss is used locally and
the corrective terms induced by the parabolic curvaturtapibear only at the ordet?d
(Nycander, 1993; Stegner and Zeitlin, 1995). If we consalaredium scale experiment
(D ~ 100cm) and a typical horizontal scale ~ 10cm, these corrective terms could be
neglected for moderate rotation raf&, (< 10rpm).
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The main difference between rotating laboratory experisiand planetary flows is that the
effective gravityg® is variable in both direction and amplitude in the laboratdndeed, when

the centrifugal force is not negligible, it induces a tigfiof the effective gravity but also a
change in its amplitude (figure 2(a)). The latitudinal dejece of the effective gravity (also
called they-effect) in paraboloidal coordinates and in the tangentgkpproximation is given

by:

e

1 1
g————\/1+ﬁ2r221+5527’2 (17)

g cos
For paraboloidal equipotential surfaces this latitudohgendance of the effective gravity
is of the same order than the latitudinal dependance of theladforce (classicab-effect).
[ Lo o
—=_—"=cosl ~1— =0°r (18)
Jfoo 2
Under the tangent plane approximation the equipotentrdhse are assumed to be locally
flat (figure 2(b)) while the radial variations of the effedigravity ¢¢, the local component of
rotation¢2, and the unperturbed layer depthare expended at the first orderjn= r — a the
local latitudinal coordinate centered at the radial positi ~ a.

(b)

F 3
£2,(r)

Ygl’ @ |10
“—-L\\,
N

FIGURE 2 Parabolic deformation of the equipotential swegafthin lines) due to the cen-
trifugal acceleration in rotating laboratory experimg(afs Schematic description of the tangent
plane approximation when the corrective terms of oréfercould be neglected (b).

If we consider the center of the rotating tank- 0 andy = r), according to (16-18) the
latitudinal variations ofi(y), 2. (y) or g¢(y) are all quadraticand whe¥ya = L?/(Z.Hy) < 1
the fluid layer respect the f-plane configuration at the firdeoof approximation. This will be
generally the case for moderate rotation ratg € 10rpm) in a central region of few tens of
centimeter{ < 10 — 20c¢m). However, out from the center, the latitudinal variaticosild be
linearly expended iy and they reach their extremal values at the tank wall. Theeefn order
to quantify the relative influence of the-effect, thev-effect or the topography, we estimate
(whena = d) the magnitude of the following first derivative®;1/h o 8d/a, 8, f/f x 3*d
andd,g¢/g¢ « (3*d. Hence, for standard experimental configurationg 1, a < 1, d > 1)
the y-dependence of the equilibrium layer depth inducefibyarabolic free-surface deforma-
tion is the dominant effect. Due to this topographic efféog equilibrium fluid layer can sup-
port topographic-Rossby waves. The linear dispersiornioglaf these low-frequency waves is
analogous to planetary Rossby waves and they are strongpfembwith the slow geostrophic
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motion. This effect may induces, for instance, a signifiaduift velocity (V; ~ fL(0,h/h)
whenL < R,) and the dispersion of localized vortices (Matsedal., 1990; Carnevalet al,,
1991; Flor and Eames, 2002). Hence, the dynamical influehtieectopographic variations
could be neglected in the whole tank, from the center to thg iWa,h/h < fd/a < . The
latter criterion will be generally satisfied in a medium scakperiment) ~ 100cm) if the
rotation rate is weak enoughty < 4rpm).

However, if the ratio’d/« become too large, the variation of the layer thickness iaduxy
the centrifugal force could be compensated with a paralboliitom topography or a parabolic
vessel adjusted to the rotation rate (Nezlin and SnezhRi®3;1Stegner and Zeitlin, 1998; von
de Konijnenberget al.,1999).

1.3 Non-hydrostatic wave modes

Focusing on the geostrophic adjustment problem, where $lotlhh geostrophic motion and
fast waves are generated, we look here more carfully at tive wetion that may occurs in a
rotating fluid layer. We linearize the primitives equati@fs3) assuming small amplitudes for
the velocityRo < 1 and the free surface displacemenk 1. We neglect all dissipative terms
(Er < 1) and take the deformation radius as a characteristic haatscaleL. = R, of the
unperturbed rotating fluid layer, therefabBa, = 1 anda = H,/R,. Besides, we keep in mind
that the aspect ratia cannot be asymptotically small for laboratory experimerd awe keep
the vertical acceleration in (3). Hence, we get :

e — v = —0,T (19)
0w +u = -0, (20)
o’edw = =0, (21)
Oyt + Oyv + O,w = 0 (22)

with upper ¢; = 1) and lower ¢, = 0) boundary conditions

w(zg) =0 (23)
w(z1) = 0 (24)
m(z1) =1 (25)

According to the space and time shift invariance of the systee use the following Fourier
decompositioM (z, y, z,t) = Ay(z) et"*>=1) for all variables. In this case the temporal evo-
lution parameter corresponds to a dimensionless wavedreys = w/ f. This linear system
finally leads to:

04262[(2
1—¢?

whereK? = k? + [?, with the boundary conditions

82271'0 + Ty = 0 (26)

9.70(0) = 0 (27)

0.mo(1) = ae*m(1) (28)
Forinertia-gravity waves (¢ > 1) we obtain the following dispersion relation:

a?e? K?
ytanh(y) = a’e?; 7* = o

(29)
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We can see here that we will recover the dispersion relatidtomcaré waves
2 =1+ K? (30)

only if « K < 1, in such case short inertia-gravity waves are dispersssnl@his condition
Is more restrictive than the shallow-water constraink 1, and indeed short enough gravity
waves will always deviate from the RSW model. We have plattdajure 3 the deviation from
the Poincarré dispersion relation for various values obigect ratio parameterthat could be
found in laboratory experiment.

0.1

0.1 1 10 100
kRd

FIGURE 3 Log-log plot of the dimensionless dispersion ielafor inertia-gravity waves. The
curves correspond to diferent values of the aspect ratenpeter: RSW model, ar = 0
(thick line),a = 0.1 (thick dashed line)y = 0.3 (thin dashed line)y = 1 (thin dotted line).

For a finite value of the aspect ratio parametet: 0.3 for instance as it is shown in figure
4, high-frequency waves (> 1) or in other words short-waveds( > 1) will satisfy the
dispersion relation of non-rotating surface gravity wai@SW).

K
g2 = Etanh(aK) (31)

It can be shown that the same dispersion relation (31) apfadrdboundary Kelvin waves propa-
gating along a lateral wall of the tank. Hence, unlike the R8W@¢el, both inertia-gravity waves
and Kelvin waves will become dispersive in the short-wawdtlif the aspect ratio parameter
is not small enough. Nevertheless, theses non-hydrostéticts could be neglected for a wide
range of the inertia-gravity wave spectrumuif{’ < 1, which corresponds to

> 27 H, (32)

where) is the characteristic wavelength.



P

¢ / =03 =

-2
-
- -
rd
e -
w/f - -~
2 s

SGW

FIGURE 4 Dimensionless dispersion relation of inertiavgyawaves corresponding to the
RSW model (thick line), in a non-rotating (thin line) and a&ating fluid layer (thick dashed
line) for the fixed value of = Hy/ Ry = 0.3.
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FIGURE 5 Dimensionless dispersion relation of non-hydisinertial waves (left panel)
corresponding to various vertical modes (right panel).tiddlse wave modes are calculated for
the aspect ratio parameter= Hy/ R, = 1.

Forinertial waves (¢ < 1) we obtain a discrete spectrum of n vertical modes whichecorr
spond to the dispersion relations:

2.2 2
ace; K7

2., .2
n 2
1—e2

) n -

—yptan(7y,) = a’e (33)

where(1 4+ n)m/2 < v, < (1 +n)m.

These non-hydrostatic waves exhibit strong variationsreégure and velocity along the
vertical axis (figure 5 right panel). When the vertical wawentber becomes large: (> 1)
the wave frequency approches the Coriolis frequency 1 for a wide range of horizontal
wavenumber components. According to figure 5 (left panef)afgiven horizontal wavelength
k, the short wavelength perturbations along the verticdllabe the highest horizontal phase
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speed. Hence, the non-hydrostatic inertial waves play @artole in the vertical alignment
and the rapid formation of Taylor columns in a rotating flLagier.

If now we add a mean flow component, such type of non-hydrostaddes will lead to
inertial instability in anticyclonic vorticity regions @hnson, 1963; Yanase, 1993). Such in-
stabilities occur when the Rossby numldes exceeds unity and the maximum growth rates
for these three- dimensionnal modes are reached videerr 2. For larger Rossby numbers,
the influence of rotation becomes negligible, and the groatbs of such unstable modes are
strongly reduced. Hence, for finite Rossby numbers, stantiially from a two-dimensionnal
flow the three dimensionnal perturbations could growth egodially and break both the hy-
drostatic and the geostrophic balance (Afanasyev anceRel®98; Stegnest al. 2005). As it
can be seen in figure 6, such small-scale instability may rsacushallow-water anticyclonic
vortices when the Rossby number is large enough.

FIGURE 6 Dye vizualisation of von Karman wake in a rotatingl&hw-water layer with
a =~ 0.07, Ro ~ 2 and Re ~ 20000. Small-scale instability is visible in anticyclonic varés
(black dye), while cyclonic vortices (red dye) remain séefdleinturieret al., 2006)

1.4 Two-layer stratification

We have seen previously that with a single barotropic laypeement the deformation radius
is generally close to the tank size. In other words, for alsitayer f-plane experiment we are
restricted to large Burger number dynamics. Neverthelégge use a two-layer stratification
we introduce a baroclinic deformation radius which couldvech smaller than the barotropic
one. Besides, the Ekman pumping affects only the lower Jay®dt for an appropriate set of
parameters the upper layer dissipation could be strongiyoed.

To create a density stratification in water, salt or sugagareerally used instead of temper-
ature. Indeed, the thermal diffusivity£ ~ 10~"m?.s7!) is a hundred time larger than the salt
diffusivity (kg ~ 10~%m2.571). In a motionless fluid layer, an initial salt perturbatioill aif-
fuse over a 1 cm distance in half a day instead of ten minutestleermal perturbation. Hence,
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for typical layers depth about few to tens of centimetersratiai salt or sugar stratification
will remain robust for at least several hours. To obtain allgnsity jump corresponding to
a well-defined two-layer stratification we generally prates follows. The tank is first filled
with the deep and dense lower layer. Then, we start to spiheipatating table and when the
solid-rotation rotation is reached we slowly inject thenligipper layerp; at the surface of the
dense bottom layer,. To reduce the vertical mixing during the injection we couse flotating
Hele-shaw cells or small tubes to inject the light fluid horitally at the free-surface. An other
method consists to inject very slowly the upper layer thtofigating porous plates.

Let us consider a two-layer salt stratification, as showrgaré. According to the classical
dimensional analysis we add to the previous ones at leashw dimensionless parameters:

e Thethickness ratio parameterd = H,/(H; + H:). This parameter controls the dy-
namical interaction between the two layers. For equivatlamth layers) ~ 0.5 the
two layers are strongly coupled and baroclinic instabilitgy occurs even if the ver-
tical velocity shear is weak. On the other hand, accordinthéostandard two-layer
Phillips model (Pedlosky, 1987), for small rati®s< 1, the baroclinic growth rates tend
to vanish. Hence, to avoid a strong baroclinic destabibsadf the flow, we will first
consider laboratory experiments with a thin upper layer amep lower layer having
0 ~ 0.1. Besides, in order to keep the Ekman number small enougteitotier layer
(E,f) = (0g/H,)* < 1071 E},), we generally fixH, = 10 —20cm, and therefore the upper
layer thickness is abouf; ~ 2cm.

e Thedensity ratio parameter N = 2(p> — p1)/(p2 + p1). With salt stratification, we can
easily obtain av small up to10—3. We then introduce the reduced gravity= Ng < ¢
which controls the dynamics of internal gravity waves agiféce between the layers.

e Theinternal Burger number Bu' = (R,/L)? corresponding to the baroclinic defor-
mation radiusR; = \/g’Hng(Hl + Hy)/f. We can see here that for smail ~
103 andd ~ 0.1 the baroclinic deformation radius could be two orders of niag
tude smaller than the barotropic deformation radijs~ /¢ H,/f ~ 10~2R,, where
Ry = +/g(H,+ Hs)/f. Hence, for a thin upper layer with; ~ 2¢m and a weak
density differencer, — p; ~ 2 — 10g.1~ we can reach deformation radius as small as
R, ~ 1cm. Therefore, with a two-layer stratification, the internalr§er number could
be easily varied from small to large values1 < Bu' < 100.

e We introduce thetratification parameter Es = (§5/ds)? in order to quantify the dissi-
pation induced by the fluid-fluid interface. This parametem equivalent Ekman number
for a continuously stratified fluid wherg is the characteristic scale of the vertical density
gradient. Indeed, for salt stratification, due to the mdlcdiffusion and the injection
process, the density gradient is always continuous bettiempper and the lower layer.
Even with very slow laminar injection of both layers the dweristic sizels cannot be
infinitely small, and we generally get a density gradientkhess ofds = 3 — bmm
(Stegneret al. 2004). For geostrophic flows, the vertical gradient of theaZzumtal ve-
locity will be directly proportional to the vertical dengigradient. Hence, the dissipative
terms in the right-hand side of the horizontal momentum g#goa (12) should scale with
Es = (6g/ds)?. This parameter is larger than the Ekman number defined tiséngpper
layer thicknessE,il) = (6g/H,)*. However, due to the absence of the no-slip boundary
condition, there is no boundary Ekman layer for the uppegiayhe fluid-fluid interface
will then induce (if any) a much weaker recirculation thadassical bottom Ekman layer
if the vertical stratification is not too shaffy = (6z/ds)? < 1.
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We get a dimensionless set of equation for the two-layer RSWatwith rigid lid and bottom
boundary condition using- as horizontal scale aridthe characteristic time-scale for both lay-
ers,U® as the horizontal velocityJ; the vertical thickness and fU® L the pressure deviation
from hydrostatic balance in each layer.

edu' + Ro(")D,(f)u(i) —o® = 9,70 (34)
00 + Ro(i)DS)vm +u = —9,7® (35)

whereD,(f) = u9, + vW9, and the superscrit= 1, 2 corresponds respectively to the upper
and the lower layer. The pressure continuity at the interaces :

\Bu'

—n=0- N)RoW 7 — (1 + N)Ro® 7 (36)

and the mass conservation in each layer leads to:

A [satn + Ro(l)Dg)n] + (14 A\np) RoW [&Cu(l) + ayv(l)} =0 (37)

)
Ad [5@?7 + RO(Q)D,(ZQ) } — (1 =0 —Aén) Ro? [&Eu@) + 8yv(2)} = (1 —6) Ro? %C(z)

(38)
where the relative elevation paramedecorreponds here to the characteristic deviation of the
internal interface rescaled by the upper layer thickaéss

According to the above equations, if the thickness rati@apaters and the density ratio
parameterV are small enough and if the motion has a strong barocliniqgoomant (intense ve-
locities in the thin upper layer while the deep lower layenains almost at refto® ~ §Ro(V)
(Cushman-Roisin, 1992), the interface deviatjas controlled by the upper layer pressure only
n ~ 7). In such case, at the first order of approximation, the ugpgrimotion is not affected
by the lower layer which acts as a neutral layer. Hence, tipeulayer dynamics can be de-
scribed by the shallow-water reduced-gravity model. Ngm&ebne layer RSW model where
the gravityg is replaced by the reduced gravifyinduced by the two-layer stratification.

However, as for the single layer case, non-hydrostatic wawgons or inertial instability
may occur in the two-layer experiment when respectively 27 H, or Ro'Y > 1. Note that
the hydrostatic constraint on the wave activity is fixed Herehe deep layer thickneg$, and
not the thin upper layef;. Recent laboratory experiments performed in a two-layefiga-
ration (@ ~ 0.66; § ~0.2) exhibit non-hydrostatic wave behaviour for~ 80cm wavelength,
while H; ~ 12.5¢m and Hy ~ 50cm (Thivolle-Cazat, 2003).

Taking into acount the above mentioned laboratory comgsathe physical modelling of
rotating shallow-water flows looks like a Holy Graal for exipgentalist. Nevertheless, for a
specific range of the dynamical parameters, the motion atira fluid layers could be close to
the one layer RSW model. We recall bellow, both for singleflaand the two-layer configu-
rations, the distinct conditions needed to be satisfiegeassely, for the slow vortical motion
and the fast wave motion in order to follow the RSW dynamics.

| | vortical motion | wave motion
single layer ea’? < 1;Roa? < 1;Ro<1 kH, < 1
two layers | § < 1; Ro® < §RoW: Ro(")(oz(i))2 < 1;RoW <1 kHy < 1
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2 Potential vorticity measurements: a new challenge

Both vorticity and potential vorticity play an importantleoin the dynamics of rotating fluid
layers. The application of the Kelvin theorem to a non-ghasve rotating shallow-water flow
implies the Lagrangian conservation of potential voi¢iChapter 3) in each layer:,

D Lt Rogy (39)
Dt 1+ M\

An elementary fluid parcel (i.e. fluid column) moving withidagyer could be stretched or
compressed. These changes in the height of the fluid pargabdts motion will be accompa-
nied by a change in its vorticity. In other words, for a purglgompressible two-dimensional
flow when the free-surface or the interface deviations agigible (A < Ro), we recover the
Lagrangian conservation of vorticity:

D¢

Dt
In this case, vorticity will be generated in the flow only ietle is an external source (boundary
layer or fluid injection, for instance). For a rotating fluayekr, if the layer thickness varies suf-
ficiently, relative vorticity could be generated from anuwsigment process without any external
source.

The potential vorticity conservation is a key concept fojuatinent processes even in the
presence of dissipative forces. Hence, as far as laboratqugriments on geostrophic adjust-
ment are concerned, it is crucial to perform quantitativasaeements of the potential vorticity
field. Such measurements in a rotating fluid layer are inde¢dimple. Both the vorticity
field ¢ and the height fieldy should be measured simultaneously. If such measurements ar
now possible, it is mainly due to recent progress in comgutasers and cameras technology.
Besides, additional difficulties are encountered on airgatrntable where sufficiently com-
pact devices (especially lasers) and remote control of th@evsetup are needed. Therefore,
direct measurement of the potential vorticity field is alwayallenging for experimentalists.
We give below some details on the non-intrusive methods hvb@n be used to achieve such
measurements for specific experimental configurations.

0 (40)

2.1 Particle image velocimetry and vorticity field measurenents

The particle image velocimetry (PI1V) was developped sir@@41to perform accurate and quan-
titative measurements of fluid velocity vectors at a vergéanumber of points simultaneously
(Adrian, 2005). Presently, the 2D PIV method consist to addlsneutrally buoyant beads
to the working fluid and lightened them with a laser sheet. ZDeparticle motion along this
plane are recorded with a digital video camera. Cross-ladioe image processing are then
perfomed to measure the mean particle displacement in dmallegion between two succes-
sive images (Fincham, 1997). Standard systems are soldrbgneccial companies and it is
now the most efficent and non-intrusive technique used id fluechanics to obtain a vorticity
map in a given region of the flow field. Nevertheless, somertieah limitation appears which
restrict the spatial resolution of such measurements atingf fluid layers.

The energy necessary to illuminate fine particles and pmauages of sufficient exposure
and clarity is the first limitation of PIV. The maximum size thfe measurement window is
then fixed by the laser intensity and the camera exposure tifopefully, vertical motion are
strongly damped in a rotating fluid layer, therefore netytraioyant particles could stay for
a relatively long time in a fixed horizontal plane lightenegdthe laser sheet. Besides, the
horizontal velocities of geostrophic motions are usuatiytoo large ' ~ 1 — 10cm.s~!) and
the camera exposure time could be optimizetite 20ms. But nevertheless, if the intensity per
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unit area is too small the clarity of recorded images may eduificient enough with classical
digital camera. On a medium size turntable{ 1m), high power lasers which require cooling
systems are generally excluded. However, the last geaarafi compact high power laser
diodeg can generate an uniform intensity line (non-gaussian) aitloutput power up to 1W.
With such system we could easily detect the horizontal glartnotion {/ < 10cm.s™!) from
small (10cm x 10cm) to large (' x 1m) areas of investigation.

The second limitation is induced by the pixel resolutionhsd tamera. Indeed, to obtain a
precise cross-correlation between two interrogation wivel a minimum number of particles
(~ 3 — 5) should be present in the interrogation box. This condtiagiuces generally a min-
imum size of &8 x 8 pixel box. Hence, with a standai@0 x 550 pixels camera we usually
get a velocity field 095 x 70 vectors as it is shown in figure 8. Using digital cameras with
higher resolution3000 x 2000 pixels) we could, for instance, react8@) x 250 vector grid
field. However, even with very high resolution camera andnoged software, PIV measure-
ments will always give a coarse grid resolution in comparisodirect dye tracer visualizations
(3000 x 2000 pixels) or high-resolution numerical simulatiod996 x 4096 for two dimension-
nal flows (Bracccet al. 2000)).
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FIGURE 7 Horizontal velocity field of a cyclone obtained frguarticle image velocimetry.
For clarity, only half of the vectorst{ x 35) are displayed instead of the fll4 x 70) field.
The measurement was made in the thin upper layer of a two-&isadified fluid
corresponding toBu ~ 0.4, A ~ 0.5, « ~ 0.75, 6 ~ 0.1.

The third limitation comes from the limited precision of thelocity field. Even with hi-
erarchical correlation methods, where correlations deddiom a large interrogation box are
used to guide correlation analysis at smaller boxes (Ha@0} the available dynamical veloc-
ity range is about 100:1. In other words, the method cannigicti@uctuations in the velocity
field below 1%. Besides, experimental noise on recorded @maguld easily produces 5%
error in the velocity field. This can be a serious problemabse a weak noise in the velocity
field induces a stronger noise in the derivatives and thexeftyongly influences the vorticity
measurement. Typical errors of order of 10% (or higher) enbrticity field could be frequent
and strong efforts on the improvement of the image quality e software used in the PIV
process are needed to reach such precision on the vortieiti/rhieasurements. However, if
the flow evolve slowly in comparison with the frequency of #l/ acquisition system, time
averaging of the velocity field is a simple and efficient waydduce the experimental noise.

2Lasiris Magnum Laser (www.laser2000.fr)
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For the case of geostrophic adjustment, when a quasi-steatign is reached, time averaging
will lead to sufficiently precise vorticity measurement®r instance, the velocity field shown
in figure 8 is an average of ten velocity fields separated byna tnterval of120ms. Hence,
this corresponds to a time averaged velocity measuremeats @s which is smaller than the
inertial period7; = 12s or the characteristic decay tim&; = H,/\/vf ~ 200s. Such time
averaging reduces the noise on the vorticity field (figurg)3fly a factor 10 in comparision
with the instantaneous vorticity measurements (figure)3(a)

PR

- . 0.8
>
, - , : 0.6

0.4

a ! ‘ 0.2 ==

02—

-0.4

-0.6

-0.8

b

FIGURE 8 Cyclonic (red) and anticyclonic (blue) dimens&sd vorticity(/f calculated
from an instantaneous velocity field (a) or calculated frdra time averaged velocity field
(b) shown in figure 8. The Rossby number deduced from the maximorticity is about
Ro = (nae/ f ~ 0.6. The measurement area is a rectangular windo2g0fm x 220mm.

According to the above comments, we should emphasize teatiewe can easily obtain
a vorticity map from the standard PIV system the accuracyuohsneasurements should be
checked carefully. Let us recall, that if PIV measuremeatgeha coarse grid resolution corre-
sponding t® x 8 or 12 x 12 pixels on the digitized image, this will be even more prorexufor
the vorticity field. Indeed, to resolve accurately a gratiahleast — 5 grid points are needed.
Therefore, quantitative vorticity measurements will netgossible if the dynamical structure
under consideration is too small. We can roughly estimatmaithg value as25 x 25 pixels
on the digitized image. Thus, thin vorticity filaments aragelly smoothened by the PIV pro-
cess. In such case it could be usefull to use two cameras wittieaand a zoom angle in order
to quantify accurately the large scale flow and smaller gattstructures (Perredt al. 2006).
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Hence, the standard PIV method is well suited to quantifwslod large-scale structures in ro-
tating fluid layers. However, for fast and small-scale dtrtes such as high-frequency waves,
this velocimetry method can hardly provide quantitativesasurements, unless an expensive
high-speed PIV technology is used.

2.2 Height field measurements

Laboratory techniques for measuring the velocity field hsagthe PV method described above,
are quite advanced. However, methods for making accuraasunements of the height field of
a fluid layer have remained relatively elusive. As far as wavkrfour non-invasive techniques
were used to detect or to measure the height field fluctuationstating fluid layers: light
absorption, optical altimetry from the parabolic freefaoe, optical rotation of the working
fluid and laser induced visualization (LIV).

Light absorption

The light absorption technique is based on the optical tiensia dyed layer. It consists in
measuring the light intensity after absorption through éounmly dyed fluid layer (Holford et
al. 1996). The fluid layer is usually lightened from belowaihgh a transparent vessel while a
video camera records the intensity fluctuations from thefigpre 9(a)). A specific pass-band-
filter, which is centered at the maximum absorption of the, dygut on the video camera to
increase the sensitivity. With this method a local increzgbe layer thickness induces a higher
absorption and this region will appear darker on the videagen(figure 9(b)). This altimetric
measurements was used succesfully on small-scale paratlesisel where small (10%) and
large (60-100%) relative free-surface deviation were d@etewith an accuracy of less than one
mm (Stegner and Zeitlin, 1998). Nevertheless, causticefi@duce systematic errors of order
5 — 10% of the layer thickness which limits the precision on theghémeasurements.
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FIGURE 9 Light absorption technique for a parabolic vesspeeiment (a) (Stegner and
Zeitlin, 1998). Intensity fluctuations view from the top dfetexperiment (b) post-processed
calibrated image corresponding to a relative elevakien 1 of the layer depth (c).

Optical altimetry of the parabolic free-surface

The free-surface fluctuations of a rotating fluid layer cannb&@ged and analysed using its
parabolic free-surface as a Newtonian telescope mirraiallehlight rays from a source high
above the rotating table reflects from the water surface angiezges on the parabolic focus
Zy = %ZC (figure 10(a)). However, parallel light rays can hardly béagied on a rotating
table. The image of a point-light source locatedZa(the radius of curvature at the center) no
longer have sharp focus but converge through a small diskddcat the same height (figure
10(b)). For practical purpose the light source and the carasx symmetrically displayed off
the axis. Then, putting a knife-edge barrier in the middlthd singular disk, where all the rays
converge, can partially obscure the image giving greatisaisto slight imperfections of the
reflecting surface. This optical altimetry technique is ohthe most sensitive method used so
far in geophysical fluid dynamics experiments. Indeed ibieptialy able to detect free-surface
fluctuations with a one micron precision, independentlyhef tnean thickness of the parabolic
layer. Therefore, this method is particulary suited for ifnestigations of small amplitude
waves (less than 0.1% fluctuation) which are often difficaltetect by other methods. For
instance, an inertia-gravity wave having an amplitud&pfm (0.04% of the mean layer thick-
ness) could be visualized in figure 11. Qualitative obséaatof a large variety of dynamical
features such as gravity waves, inertial waves, Rossbys\eave small-scale convection could
then be performed (Rhineg al,, 2006; Rhines, 2006).
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FIGURE 10 Focusing of parallel light-rays reflected by thegpalic free-surface (a). Sharp
convergence of a point light-source located closg tthe center of curvature of the apex (b).
A knife-edge barrier induces a contrasted black and whitegerof the fre-surface. It increases
the sensitivity to deviations from a perfect paraboloid.
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FIGURE 11 Optical altimetry visualisation of inertia-grigvwaves 60um in amplitude)
interacting with a localized vortices. The wave maker istom lbottom left, while the vortices
appears in the center. Courtesy Y. Afanasiev.

Nevertheless, a quantitative method of determination efslbpe variation using speckle
patterns is possible. A reference image of the fluid layewirdsbody rotation is first made.
The slope is measured by comparing the original pattern aeflected image of this pattern
distorted by the surface perturbation induced by the radaflow motion. The procedure is
analogous to PIV process where correlations are computeebe the small areas of the image
and the reference. Nevertheless, the speckle method tediray large amplitude deformation
and have a limited spatial resolution due to the minimum sfaée correlation boxes (Rhines
et al, 2006; Afanasyeet al.,2006).

A different quantitative method based on optical color ogdivas also developped using
every pixels of the image. A color slide is fixed just below lkigat source. For a given rotation
rate (the null point) the entire surface of water is illuntedhby only one color. Any perturbation
of the free surface results in the appearance of color éiftefrom the null point. It is then
possible to measure from each pixel of the image the x and tieenponent of the slope with a
0.1% sensitvity (more details are given in (Afanasgewal., 2006)). Hence, by integrating the
slope field quantitative height measurements of the pai@fhoid layer could be achieved.

Optical rotation

An over sophisticated remote sensing method for measun@ghickness of a fluid layer
relies upon the optical rotation properties of the workingdl The liquid is chosen to be
optically active (limonene and CFC-113 for instance), s fllane-polarized white light prop-
agating vertically through the fluid layer has its plane dipaation rotated by an angle which
depends upon both the wavelength and the layer depth. Adésirlg the fluid, the angular-
dispersed white light passes through a sheet of polaroid.akpven layer depth, only light
of a certain wavelength has its polarization axis rotatéol @xact alignment with the polaroid.
Light of other wavelengths is either partially or fully exguished by the polaroid, giving a
correlation between the interface height and colour reggst by the camera (Hart and Kittel-
man, 1986; Williamset al., 2004. A high-sensitivity up td — 2% of the layer height could be
reached with this technique. Both the large-scale gedsitdlow and small-scale waves could
be accurately measured with the technique. According todid@ small-scale fluctuations in
the two-layer interface having 1 to 5 mm amplitude are quainiely detected. However, the
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sensitivity will be optimal when the mean rotation angle i®at 90° and this implies for the
limonene/CFC mixture that the fluid layer should be reldyitkick H = 10 — 15¢m. Besides,
specific precautions should be taken to prevent harmfuliene vapours from evaporating into
the laboratory.

FIGURE 12 Color calibrated visualisation of the internaénfiace of a two-layer fluid using
opticaly active CFC-13/limonene for the lower layer. Snsalhle waves (5 mm amplitude and
2 cm wavelength) are visisble during one cycle of a largéesaad unstable baroclinic mode 2.
Courtesy P.D. Williams.

Laser induced visualization

Laser induced visualization (LIV) technique could also Bediin rotating experiments to
measure with precision the fluid layer thickness along a lingially, the working fluid is uni-
formly mixed with a fluorescent dye. A vertical laser sheesses the horizontal fluid layer and
induces the fluorescence of the dye within this plane (Fig8r&) and 14). In order to optimize
the fluorescence, the maximum of dye absorpfign should be close to the laser wavelength.
Hence, we chose the fluoresceing,( = 490nm) or the Rodhamine 6G\(;,s = 530nm) if
we use, respectively, an argon las&8§nm) or Nd:Yag laser32nm). A video camera, fixed
on the side of the tank and perpendicular to the laser shedd doen record the fluorescence
of the fluid layer. Using an adequate image processing wedb&act the position of the in-
terface between the light fluorescent and the dark transpélted (figure 13(b)). With this
non-intrusive technigue we were able, for the two-layerfigamation, to measure the displace-
ment of the fluid interface between the fresh and the denserwath an accuracy of 2% at fast
acquisition rates (Stegnet al.,2004; Perreet al, 2006). The acquisition frequency is limited
by the acquisition rate of the camera and the transfert dgpaicthe video card. A frequency
of 100H z could be easily reached nowadays with standard firewire @sneNote in Figure
15 that the LIV camera is not exactly perpendicular to thelflayers, in order to reduce the
image distortion due to the ray diffraction through thet#iesd interface between the two layers

19



'w[“r'{‘[mnf'ﬂ{_'”"' MR ek L i
‘ ‘ k!

FIGURE 13 Side view visualization (a) of the fluorescent upgpger. The lower layer ap-
pears dark because it does not contain any fluorescent dyeearains therefore transparent
to the laser sheet. Edge detection processing (b) allowas foecise measurement of the layer
thickness corresponding here to a cyclonic depresdions~ 0.4, A ~ 0.5, a >~ 0.75, § >~ 0.1.

Unlike the previous technigues which estimate the heighd foe its fluctuations in the
whole layer, the LIV method gives a measurement of the hdiglat only along a line. Hence,
the position of the vertical laser sheet should be carefthlysen. However, this limitation is
compensated by the possibility to detect small-scale am@ttimensional structures along the
vertical. Indeed, this method measure precisely the dylgision at each points, z) of a
vertical plane and does not integrate the information alangrtical ray path. Besides, we
could also measure the density field from the fluorescent dyssgon (figure 14(a)). Indeed,
on short time scale (i.e. few minutes) the mixing of the alitiniform concentration of both dye
and salt is expected to be driven mainly by convection (uebulent mixing). Hence, dye and
salt gradient are not affected by relative diffusion ang thie therefore proportionnal. In a first
step, we measured the relative fluorescent light emissigaréil4(b)) which depends mainly
on the dye concentration and the laser sheet intensity. ,Tthkimg into account the vertical
distribution of the laser sheet intensity, we correlatelipet intensity with the local salinity
(i.e. density) as shown in figure 14(c). This could be, in teetriutur, an efficient non-invasise
technique to measure the density field in a continuouslyifséc fluid.
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FIGURE 14 Measurement of the vertical salinity profile frdme fluorescent light emission
(Stegneret al,, 2004). Initially, the upper fluid is uniformly mixed with aufbrescent dye. (a)
The upper water initially confined in a transparent bott@sleylinder appears white owing to
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the fluorescent light emission while the dense water is blgbk Vertical distribution of the
light intensity in the central rectangle shown in (a). (ceHalinity profile can be deduced from
(b) if we perform a careful calibration of the laser shee¢msity along the vertical plane. The
disturbance at = —3.3cm is due to light reflection at the bottom of the cylinder.

2.3 Potential vorticity measurements

In order to measure the potential vorticity field according39) we chose to use both PIV
and LIV measurements simultaneously. However, due to tsteicgons of the LIV technique,
which gives the height field only along a line, the couplingluése non-invasive methods is
best suited for unidirectional flows. It is then possiblenira line measurement to estimate a
global potential vorticity field for either circular (Stegret al., 2004) or parallel flows (Perret

al., 2006). A typical experimental setup for a circular cyctoRV anomaly is shown figure 15.
Two lasers having different wavelengths are used in additith specific optical filters, fixed
on each camera, in order to detect the dye emission only imdtteeal plane and the buoyant
particles only in the horizontal plane.

digital camera for PIV

interferential filter =
fluorescent plane

60w} --

K

H,

fluorescent dye

digital camera
for LIV

QA\

532 nm

P2

clear water

FIGURE 15 A horizontal red&70nm) laser sheet with a vertical greesB@nm) laser sheet
are used simultaneously in order to couple PIV and LIV measents in the upper layer.

Time averaged vorticity and height profiles along a diamater displayed in figure 18.
Theses profiles corresponds to the PIV and LIV measurembatgrsin figure 8(b) and figure
13. The temporal averaging (over one inertial pefipd= 27/ f) filters out the fast wave motion
from both the density interface and the azimuthal horiomtocity. Hence, these profiles
correspond to the mean adjusted state of the system whidtheswslowly in comparison with
the wave motion. From these data we can then easily quahgfypotential vorticity (figure
16(c)) of the cyclonic PV anomaly. The PV profile is rescaledetby@, = f/H;, the intrinsic
PV of the unperturbed upper fluid layer (solid line in figur§d® For this case, the initial
circular PV anomaly was a constaptpatch with@/Q, = 2.
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FIGURE 16 Plots of the averaged vorticity profile measuredby (a) and the averaged
height profile (b) measured by LIV corresponding to the mdaady state at = 27;. The
potential vorticity (c) is deduced from these two profilesie$e measurements correspond to
the same cyclonic PV anomaly shown in figures 8(b) and 13.

As far as we know, this technique is the first attempt for digewd quantitative measure-
ments of the potential vorticity field in a rotating shallevater layer experiment. In other
laboratory studies, either the height field or the velocigdfiwere measured but not both of
them simultaneously. In such case, the “missing” field cdaddestimated according to the
geostrophic or cyclo-geostrophic balance and the potemrtcity field reconstructed. Never-
theless, these indirect methods could induce significanteespecially when ageostrophic or
non-hydrostatic motions become non negligible. A more egfimethod based on data assimi-
lation was used recently (Thivolle-Cazital.,2005). The experimental results were compared
with a two-layer isopycnal model and data assimilation weesiuo extrapolate from PIV mea-
surments both the interface position and the potentialaityfield. However, such PV extrap-
olation depends strongly on the underlying assumptionseohtimerical model used and on the
assimilation scheme. Therefore, we do believe that coupleasurements is the best way to
quantify the PV. Nevertheless, data assimilation willyulenefit from these coupled measure-
ments and it could become an optimal method to test the liohislidity of the shallow-water
modelisation for real flows.

3 Simple case studies of geostrophic adjustment

We describe in what follows few cases of geostrophic adjastrbased on lock released experi-
ments performed in rotating fluids. In a two-layer configimatvertical boundaries (i.e. locks)
are used to fix initial height (or density) steps in the uppgel. For such cases when there is
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no relative motion in the layers the initial PV field is presdiscontrolled by the layer thickness.
If the release of the vertical walls is rapid enough, we caléh follow the geostrophic adjust-
ment of a well defined initial condition corresponding toadistinuous profiles of constant PV.
The simplicity of the initial condition makes these expegints easily reproducible.

3.1 “Warm-core” lens

Initial state and experimental configuration

The term warm-core lens is generally used for mesoscalécesrtvhich contain a finite
volume of warm and light water at the ocean surface. A simgjgeemental configuration
leads to similar dynamical structure (Griffiths and Lind&891; Rubino and Brandt, 2003). A
fixed volume of buoyant water is initially confined within attwmless cylinder of radiug,
on the top of a dense rotating fluid (figure 17 (a)). Assumirgg the thin upper layer follows
the reduced-gravity RSW equations (c.f. Chapter 1), thealrf?V distribution is constant for
r < R. and exhibit a singularity at = R. (figure 17 (b)) due to the vanishing layer thickness.
Similar experiments were performed to study the baroclmstability of a density front leading
to meanders and eddies (Griffith and Linden, 1991; Bourugieitot and Linden, 2002). The
present experiment was made with a smaller thickness ratinpetery ~ 0.1 to reduce the
growth rate of baroclinic disturbances and focus the studthe adjustment process (Stegner
et al, 2004).
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FIGURE 17 Initial configuration of the “warm-core” lens: teetup (a), and the initial profile
of the corresponding potential vorticity (b).

Dynamical stages

Three stages were observed during the adjustment proaessafter the rapid withdrawal
of the transparent cylinder, the fresh water spreads tgdaala gravity current. During this
initial stage, the flow is fully three-dimensional (figure () and the effects of rotation are
expected to be weak. After approximately half of the inépieriod, the radial extension of
the lens is stopped (Ungarish and Uppert, 1998). The sedaigg €orresponds to a radial
contraction of the lens where steep jumps at the interface appear (figure 18 (b)). Then,
after about two inertial periods, the density front reachesequilibrium characterized by a
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standing wave mode superimposed on the mean state (figucg, 18)]. In all our experiments,
this third stage is rapidly reached after approximately @nvo inertial periods. These results
agree with previous studies (Mahalewal., 2000) who also found that the inertial period is the
characteristic time of the transition from a density cuttera geostrophic front.

FIGURE 18 Dynamical evolution of the interface for the ialttonfiguration corresponding
to Bu = (Rq/R.)? ~ 0.4; a ~ 0.76; § ~ 0.08 (Stegneet al,, 2004). The snapshots are taken
att = 0.57% (a),t = 0.87 (b), t = 3T (c) andt = 0.5 (d). The dark rays on the right hand
side of the image are experimental shadows produced by ther figations of the cylinder.

Rotating Shallow-Water predictions

We present here the approximations and the calculatiorasal Rossby adjustment the-
ory for the axisymmetric warm-core lens configuration (fegur7). According to the small
thickness ratio parametér~ 0.1 and the weak motion observed in the lower layf? ~
§RoM) (Stegneret al, 2004) the reduced gravity RSW equations are expected taderoin
first order of approximation, an accurate description ofupper layer dynamics. Besides, we
assume that viscosity and dissipative effects are neggigibd that the system reaches a final
steady state. Using the deformation radius as the chaistatdrorizontal scale (i.eRo = 1
and)\ = 1) we get the following dimensionless cyclo-geostrophi@bak for an axisymmetric

steady state:

U2

The Lagrangian conservation of PV implies a constant vaduaf fluid parcel within the
upper lens:

1+ 0v+uv/r
> =-]=_——"T"-_ "7 42
Q(r = ry) T (42)
wherer; is the final radius of the density lens. According to (41) a42) (ve get:
1 v v?
- V) — — — —) = 4
Tﬁr(r&v) = (v+ " )=0 (43)
with the boundary conditions
v(0) =0 (44)
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h(rg) =1+n(r;) = 0= (B0 + ; +1)(r;) =0 (45)

For a given radius;, we can solve (43), (44) and (45) numerically with stand&bsing
methods. Then, the angular momentum conservation or massie@tion or mass conservation
both give the same implicit relation betweenand the initial radius of the cylindet:

r? = rfc + 2rpu(ry) (46)

The velocityv(r) and the height(r) profiles of the steady adjusted density lens are fixed
by a single parameter, = R./R; = Bu~'/?. Exemples of velocities and height profiles are
given in figure 21 for the same initial state and two differéeftormation radii corresponding to
Bu = 0.05 andBu = 5. For small Burger number we expect an axisymmetric jet (geascale
ring) whereas for large Burgers number an eddy (close td solfation) is expected.
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FIGURE 19 Final steady state according to the standard Rastjustment. Two adjusted
velocity (dashed line) and height (solid line) profiles téag from the same initial density
anomaly ( = H;, r = R.) are plotted for two different deformation radiiu = 0.05 and
Bu =5.

Mean adjusted state

In the warm-core lens configuration, the interface betwaenwo fluids intersects the free
surface. Hence, unlike the standard Rossby adjustmentepnofGill, 1982; Vallis, 2006)
inertia-gravity waves cannot propagate away from the regibthe initial density anomaly.
Therefore, the separation between the adjusted state endatre motion is not direct. Hence,
we used time averaging over one or tlg as decribed in the previous section (§ 2), in order to
extract the slow dynamics of the height profile and the vé&ydeeld. We first observe that the
averaged height profile, displayed in figure 20(a), remaimoal constant between~ 1.57
andt ~ 7Ty. During that time, the averaged velocity profile experienaeslow dissipation
(figure 20(b)). Therefore, even if a strong wave activity iegent according to figure 18, the
averaged mean state remains quasi-steady after one or én@irperiods. Moreover, in the
central region, this quasi-steady state is relativelyekosthe cyclo-geostrophic adjusted state
predicted by the PV conservation in the RSW framework. Adicay to this inviscid ajustment
model the velocity reaches its maximum and is discontinaaube edge of the lens. This is
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obviously unrealistic in a physical system where dissygatirocesses occur. Indeed, accord-
ing to figure 20(b) the maximum velocity is almost three timpsaller than the predicted one.

Hence, both the velocity and the potential vorticity of #a@sticyclonic lenses are smoothed
near the edge front over a characteristic distance equlaétdeéformation radius (in the present
caseR; = 3.2cm while R, = 5.25¢m).
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FIGURE 20 Mean height (a), velocity (b) and PV (c) profilesraged over one inertial pe-
riod. The initial density anomaly confined within the bottess cylinder is plotted with a thin
line in (a). The thick solid line corresponds to the cyclmsggeophic adjusted state predicted by
the geostrophic adjustment scenario of the inviscid RSWehod

Small-scale instabilities

Detailed analysis of the velocity field evolution show thbsg and localized dissipation
occurs in the very initial stage of adjustment{ 27) while the flow experiences only a weak
dissipation afterwards. This rapid dissipation which as@t the edge of the anticyclonic lenses
induces a significant deficit in the kinetic energy of the athd flow up to 50% or 80% (Stegner
et al, 2004). Dye visualization reveals that transient and répide dimensional instabilities
occur in the very first stage of adjustement (figure 21). A firs$table perturbation having a
short wavelength grows very quickly, then spiralling arrppear with a larger wavelength. The
first instability scales with the viscous diffusion length = /vTy ~ 3 — 4mm and does not
depend on the Burger number while the secondary mode comdsm to the spiralling arms
does scale with the deformation radius. These three-dimeasnstabilities localized in time
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(less than one inertial period) and space (the edge of theyaltnic lens) provide an efficient
mechanism of turbulent dissipation which cascades enenggrtl small scales in the frontal
region. However, outside the outcropping region the pakrbrticity conservation is well

verified.

FIGURE 21 Dye visualization of the three-dimensional pdrétions at the edge of the
anticyclonic lens (a} = 0.37%, (b)t = 0.5y, (c)t = 0.77, and (d)t = 1.77 (Stegneret al,,
2004).

3.2 Cyclonic and anticyclonic PV patches

Initial state and experimental configuration

We used the term “PV patches” for localised positive or nggatotential vorticity anoma-
lies of constant values within a uniform PV layer. The “PVgtdtmodel is the generalisation
of the Rankine vortex (cylindrical vorticity patch) for atating shallow-water layer. It is the
simpliest description of potential vorticity front with reutcropping. It could be, for instance,
a simplified description of the cyclonic polar vortex in thiteatosphere. The corresponding
experimental configurations for anticyclonic and cycloi¥ patches” are shown respectively
in figure 23 (a) and figure 23 (b). A two-layer stratificatiorttwa small thickness parameter
0 = 0.125 is first realized. Then, a bottomless cylinder is used to pced an height step in
the two-layer interface. Assuming that the thin upper lgpdows the reduced-gravity RSW
equations, the initial PV distribution is uniform inside & R.) and outside > R.) the
cylinder. Unlike, the “warm core” lens configuration (figut&) the potential vorticity exhibit
a discontinuity (but not a singularity) at= R. due to the finite jump in the layer thickness.
Besides, both positive and negative circular PV jumps ctselebbtain (figure 23 (b), (c)). A
positive (negative) thickness anomaly in the upper layetespond to a negative (positive) PV
jump and will generally lead to a localized anticyclonicglmnic) circular ring or vortex.
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FIGURE 22 Initial configuration of the experimental setupresponding to an anticyclonic
(a) and a cyclonic (b) PV patch and their respective PV pfit¢ and (d).

Dynamical stages

The very initial stage of adjustment differs from the waroreclens configuration. Just
after the withdrawal of the transparent cylinder, the waitdensity jump get tilted and a local
overturning motion is initiated at the initial position dfe cylindrical wall. However, due to
the rotation, the overturning motion is stopped after oreztial period and a localized shock
(steep density front) occurs as shown in figure 23 (b) anddi@dr(b). Due to the absence of
outcropping front no gravity current head is visible for B patch configuration. Afterwards,
the thickness anomaly reaches an equilibrium. Even if, ldilnatuations could be detected this
mean adjusted state holds for a relatively long time. Acdoaydo figures 23 (c)-(e) and figure
24 (c)-(e), for a small Burger number configuration (h8re = 0.084) the amplitude and size
of the mean adjusted state remain close to the initial unicath height profile. Besides, the
thickness anomaly remain almost unchanged from 27 to ¢t = 207;. Hence, the system
reaches a quasi-steady state in a very short time, apprtalynane or two inertial periods.
For higher Burger numbers, the amplitude of the fluctuatisriarger and the system seems
to be far from an equilibrium. However, using an accurateetaweraging to filter out the
fast wave motion (see below), an averaged mean state isagadth the same rapidity. This
characteristic time for adjustment (one or two inertialipés) does not depends on the size or
the amplitude of the initial PV-patch.
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FIGURE 23 Dynamical evolution of the interface of an antlopic PV patch correspond-
ing to Bu = (Ry/R.)* ~ 0.084; A = 0.5; o' ~ 1.6; § ~ 0.125. The snapshots are taken at
(@t=0,(b)t="Ty,(c)t =21y, (d)t = 3T, and (e}t = 107}.

FIGURE 24 Dynamical evolution of the interface of an cyctoRV patch corresponding to
Bu = (Rg/R.)?* ~ 0.084; A = —0.5; V) ~ 1.6; § ~ 0.125. The snapshots are taken at (a)
t=0,(b)t =Ty, (c)t =21y, (d)t = 3Ty and and (e} = 107}.
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Rotating Shallow-Water predictions

We present here the calculation of classical Rossby adgrdttheory for the cylindrical
“PV-patch” configuration (figure 22). As for the “warm-cor&ns case, the small thickness
ratio and weak motions in the lower layer justify to use theuaed gravity RSW equations
for the upper layer dynamics. Here again we neglect, at teedider of approximation, the
dissipation. Therefore, we use the same set of dimensmatpsations as the “warm-core” lens
configuration, but we need to consider two distinct regidnsxiform PV. We will use the index
0 for the inner PV anomaly regiom (< ) and the index for the outer regiom( > r) where
7 is the radial position of the PV jump in the final adjustedest&ior the case of a anticyclonic
PV patch (figure 22 (c)) we expect a radial extension of the PWtf(-. < r,) while for the
cyclonic PV patch (figure 22 (d)) we expect a radial contaciy; < r.) . The Lagrangian
conservation of potential vorticity implies a constant tistinct value of PV for all fluid parcel
within each region of the upper fluid layer. Hence, for thesinRV anomaly region we have:

1 1+ 0w+ uv/r

= = 47
Qulr <r7) = 15 » (47)
while for the outer region we have:
140,
Oi(r > rp) =1 = LEOutu/r (48)

h

where the relative PV anomaly is given initially By= n,/H;.
Then, looking for a steady adjusted state, implies the egelostrophic balance (41) and
according to (47-48) we get the second order non-lineanargidifferential equations:

Lo, (r0.0) = %~ Qi+ ) =0 (49)
with the boundary conditions:
vo(0) =0 (50)
vo(ry) = vi(ry) (51)
ho(rg) = ha(rg) = (L+ M) (@v0 + =2 4+ 1)(r) = (D01 + ~ + 1)(ry) (52)

Besides, far away from the potential vorticity fromt £ r) , a localized solution satisfy
the geostrophic balance which implies to neglect the nogali term in (49). In such case, the
general solution of the linearized equation (49) is expgeés$srough Bessel functions. The outer
velocity of a localized adujsted state should then decayfatiy as a modified bessel function
of the second kind

v1(r — 4+00) o< Kq(r) (53)

For a given radius;, we can solve the equations (49-53) numerically with appad@shooting
methods. Then, as for the “warm-core” lens configuratioa aihgular momentum conservation
leads to the same implicit relation (46) betwegrand the initial position of the front. (i.e. the
dimensionless cylinder radius). The velocity and the higogbfiles of the steady adjusted PV-
patch are then fixed by two dimensionless parametet: R./R; = Bu~'/? and\ = 1, /H,.
Exemples of velocities and height profiles for both cycloand anticyclonic PV patches are
given figure 25. For large Burger number, in other words a koghhder radius in comparison
with the deformation radius, the adjusted state correporallocalized vortex (figure 25 (a)).
The velocity profile exhibit a core solid rotation analogdagasRankine vortices. For small
Burger number (figure 25 (b)), the adjusted state corresporal circular jet (i.e. circular
velocity ring). For all these cases, the maximum velocigiua corresponds to; the final

30



position of the PV jump. Unlike, the “warm-core” lens configtion, the velocity profiles

for PV-patches are always continuous. Besides, in agreewignprevious studies (Kuo and
Polvani, 2000), the geostrophic adjustment process inducgone-anticyclone asymmetry.
For the same amplitude of the initial potential energy flattun, the cyclonic structures will

be here more intense than the anticyclonic ones. Indeedrding to figure 25, for the same
relative amplitude of the initial thickness anomaly, theximaum velocity of cyclonic vortices

(Vmaz/(fRq) = 0.3 for A = —0.5 andr. = 4.47) will always be higher than the anticyclonic
ones {ua:/(fRg) = —0.2 for A = 0.5 andr,. = 4.47).
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FIGURE 25 Velocity (dashed lines) and thickness profileBddimes) predicted by the stan-
dard geostrophic adjustment for two different sizes of tiigal PV patch:r, = R./ R4 ~ 0.45
(a) andr. = R./R; ~ 4.47 (b). The anticyclonic (thin line) and the cyclonic (thickd) pro-
files are given respectively for= 0.5 and\ = —0.5.

Mean adjusted state

As for the warm-core lens configuration, we used time aveagagier one or two inertial
period T in order to extract the slow dynamics of the height profile #mel velocity field.
According to figure 26, we observe that both the mean heigthtlaa velocity profiles remain
almost constant for several inertial periods, at least up0t; for PV-patches having small
Burger number values{u = 0.083 in figure 26). Hence, the time-averaged state have reached
an equilibrium even if small wave motion could be detectetthlo the inner region of the PV
anomaly (figure 27) and the outer region. For the cyclonigcstire, the mean-adjusted state
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coincide perfectly with the predictions of standard gemsitic adjustment (figure 26 (a), (c)).
However, for the anticyclonic structure a significant degancy occurs for the velocity field
(figure 26(d)). The maximum velocity is at least two times Bendahan the predicted one. This
anticyclonic dissipation, in comparision with the nonsilgtive predicted state, was observed
in all the experiments from small to large Burger numbBis = r_ 2. Hence, the cyclone-
anticyclone asymmetry becomes even more pronouced wghutipredicted dissipation. As
for the warm-core lens configuration (which correspondf¢cesymptotic limitn — +o0), we
could suspect that this rapid dissipation of kinetic enésglue to a transient three-dimensionnal
instability which affects only the anticyclonic PV frontdowever, dye visualisations appeared
to be less efficient for the PV-patch experiments and we coaitdly capture small-scale pertu-
bations. We should note that an outcropping PV front (PV degty) lead to intense velocities
(Ro ~ 1) in comparison with PV-step front (PV discontinuity) whictduce continuous veloci-
tiy field close to the geostrophic balance. Indeed, the Rossimber never exceeldo = 0.3 in
the PV-patch experiment, therefore ageostrophic motiodsrelated instabilities are expected
to be weaker than for the outcropping configuration.
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FIGURE 26 Profiles of the upper layer thickness for a cycldajcand an anticyclonic (b)
vortex resulting from the initial PV-patch. = R./R; ~ 3.47 (Bu = 0.083) and\ = 0.5 or
A = —0.5. The corresponding velocity profiles are displayed in (aj &f). All the profiles
were time-averaged over one inertial period These mean profiles are shown at various time:
t = 2Ty (filled circle), t = 5T (filled triangle),t = 107} (open circle) and = 207, (open
square).

Inertial and sub-inertial wave activity

The geostrophic adjustment process is expected to trammsfmall (large) amount of the
initial potential energy to the fast wave motion for PV-gags having small (large) Burger
number corresponding ta. = R./R; > 1 (r. < 1). Hence, for the small Burger number
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case described aboveu = 0.083, the amplitude of the wave fluctuations were about few
percents of the mean upper layer thickness. The sensit¥ithe LIF technique was high
enough to quantify this wave activity in the inner regions{de the PV anomaly) and in the
outer region. Spatio-temporal diagrams (i.e. Hovmoalletgl of the wave oscillations within
the cylonic and the anticyclonic PV patch are rendered fi@ureThis plot shows qualitatively
the temporal variations (y axis) of the upper layer thiclnasross a diameter (x axis). The
grayscale levels were decalibrated and intensified in dalenhance the contrast for a better
visualisation. Unlike the outcropping configuration, tin®tlayer interface extend here in the
whole experimental domain and the inertia-gravity wavesdadreely propagate in the outer
region outside the PV anomaly. Nevertheless, a significanevactivity remain for a long time
(several inertial period) inside the PV anomaly even if teamsteady state is already adjusted
(figure 26). A similar behavior was found in previous thewadt(Plougonwen and Zeitlin,
2005) and numerical (Kuo and Polvani, 2000) studies dealtiysharp PV fronts in the RSW

dynamics.
I_' 1
i
!

FIGURE 27 Spatio-temporal diagram of the relative fluctuadi of the upper layer thick-
ness for an anticyclonic (a) and a cyclonic (b) PV patch . Tine evolve along the y axis from
top (¢ = 0) to bottom ¢ = 771y), while the layer thickness is plotted along the x axis corre
sponding to a full length of 260 mm. The grayscale levels vwealibrated and intensified
in order to enhance the contrast. The white rectangularardeth panels corresponds to the
initial positive (\ = 0.5) or negative § = —0.5) height anomaly.

The most striking results is a strong cyclone-anticyclasygvametry in the wave frequency.
According to the spatio-temporal plots, the oscillatiorfaster for the positive PV anomaly
(figure 27 (b)) in comparison with the negative PV anomalyuffeg27 (a)). Indeed, if we

33



measure the relative fluctuations of the upper layer thiska¢the center (= 0), the frequency
is sub-inertial &/ f ~ 0.7) in the anticyclonic PV patch while an inertiab (= f) frequency is
found in the cyclonic PV patch (figure 28).

In the rotating shallow-water configuration, the appantal sub-inertial modesy < f)
corresponds to trapped modes in other words, these modéshauesan evanescent structure
outside the PV-patch. If the relative vorticity is strongpagh, a finite number of trapped modes
could appear in anticyclonic vorticity region only (KunzE985; Klein and Treguier, 1995;
Young and BenJelloul, 1997; Llewellyn Smith, 1999; Plougen and Zeitlin, 2005). The
present experiment shows, for the first time in laboratdrg, éxistence of sub-inertial modes
within an anticyclonic PV-patch. However, according to fegg@8, these modes have a finite
lifetime. Unlike, the long-lived trapped modes these sugrdial waves probably radiate their
energy to the lower layer. According to figure 28, there isymane-anticyclone asymmetry in
the life time of the inner wave modes. Besides, accordinggspatio-temporal graph displayed
in figure 27, the characteristic size of the inner wave stmggtboth the cyclonic (inertial) and
the anticyclonic (sub-inertial) one, decays with time. sTts a signature of dispersive effects,
which could be induced by the high value of the wave aspeitt té?) = H,/L ~ 10 in the
lower layer.
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FIGURE 28 Evolution of the relative amplitude of the upperdathickness at the center
(r = 0) of the initial height anomaly. The case of a cyclonic (aytlonic) PV-patch is displayed
in the upper (lower) panel.

3.3 Uniform PV front

Initial state and experimental configuration

The geostrophic adjustment of a motionless horizontal ilegsadient generally leads to
a baroclinic tilted front corresponding to a simplified mbdé synoptic atmospheric fronts.
However, recent studies (Ou, 1984; Blumen and Wu 1995; Kal&as2004; Plougonwen and
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Zeitlin 2005) have shown that even if the initial unbalans&te is smooth, a well defined con-
tinuous adjusted state may no longer exist. Indeed, for &se of uniform potential vorticity
when the horizontal density gradient is sharp enough tresgtadjusted solution exhibits dis-
continuities in both the density and the velocity field whiea front outcropp the top or the
bottom boundary.

We use a three layer setup to study the adjustment of an umiRd front (figure 29(a)).
Two upper fluid layers having different densjtyandp, but the same thickneg$, are initially
separated by a bottomless cylinder. A third deep and demgs layer acts as a neutral layer
which separates the thin upper layers from the bottom baynéacording to the small thick-
ness parameter = 0.125 and the weak motion in the lower layer we assume that two upper
layers follows the reduced-gravity RSW equations. Herfd@ei upper layers have exactly the
same thickness, the initial PV distribution is uniform aravé the same value inside € R.)
and outsider( > R.) the cylinder (figure 29(b)). However, as for the warm-cenasl configura-
tion, the PV distribution exhibit a singularity at= R, for both the inner layep, and the outer
layer p; due to the vanishing of the layer thickness.

We can define two baroclinic deformation radius namély:= +/((p2 — p1)/p2)gh/ f re-
lated to the tilted density interface between the two upageis,Rp = /((p3 — p2)/p3)gh/ f
related to the horizontal density interface between theeupgyers and one barotropic defor-
mation radius corresponding to the dense bottom ldygr= /gH/f ~ 1m. The density
difference between the layers,(— p; = 3 — 25¢.171; p3 — ps ~ 100g.171) were adjusted, in
the present experiment, in order to dét= 2 — 3cm < Rp =~ 12c¢m. Besides, the size of the
rotating tankl. = 45¢m was large enoughl( > R. > R,) to neglect side wall effects. More
details on the experimental procedure are given in (Migkial. 2006).
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FIGURE 29 Experimental three-layer setup (a) and initiatrthution of the potential vor-
ticity (b).

Dynamical stages
Several dynamical stages were observed during the adjosprecess. Just after the with-
drawal of the separating cylinder, the inner dense fluidagseadially at the bottom interface.
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During this very initial stage, the flow exhibits strong tar@dimensional motions (figured8o))
identical to those in a gravity current’s head (Pattersbal. 2006). At this stage horizontal
vorticity is generated at the interface between the inndrtha outer upper fluid layers. After
half of the inertial period the radial tilting of the densitpnt is stopped and a reverse flow
occurs. Then, in about one inertial period this tilted banac front reaches an equilibrium
characterized by an oscillating mean state. Theses dgmifacan be seen in the fluctuations
of the extremal positions;,, andr,,; of the tilted front (figures 3(c) and(d)). At longer time

(t = 5 — 10T%) this tilted front experiences a large-scale baroclingtability. The initial vol-
ume of dense fluid looses its axial symmetry and splits in tartiees which move away from
the center of the tank. Hence, the vertical laser sheet datesapture the central cross-section
of the density field any more (figure 30 (e)).

FIGURE 30 Vertical cross-section of the density front betwéhe inner layep, (white
region) and the outer layer, (dark region) visualized by LIV. These snapshots were takten
t=0(a),t=0.5T¢(b),t =Ty (c),t = 1.5T (d) andt = 5T (e) werel; = 2/ f = bsis the
inertial period. This experiment correspondsc= R./R; = 2.1 (Bu = 0.22; a = 1).

Rotating Shallow-Water predictions

We assume here that: viscosity and dissipative effectsegkgible (Re > 1, Fp < 1);
each layer follows the rotating shallow-water dynamies< 1) ; top and bottom boundary
conditions are free-slip and rigid lid (<« 1 , Bu* > 1). Under these assumptions, the
geostrophic adjustement of the density front is now coladoby a single parameter, namely
the Burger numbeBu.

We look here for an axisymmetric steady state, solution efRISW equations in both the
light outer layer 1 and the dense inner layer 2. For simplisite neglect the cyclostrophic
terms in the horizontal momentum equations. Such apprdiomég valid whenR,. > Ry. In
this case, the steady state satisfies an exact geostropdmcband therefore using the pressure
continuity at the interface we get

v — U9 = Oy (54)
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wheren is the dimensionless thickness of the inner layer 2. Thearagjan PV conservation
leads to a constant PV value for all fluid parcels in both layer

Qi(r > rin) = 11+_§)1 =1 (55)
Q2(T < Tout) = ! —;<2 =1 (56)

where(; = %&(rvi) is the relative vorticity and;,, (r,..) is the position of the upper (lower)
intersection of the tilted density front with the top (battpboundary (figure 31(b)). Note that,
the boundary conditions(r;,) = 1 andn(r.;) = 0 imply a singularity in the PV field at
the ends of both layers, even if the PV have the same consahrg within the layers. Such
singularities will be the source of discontinuities in tlegticiy and velocity field of the adjusted
state (figure 31(b) and (c)). Then, the angular momentumesgason or the mass conservation
gives both the same implicit relations betweep, (7..;) and the initial radius of the density
frontr. = R./Rq = Bu™'/%

Tf = rfn + 21,01 (rin) = 'r’zm + 2700 V2 (T out) (57)

Besides, outside of the region of the tilted front € r;, andr > r,,) there is no radial
displacement of fluid parcels. Therefore, the angular maumerconservation implies:

UQ(T S rin) =N (T Z rout) =0 (58)

Then, according to equations (54), (55) and (56) we obtaridhowing system of linear equa-
tions:

D+ 20,6 — (24 )6 = 0 (59)
T r

O,(ry) = —r (60)

where according to (57) and (58}r) = v; — v, satifies the following boundary conditions

1 T2 1,72

¢(Tzn) - é(rin - T_C) ; gb(rout) = 5(7” . - Tout) (61)
and
$r) = ma(r) +va(r) = 52— 1) (62)

For a given initial radius, = Bu~'/? we can solve numerically (59) with (61) using a standard
shooting method. An exemple of height, velocity and vatyipirofiles in both layers are given
in figure 33 corresponding to. = 3.33 (Bu = 0.09). Due to the volume conservation in
cylindrical geometry, the front displacement in the ougsser ¢. — 7;,,) is not identical to the
front displacement in the inner layer,(; — r.). This leads to higher velocity amplitude in the
outer layer (figure 31(b)) according to (57). Even if the w#tlpfield is strongly baroclinic
(opposit direction in the upper and the lower layer) theiedytis anticyclonic in both layers
(figure31(g) and reaches the extreme value- — f at both ends of the tilted density front.
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FIGURE 31 Density front (a), velocity (b) and vorticity (cefds in the inner and outer
layers of the adjusted steady-state according to the Ras$hgtment theory when. = 3.33
(Bu = 0.09).

Mean adjusted state

As for the previous cases, we use a time averaging over omgaingeriod, in order to
separate the slow dynamics of the mean front and the fastnaigsaof the oscillations. This
temporal averaging filters out the fast dynamics on both #wsitly front and the azimuthal
velocity field.

According to figure 32 the qualitative structure of the medjusted state measured in the
experiment is in correct agreement with the geostrophigstnjent predicted by a simple two-
layer RSW model. The averaged velocity profile, measuresecto the upper free surface,
is displayed in figure 32(b). According to the standard iodsadjustment model (solid line)
the velocity is expected to be discontinuous in the outeedat the upper edge of the front.
This is obviously unrealistic in a physical system wheresighative processes occur. Hence,
during the adjustement process a strong but continuousmigcshear is formed instead of the
discontinuous velocity jump predicted by the inviscid thed he width of this cyclonic shear is
much smaller than the deformation radi02( 0.3 R,). Besides, the vorticity in such thin shear
layer exceeds the planetary vorticity £ 3 — 4 f in figure 2(b)) and may induce fast small-
scale instabilities. However, the spatio-temporal retsmhuof the particle image velocimetry
we used could hardly capture such small-scale instabittepns.
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FIGURE 32 Comparison between the mean experimental adjatdte (dots) and the Rossby
adjustment model (solid line). The vertical cross-sectibthe density profile (a) corresponds
to R./R; = 2.1 (Bu = 0.22) while the horizontal azimuthal velocity (b) measured clusthe
upper free surface correspondsig/ R; = 3.33 (Bu = 0.09).

Small-scale instabilities

By means of LIV, we could visualize an horizontal cross-eecof the sharp density gra-
dient just below the free surface. The dynamical evolutibthis sharp gradient is shown in
figure 33. After the release of the bottomless cylinder theenfiront experiences a rapid radial
contraction. Due to the angular momentum conservatios,rddial contraction generates at
the same time a strong azimuthal flow. During this very ihgiage, small distrubances ap-
pears at the edge of the front. Using an edge detection imagessing we could accurately
measure the initial wavelengthof this instability (figure 3(b)). Due to its rapid growth rate
this instability is probably not affected by the rotatiordathe wavelength of the small-scale
perturbations does not depend on the deformation radiukigMet al. 2006).

In the present case, unlike the outcropping lense configmaho secondary instability
occurs and the non-linear saturation of the initial pertidn leads to the formation of strong
cusps and small cyclones appear according to figB(e) 3Here again the size of theses intense
cyclones could be much smaller that the deformation rachidsramain independant from this
latter. Theses cat eye patterns look like a classical hoté&shear instability. Nevertheless,
due to the baroclinic structure of the flow, the vertical esien of these small cyclones is
limited and they should be formed preferentially at the toph@ bottom edge of the density
front. Besides, these vortices are transient featureseaddiustment process. Indeed, after half
an inertial period the front reaches his maximal contractiad the small cyclones disappear
during the reverse oscillation (figur@@i)).
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FIGURE 33 Visualization of small-scale disturbances at 0 (a), ¢ = 0.257%(b), t =
0.5T%(c) andt = 0.757+(d) in an horizontal cross-section of the density fralit.(= 0.09) just
bellow the upper free surface. Local image processing oé &t detection are shown in (b)
and (c), the black pixels corresponds to high values of ttensity gradient.

4 What do we learn from laboratory experiments ?

Laboratory experiments can hardly reproduce the complestrtbdynamics (moisture, turbu-
lent boudary layer convection, evaporation, air-sea fluyeand the wide range of dynamical
regimes Re > 1; § < 1) encounter in the atmophere or the ocean. However, the gadysi
modeling of rotating shallow water flows is very useful espkg for the geostrophic adjust-
ment process, where several dynamical features occur augdemporal and spatial scales.
Previous laboratory experiments have shown that the gewstr adjustement is a rapid
process (Ungarisht al., 2001; Bouruet-Aubertot and Linden, 2002; Rubino and Bra2@03;
Thivolle-Cazat et al., 2005). But very few studies investegthe characteristic time of this
process especially when strong wave activity is presentoAting to all the cases we studied, a
mean adjusted state is reached after approximately oneoanestial periodl’;. The rapidity of
the geostrophic adjustment does not depends on the size amtplitude of the initial unbalance
state. The so called mean state is obtained from a simpleavuaeging ovefl;, in order to
filter out the fast wave motion. We say that this average@ stdches an equilibrium (i.e. get
adjusted) when it's temporal evolution remain small in canmgon with the characteristic wave
frequency. Hence, even if a strong wave activity is presetiie initial region of unbalance, the
mean flow could nevertheless be adjusted. This experimebsavation is in good agreement
with the standard hypothesis of dynamical splitting betw#ee fast £ > 1) and the slow
(e < 1) component of motion. In the limit of small Rossby numbelng, &symptotic analysis
shows that the slow component of motion doesn'’t feel the dast (chapter 2). Therefore,
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the existence of a mean adjusted state does not depend orettenge (or not) of fast wave
motion. Besides, the experimental results for both the weore lens configuration and the
uniform PV front configuration showed that a mean adjustatestould be extracted from the
wave motion with a simple time-averaging even for finite Ryssumbers. Hence, according
to the whole set of experiments, the fast component of maEems to have only a weak
influence (if any) on the evolution of the mean adjusted d@ata wide range of parameters
(Ro< 1, Bu~0.1-10, —0.5 < A <0.5).

Theses two-layers or three-layers experiments also shainthie PV conservation remain
robust even if the initial state does not satisfy the assigngptof the rotating shallow-water
model. Indeed, in almost all the cases, three-dimensiarhhan-hydrostatic motions (shocks
or gravity current head) could occur in the early stage ofistijent. Nevertheless, the predic-
tion of the RSW model based on the PV conservation gives &cioestimation of the mean
adjusted state. A very good agreement is found for the cdsaglmnic PV front when there
IS no outcropping. However, the PV conservation could ballpdroken in the case of out-
cropping fronts when the initial PV profile exhibit a singti (i.e. the layer thickness vanish
at a given position). In such case, all the experiments éxtnénsient and three-dimensional
instabilities localized around the PV singularity. Thesgtabilities are an efficient mechanism
of turbulent dissipation which rapidly cascades energyatovemall scales in the frontal region.
For the uniform PV front configuration, small and intenselages are formed in a very short
time (~ 0.57%) during the adjustement of a large scale anticyclonic frdie rapid formation
of these structures, which are much smaller than the defemeadius, were not predicted by
the standard scenario of adjustment and they could hardbaptured by standard numerical
simulations which have limited spatial resolution. Thedliatory experiment shows here a new
mechanism of formation of small and intense structuresiwaHarge-scale synoptic front.

The relaxation of any unbalanced initial state in a rotasihgllow-water model will always
leads to the emission of Poincarré waves (away from latevahbaries). In a real labora-
tory experiment, both hydrostatic and non-hydrostaticegasould be emitted at the same time
and the spectral gap between the fast and the slow compohemition could then be filled.
However, according to our experiments and previsous sty@euruet-Aubertot and Linden,
2002; Rubino and Brandt, 2003; Thivolle-Cazat et al., 2G68)energy released to the wave
modes during the adjustment is mainly concentrated ardwnhertial frequency. A significant
wave activity remain for a long time (several inertial pebianside both the cyclonic and the
anticyclonic structures even if the mean steady stateesdir adjusted. For some specific con-
figuration the anticyclonic structure may exhibit sub-treroscillations. Such wave activity is
in good agreement with the RSW model predictions (chapt&d23 and confirm the dynami-
cal splitting between the fast waves and the slow adjusteétbmddowever, the inertia-gravity
waves detected in the experiment have a dispersive beldedio the finite value of the aspect
ratio parametetv. This could explain why we didn't see any evidence of the wareaking
events predicted in the RSW framework (chapter 3). The sstalle shocks we observed in
the very initial stage of adjustment seems to be due to a meaiturning event rather than a
propagating wave leading to breaking.
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