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1 The Holy Graal of rotating shallow-water flows

The rotating shallow water model (RSW) is probably the most pedagogical and useful model
to understand geophysical fluid dynamics. Even if the RSW equations are based on drastic
assumptions (hydrostatic balance, quasi-bidimensionality, weak dissipation) it is a surprisingly
good model of many phenomena in the atmosphere and the ocean.Nevertheless, as far as
laboratory experiments are concerned, one should keep in mind that the dynamics of a rotating
and stratified fluid is given by the full three-dimensional Navier-Stokes equations at the final
place. As it was shown in the chapter 1, the RSW equations can be derived from the primitive
equations according to an asymptotic expansion which indeed remains valid for some restricted
range of dynamical parameters. However, this derivation starts from the hydrostatic and non-
dissipative primitive equations (chapter 1), while both hydrostatic and dissipative effects could
play a role in the laboratory. Hence, we recall in this Section the derivation of the RSW model
from the Navier-Stokes equations. The main purpose is to understand here which dynamical
processes are filtered out by the RSW model while they occur sometimes in real experiment.
Moreover, we will try to specify the value of the dynamical parameters needed to be achieve in
laboratory experiments in order to be close to the RSW dynamics.

1.1 Single layer f-plane configuration

Let us consider first a single barotropic and incompressiblefluid layer in a rotating tank with a
flat bottom and a free upper surface, as shown figure 1.

FIGURE 1 Single water layer on a rotating turntableH0 = 10cm andD = 90cm.
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In order to get a dimensionless set of equations we use:L andH0 as horizontal and vertical
scales,T the characteristic time-scale for the flow evolution,U andU(H0/L) as horizontal and
vertical velocity scales,ρgH0 as the charcteristic hydrostatic pressure scale andρfUL the scale
of pressure deviation from hydrostatic balance (f = 2Ω0 the Coriolis parameter). Using this
dimensionless formulation, the Naviers-Stokes equationscan be written as follows:

ε∂tu+RoDu− v = −∂xπ + Ek∆u (1)

ε∂tv +RoDv + u = −∂yπ + Ek∆v (2)

α2 [ε∂tw +RoDw] = −∂zπ + α2Ek∆w (3)

whereD = u∂x + v∂y + w∂z and∆ = ∂z2 + α2(∂x2 + ∂y2). Besides, in this formulation
we decouple the hydrostatic pressurePH corresponding to the fluid at rest and the dynamical
pressureπ (pressure deviation induced by the fluid motion) according to:

P = PH(z) +
Ro

Bu
π(x, y, z, t) (4)

wherePH(z) = 1 − z + P0 andP0 is the dimensionless pressure at the free-surface.
In addition one should consider the continuity equation

∂xu+ ∂yv + ∂zw = 0 (5)

with upper (z1 = 1 + λη) and lower (z0 = 0) boundary conditions:

u(z0) = v(z0) = w(z0) = 0 (6)

Row(z1) = λ [ε∂tη +Ro (u∂xη + v∂yη)] (7)

π(x, y, z1, t) =
λBu

Ro
η(x, y, t) (8)

whereη(x, y, t) is the dimensionless deviation of the free-surface.
We have introduced in this formulation the following non-dimensional parameters:

• The Ekman number Ek = ν
fH2 fix the vertical scaleδE =

√
EkH0 =

√
ν/f of the

viscous Ekman layer, whereν is the fluid viscosity. According to the standard boundary
layer theory, this viscous layer cannot be neglected at the bottom boundary where the
no-slip condition (6) must be satified (Gill, 1982; Pedlosky, 1987; Vallis, 2006). In the
laboratory, the thickness of this boundary layer is fixed only by the rotation rateΩ0 =
2π/T0. For typical values ofΩ0 ' 1 − 10 rpm we getδE ' 1 − 2mm. Hence, as far
asH0 � δE, we usually neglect viscous effects in the upper part of the fluid layer (z ≥
2− 3δE). Nevertheless, the Ekman layer forces a secondary re-circulation which induces
an efficient transfert of angular momentum from the boundaryto the whole fluid domain
(Greenspan, 1968). For a fluid layer close to the geostrophicbalance the characteristic
decay time of this Ekman pumping isTE = H0/

√
νf = T0/(4π

√
Ek) (Pedlosky, 1987).

Therefore, if we want to neglect this dissipative process over at least several rotation
periodT0, the Ekman number should be quite smallEk ≤ 10−4. Such values can be
easily reached if the fluid layer is thick enough.

• The aspect ratio parameterα = H0/L. While this parameter is generally small for
synoptic atmospheric or oceanic structures (α ' 10−2 − 10−3), this is not always the
case in laboratory experiments. Indeed, we could hardly work with ultra-thin layers. The
first limitation is due to the surface tension which acts on a millimeter scale. The second
constraint is due to the Ekman pumping described above. Hence, typical layer depths in
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rotating tank experiments are about few tens of centimetersH0 ' 10−50 cm. Therefore,
in order to get a small aspect ratio (at leastα ' 0.1) the characteristic horizontal scales
should be aboutL ' 1 − 5m. To study the dynamics of multiple structures or to avoid
the end effects, the experiment should then be done on a very large turntableD ' 10m.
A unique installation reaches such large scale (D = 13m), the Coriolis turntable1 in
Grenoble, France. However, for medium size experiments (D ' 1− 2m) the aspect ratio
parameter cannot be asymptotically small and is often closeto unityα ' 1 .

• The classicalRossby numberRo = U
fL

characterizes the importance of rotation in the
fluid layer. In order to be consistent, the horizontal scaleL in the Rossby numberRo
should correspond to the characteristic scale of the horizontal velocity gradient. In other
words, the Rossby number quantifies the ratio of the relativevorticity ζ = ∂xv−∂yu with
respect to the planetary vorticity (Ro ' ζ/f ). For large-scale flows, the Rossby number
is generally small or finite in the atmosphere and the ocean, leading to the geostrophic
balance. It will exceed unity only for very intense vortices, such as hurricanes. This
parameter is usually well controlled in a rotating experiment and both small and large
values could be obtained. Nevertheless, to reach large value which would exceed unity
an external forcing is generally needed. Indeed, without external energy source, from
any initial state the geostrophic adjustment process will quickly lead to a mean flow in
geostrophic balance which implies small or finite Rossby numbers (Ro ≤ 1).

• We introduce here thetime evolution parameter ε = 1
fT

. This parameter quantifies the
dynamical evolution of the flow. It depends on the flow response to the initial condition or
to the external forcing. Hence, this parameter cannot be fixed by the experimental setup.
Classical textbooks (Gill, 1982; Pedlosky, 1987) usually consider the case of large-scale
and slow advective motion and therefore the time-evolutionparameter and the Rossby
number are fixed to be of the same orderε ' Ro. However, for high frequency linear
waves (i.e. short gravity-waves)ε ≥ 1 andRo � 1 while for intense cyclonesRo ≥ 1
andε � 1. Hence, as far as experiments on geostrophic adjustment areconcerned, it is
useful to consider both the cases of slow (ε � 1) advective motion or fast (ε ≥ 1) wave
motion independantly of the Rossby number value.

• The Burger number Bu = (Rd/L)2whereRd =
√
gH0/f is the Rossby deformation

radius. As far as we consider a relatively thick layerH0 ' 10 − 50 cm and a relatively
slow rotation rateΩ0 ' 1− 10 rpm we get a large deformation radiusRd ≥ 50cm which
is usually close to the size of the experimental apparatus. Hence, with a single barotropic
layer, we can hardly obtain small Burger number values. Onlyfew experiments using
high rotation speed (Ω0 ' 60 rpm) reached small Burger number value within a single
layer configuration. However, in such case a parabolic vessel is needed to compensate
the resulting parabolic shape of the free-surface (Nezlin and Snezhkin, 1993; Stegner and
Zeitlin, 1998; von de Konijnenberget al., 1999). For such setups the strong curvature
of the fluid layer induces, as in the spherical planetary geometry, a strong beta effect.
Hence, such parabolic configurations are relevent to model large-scale planetary flows, as
the Jovian atmosphere for instance.

• Therelative elevation parameterλ = η0/H0 whereη0 is the characteristic amplitude of
the free surface deviation. When the flow is close to geostrophic balance, namely when
the dynamical pressure gardient∇π is balanced at the same order by the Coriolis force,
the relative geopotential deviationλ depends on both the Rossby and the Burger number
λ ∼ Ro/Bu (cf. Chapters I and II).

1http://www.coriolis-legi.org
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The RSW model is based on three main approximations: weak dissipation, hydrostatic balance
and quasi-bidimensionality of the horizontal velocity. Wediscuss, in what follows, when and
in which range of dynamical parameters these approximations could be valid or not.

We first assume thehydrostatic balance for the whole pressure field. The vertical accel-
eration in (3) could be neglected if bothα2Ro � 1 andα2ε � 1. Note that for rotating
flows, the shallow-water constraint (α � 1) is not necessary to get the hydrostatic balance.
Indeed, a weakly viscous (Ek � 1) slow (ε � 1) and geostrophic (Ro � 1) flow will fol-
low the hydrostatic balance even if the aspect ratio parameter α is finite. Hence, hopefully
for the experimentalists, quasi-geostrophic motions can be accuratley reproduced in a rotat-
ing tank whileα ' 1. Nevertheless, the shallow-water constraint is not a sufficient condition
that guarantees the hydrostatic balance. Indeed, if the system supports high frequency waves
(ε� 1) they could be a source of non-hydrostatic motion or instability. Besides, the case of in-
tense (Ro ' 1) shallow-water (α � 1) vortices or jets is also complex. These intense structures
could exhibit in anticyclonic vorticity region an inertialor centrifugal instability which generate
three-dimensional and non-hydrostatic perturbations within the large scale flow (Teinturieret
al., 2006). Such short-wavelength instabilities could amplify small-scale perturbations (having
a finite aspect ratioαp ' 1) with a rapid growth rate (εp ' 1). In such case, the cyclonic vortic-
ity regions may satisfy the hydrostatic balance, while intense non-hydrostatic motion occurs in
the anticyclonic regions (cf. figure 5 below).

However, when the evolution of a shallow-water flow (or its unstable perturbations) is not
fast (ε ≤ 1) the hydrostatic balance is satisfied at the first order of approximation and equation
(3) leads to:

∂zπ = 0 (9)

Then according to (8) the dynamical pressure becomes directly proportional to the free-
surface geopotential deviation:

π(x, y, t) = η(x, y, t) (10)

We then assume that the fluid layer experiences aweak dissipation. The viscous terms in
equations (1-2) could be neglected at a first order of approximation if the Ekman number is
small enoughEk � 1. However, we cannot totally suppress the no-slip conditionat the bottom
and we should introduce an Ekman layer. This layer will then change the bottom boundary
conditions for the upper inviscid layer. It will allow a free-slip condition for the horizontal ve-
locities (u(z0), v(z0)) but will induce a non-zero vertical velocity. In the case ofhydrostatic and
slow geostrophic motions this vertical velocity is proportional to the horizontal flow vorticity
(Pedlosky, 1987; Vallis, 2006) and the boundary conditions(6) should be replaced by:

w(z0) =

√
Ek

2
(∂xv − ∂yu) =

√
Ek

2
ζ (11)

whereζ is the vertical component of vorticity. Hence, the horizontal dissipation and the Ekman
pumping mechanism could be neglected if

√
Ek � 1. Practically, in laboratory experiments

the dissipation will be a second order process whenEk ≤ 10−4 at least.
The third approximation assume aquasi-bidimensional horizontal flow, in other words,

the vertical derivatives∂zu and ∂zv are expected to be negligible. This assumption corre-
sponds to the Taylor-Proudman theorem which is valid only inthe limit of small Rossby number
(geostrophic flows). A similar approximation is made by the closure hypothesis (22) given in
the introduction, which decorrelate the vertical averaging of the horizontal velocity field. Then
integrating the continuity equation (22) along the vertical and using the boudary conditions (7)
and (11) we finally obtain the following dimensionless formulation of the RSW model :

ε∂tu+RoDhu− v = −∂xη (12)
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ε∂tv +RoDhv + u = −∂yη (13)

λ [ε∂tη +RoDhη] + (1 + λη)Ro [∂xu+ ∂yv] = Ro

√
Ek

2
ζ (14)

whereDh = u∂x + v∂y andζ = ∂xv − ∂yu.
Strictly speaking, these RSW equations are valid in the asymptotic limit of slow quasi-

geostrophic flows even if the aspect ratio parameter is finiteα ' 1. However, this model is
often accurate beyond its limit of validity for finite Rossbynumber (Ek � 1; ε � 1; Ro ≤ 1)
and could be applied to a wide variety of laboratory experiments. This will be indeed the case
if the vertical motions remain weak enough (w � 1). This latter condition implies both the
hydrostatic balance (9) and a quasi-bidimensional horizontal flow. Nevertheless, in such case,
high-order terms should be added in (11) to account for non-linear Ekman pumping (Sanson
and van Heijst, 2000; Hart, 2001).

1.2 Influences of the centrifugal force

Since the Newton’s bucket experiment (1689) it is well knownthat the free-surface of a fluid
layer in solid body rotation is deformed under the action of the centrifugal force. The surfaces
of constant pressure for a fluid at rest in the rotating frame (i.e. equipotential surfacesΦ = Cst)
are given by the potential function:

Φ(R, Z) = −1

2
Ω2

0R
2 + gZ (15)

Hence, the free-surface of a rotating fluid layer satifies a parabolic shape. Moreover, according
to (15), all the equipotential surfaces corresponds to the same paraboloid simply translated
along the rotation axis (figure 2(a)). We use in what follows adimensionless formulation where
H0 is the mean thickness of the layer,D is the tank diameter andZc = g/Ω2

0 is the curvature
radius at the center of the parabola. In cylindrical coordinates, the equation for the unperturbed
free-surface can be written as :

h(r) =
Z

H0

= 1 +
1

2H0Zc

(R2 − 1

8
D2) = 1 +

1

2

β

α
(r2 − 1

8
d2) (16)

We have introduced here two dimensionless parameters:

• The dimensionless tank diameterd = D/L. The experimentalist tend to use a large
tank d � 1 in order to satisfy the shallow-water constraint and to avoid the boundary
effects. However, for such case, the influence of the centrifugal force could become non
negligible close to the wall.

• Thecurvature parameter β = L/Zc quantifies the influence of the curved equipotential
surfaces on a dynamical structure of horizontal sizeL. For the atmosphere or the oceans
an equivalent parameter is induced by the spherical geopotential whereZc is replaced
by the earth radiusRE. It is therefore natural to chose a coordinate system so thatthe
unpertubed water surface, or any equipotential surfaces, is given byz = Cst. Hence,
paraboloidal coordinates should be used for rotating laboratory experiments (Nycander,
1993) while spherical coordinates are used for planetary flows (Pedlosky, 1987). How-
ever, for small values of the curvature parameter (β � 1) the tangent plane approximation
is generaly made. In other words, a cartesian system of coordinates is used locally and
the corrective terms induced by the parabolic curvature will appear only at the orderβ2d
(Nycander, 1993; Stegner and Zeitlin, 1995). If we considera medium scale experiment
(D ' 100cm) and a typical horizontal scaleL ' 10cm, these corrective terms could be
neglected for moderate rotation rate (Ω0 ≤ 10rpm).
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The main difference between rotating laboratory experiments and planetary flows is that the
effective gravityge is variable in both direction and amplitude in the laboratory. Indeed, when
the centrifugal force is not negligible, it induces a tilting of the effective gravity but also a
change in its amplitude (figure 2(a)). The latitudinal dependence of the effective gravity (also
called theγ-effect) in paraboloidal coordinates and in the tangent plane approximation is given
by:

ge

g
=

1

cosθ
=

√
1 + β2r2 ' 1 +

1

2
β2r2 (17)

For paraboloidal equipotential surfaces this latitudinaldependance of the effective gravity
is of the same order than the latitudinal dependance of the Coriolis force (classicalβ-effect).

f

f0

=
Ωz

Ω0

= cosθ ' 1 − 1

2
β2r2 (18)

Under the tangent plane approximation the equipotential surface are assumed to be locally
flat (figure 2(b)) while the radial variations of the effective gravityge, the local component of
rotationΩz and the unperturbed layer depthh are expended at the first order iny = r − a the
local latitudinal coordinate centered at the radial positionr ' a.

FIGURE 2 Parabolic deformation of the equipotential surfaces (thin lines) due to the cen-
trifugal acceleration in rotating laboratory experiments(a). Schematic description of the tangent
plane approximation when the corrective terms of orderβ2d could be neglected (b).

If we consider the center of the rotating tank (a = 0 andy = r), according to (16-18) the
latitudinal variations ofh(y), Ωz(y) or ge(y) are all quadratic and whenβ/α = L2/(ZcH0) � 1
the fluid layer respect the f-plane configuration at the first order of approximation. This will be
generally the case for moderate rotation rate (Ω0 ≤ 10rpm) in a central region of few tens of
centimeter (r ≤ 10 − 20cm). However, out from the center, the latitudinal variationscould be
linearly expended iny and they reach their extremal values at the tank wall. Therefore, in order
to quantify the relative influence of theβ-effect, theγ-effect or the topography, we estimate
(whena = d) the magnitude of the following first derivatives :∂yh/h ∝ βd/α , ∂yf/f ∝ β2d
and∂yg

e/ge ∝ β2d. Hence, for standard experimental configuration (β � 1, α ≤ 1, d � 1)
the y-dependence of the equilibrium layer depth induces by the parabolic free-surface deforma-
tion is the dominant effect. Due to this topographic effect,the equilibrium fluid layer can sup-
port topographic-Rossby waves. The linear dispersion relation of these low-frequency waves is
analogous to planetary Rossby waves and they are strongly coupled with the slow geostrophic

6



motion. This effect may induces, for instance, a significantdrift velocity (Vd ' fL(∂yh/h)
whenL ≤ Rd) and the dispersion of localized vortices (Matsudaet al., 1990; Carnevaleet al.,
1991; Flor and Eames, 2002). Hence, the dynamical influence of the topographic variations
could be neglected in the whole tank, from the center to the wall, if ∂yh/h ∝ βd/α � ε. The
latter criterion will be generally satisfied in a medium scale experiment (D ' 100cm) if the
rotation rate is weak enough (Ω0 ≤ 4rpm).

However, if the ratioβd/α become too large, the variation of the layer thickness induced by
the centrifugal force could be compensated with a parabolicbottom topography or a parabolic
vessel adjusted to the rotation rate (Nezlin and Snezhkin, 1993; Stegner and Zeitlin, 1998; von
de Konijnenberget al.,1999).

1.3 Non-hydrostatic wave modes

Focusing on the geostrophic adjustment problem, where bothslow geostrophic motion and
fast waves are generated, we look here more carfully at the wave motion that may occurs in a
rotating fluid layer. We linearize the primitives equations(1-8) assuming small amplitudes for
the velocityRo� 1 and the free surface displacementλ� 1. We neglect all dissipative terms
(Ek � 1) and take the deformation radius as a characteristic horizontal scaleL = Rd of the
unperturbed rotating fluid layer, thereforeBu = 1 andα = H0/Rd. Besides, we keep in mind
that the aspect ratioα cannot be asymptotically small for laboratory experiment and we keep
the vertical acceleration in (3). Hence, we get :

ε∂tu− v = −∂xπ (19)

ε∂tv + u = −∂yπ (20)

α2ε∂tw = −∂zπ (21)

∂xu+ ∂yv + ∂zw = 0 (22)

with upper (z1 = 1) and lower (z0 = 0) boundary conditions

w(z0) = 0 (23)

w(z1) = ε∂tη (24)

π(z1) = η (25)

According to the space and time shift invariance of the system, we use the following Fourier
decompositionA(x, y, z, t) = A0(z) e

i(t−kx−ly) for all variables. In this case the temporal evo-
lution parameter corresponds to a dimensionless wave frequencyε = ω̃/f . This linear system
finally leads to:

∂z2π0 +
α2ε2K2

1 − ε2
π0 = 0 (26)

whereK2 = k2 + l2, with the boundary conditions

∂zπ0(0) = 0 (27)

∂zπ0(1) = α2ε2π0(1) (28)

For inertia-gravity waves (ε > 1) we obtain the following dispersion relation:

γ tanh(γ) = α2ε2 ; γ2 =
α2ε2K2

ε2 − 1
(29)
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We can see here that we will recover the dispersion relation of Poincaré waves

ε2 = 1 +K2 (30)

only if αK � 1, in such case short inertia-gravity waves are dispersionless. This condition
is more restrictive than the shallow-water constraintα � 1, and indeed short enough gravity
waves will always deviate from the RSW model. We have plottedin figure 3 the deviation from
the Poincarré dispersion relation for various values of theaspect ratio parameterα that could be
found in laboratory experiment.

FIGURE 3 Log-log plot of the dimensionless dispersion relation for inertia-gravity waves. The
curves correspond to diferent values of the aspect ratio parameter: RSW model, orα = 0

(thick line),α = 0.1 (thick dashed line),α = 0.3 (thin dashed line),α = 1 (thin dotted line).

For a finite value of the aspect ratio parameter,α = 0.3 for instance as it is shown in figure
4, high-frequency waves (ε � 1) or in other words short-waves (K � 1) will satisfy the
dispersion relation of non-rotating surface gravity waves(SGW).

ε2 =
K

α
tanh(αK) (31)

It can be shown that the same dispersion relation (31) applies for boundary Kelvin waves propa-
gating along a lateral wall of the tank. Hence, unlike the RSWmodel, both inertia-gravity waves
and Kelvin waves will become dispersive in the short-wave limit if the aspect ratio parameter
is not small enough. Nevertheless, theses non-hydrostaticeffects could be neglected for a wide
range of the inertia-gravity wave spectrum ifαK � 1, which corresponds to

λ̃� 2πH0 (32)

whereλ̃ is the characteristic wavelength.
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FIGURE 4 Dimensionless dispersion relation of inertia-gravity waves corresponding to the
RSW model (thick line), in a non-rotating (thin line) and a rotating fluid layer (thick dashed

line) for the fixed value ofα = H0/Rd = 0.3.

FIGURE 5 Dimensionless dispersion relation of non-hydrostatic inertial waves (left panel)
corresponding to various vertical modes (right panel). Allthese wave modes are calculated for

the aspect ratio parameterα = H0/Rd = 1.

For inertial waves (ε < 1) we obtain a discrete spectrum of n vertical modes which corre-
spond to the dispersion relations:

−γntan(γn) = α2ε2
n ; γ2

n =
α2ε2

nK
2
n

1 − ε2
n

(33)

where(1 + n)π/2 < γn < (1 + n)π.
These non-hydrostatic waves exhibit strong variations of pressure and velocity along the

vertical axis (figure 5 right panel). When the vertical wavenumber becomes large (n � 1)
the wave frequency approches the Coriolis frequencyε ' 1 for a wide range of horizontal
wavenumber components. According to figure 5 (left panel), for a given horizontal wavelength
k, the short wavelength perturbations along the vertical will have the highest horizontal phase
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speed. Hence, the non-hydrostatic inertial waves play a crucial role in the vertical alignment
and the rapid formation of Taylor columns in a rotating fluid layer.

If now we add a mean flow component, such type of non-hydrostatic modes will lead to
inertial instability in anticyclonic vorticity regions (Johnson, 1963; Yanase, 1993). Such in-
stabilities occur when the Rossby numberRo exceeds unity and the maximum growth rates
for these three- dimensionnal modes are reached whenRo ' 2. For larger Rossby numbers,
the influence of rotation becomes negligible, and the growthrates of such unstable modes are
strongly reduced. Hence, for finite Rossby numbers, starting initially from a two-dimensionnal
flow the three dimensionnal perturbations could growth exponentially and break both the hy-
drostatic and the geostrophic balance (Afanasyev and Peltier, 1998; Stegneret al. 2005). As it
can be seen in figure 6, such small-scale instability may occurs in shallow-water anticyclonic
vortices when the Rossby number is large enough.

FIGURE 6 Dye vizualisation of von Karman wake in a rotating shallow-water layer with
α ' 0.07,Ro ' 2 andRe ' 20000. Small-scale instability is visible in anticyclonic vortices

(black dye), while cyclonic vortices (red dye) remain stable (Teinturieret al., 2006)

1.4 Two-layer stratification

We have seen previously that with a single barotropic layer experiment the deformation radius
is generally close to the tank size. In other words, for a single layer f-plane experiment we are
restricted to large Burger number dynamics. Nevertheless,if we use a two-layer stratification
we introduce a baroclinic deformation radius which could bemuch smaller than the barotropic
one. Besides, the Ekman pumping affects only the lower layer, and for an appropriate set of
parameters the upper layer dissipation could be strongly reduced.

To create a density stratification in water, salt or sugar aregenerally used instead of temper-
ature. Indeed, the thermal diffusivity (κT ' 10−7m2.s−1) is a hundred time larger than the salt
diffusivity (κS ' 10−9m2.s−1). In a motionless fluid layer, an initial salt perturbation will dif-
fuse over a 1 cm distance in half a day instead of ten minutes for a thermal perturbation. Hence,
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for typical layers depth about few to tens of centimeters an initial salt or sugar stratification
will remain robust for at least several hours. To obtain a sharp density jump corresponding to
a well-defined two-layer stratification we generally proceed as follows. The tank is first filled
with the deep and dense lower layer. Then, we start to spin up the rotating table and when the
solid-rotation rotation is reached we slowly inject the light upper layerρ1 at the surface of the
dense bottom layerρ2. To reduce the vertical mixing during the injection we coulduse flotating
Hele-shaw cells or small tubes to inject the light fluid horizontally at the free-surface. An other
method consists to inject very slowly the upper layer through floating porous plates.

Let us consider a two-layer salt stratification, as shown in figure. According to the classical
dimensional analysis we add to the previous ones at least four new dimensionless parameters:

• The thickness ratio parameter δ = H1/(H1 + H2). This parameter controls the dy-
namical interaction between the two layers. For equivalentdepth layersδ ' 0.5 the
two layers are strongly coupled and baroclinic instabilitymay occurs even if the ver-
tical velocity shear is weak. On the other hand, according tothe standard two-layer
Phillips model (Pedlosky, 1987), for small ratiosδ � 1, the baroclinic growth rates tend
to vanish. Hence, to avoid a strong baroclinic destabilisation of the flow, we will first
consider laboratory experiments with a thin upper layer anda deep lower layer having
δ ' 0.1. Besides, in order to keep the Ekman number small enough in the lower layer
(E(2)

k = (δE/H2)
2 ≤ 10−4Ek), we generally fixH2 = 10−20cm, and therefore the upper

layer thickness is aboutH1 ' 2cm.

• Thedensity ratio parameterN = 2(ρ2 − ρ1)/(ρ2 + ρ1). With salt stratification, we can
easily obtain aN small up to10−3. We then introduce the reduced gravityg

′

= Ng � g
which controls the dynamics of internal gravity waves at interface between the layers.

• The internal Burger number Bu
′

= (R
′

d/L)2 corresponding to the baroclinic defor-
mation radiusR

′

d =
√
g′H1H2(H1 +H2)/f . We can see here that for smallN '

10−3 and δ ' 0.1 the baroclinic deformation radius could be two orders of magni-
tude smaller than the barotropic deformation radiusR

′

d '
√
g′H1/f ' 10−2Rd, where

Rd =
√
g(H1 +H2)/f . Hence, for a thin upper layer withH1 ' 2cm and a weak

density differenceρ2 − ρ1 ' 2 − 10g.l−1 we can reach deformation radius as small as
R

′

d ' 1cm. Therefore, with a two-layer stratification, the internal Burger number could
be easily varied from small to large values0.01 ≤ Bu

′ ≤ 100.

• We introduce thestratification parameter ES = (δE/dS)2 in order to quantify the dissi-
pation induced by the fluid-fluid interface. This parameter is an equivalent Ekman number
for a continuously stratified fluid wheredS is the characteristic scale of the vertical density
gradient. Indeed, for salt stratification, due to the molecular diffusion and the injection
process, the density gradient is always continuous betweenthe upper and the lower layer.
Even with very slow laminar injection of both layers the characteristic sizedS cannot be
infinitely small, and we generally get a density gradient thickness ofdS = 3 − 5mm
(Stegneret al. 2004). For geostrophic flows, the vertical gradient of the horizontal ve-
locity will be directly proportional to the vertical density gradient. Hence, the dissipative
terms in the right-hand side of the horizontal momentum equations (12) should scale with
ES = (δE/dS)2. This parameter is larger than the Ekman number defined usingthe upper
layer thicknessE(1)

k = (δE/H1)
2. However, due to the absence of the no-slip boundary

condition, there is no boundary Ekman layer for the upper layer. The fluid-fluid interface
will then induce (if any) a much weaker recirculation than a classical bottom Ekman layer
if the vertical stratification is not too sharpES = (δE/dS)2 � 1.
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We get a dimensionless set of equation for the two-layer RSW model with rigid lid and bottom
boundary condition using:L as horizontal scale andT the characteristic time-scale for both lay-
ers,U (i) as the horizontal velocity,Hi the vertical thickness andρifU

(i)L the pressure deviation
from hydrostatic balance in each layer.

ε∂tu
(i) +Ro(i)D(i)

h u(i) − v(i) = −∂xπ
(i) (34)

ε∂tv
(i) +Ro(i)D(i)

h v(i) + u(i) = −∂yπ
(i) (35)

whereD(i)
h = u(i)∂x + v(i)∂y and the superscriti = 1, 2 corresponds respectively to the upper

and the lower layer. The pressure continuity at the interface gives :

λBu
′

1 − δ
η = (1 −N)Ro(1) π(1) − (1 +N)Ro(2) π(2) (36)

and the mass conservation in each layer leads to:

λ
[
ε∂tη +Ro(1)D(1)

h η
]

+ (1 + λη)Ro(1)
[
∂xu

(1) + ∂yv
(1)

]
= 0 (37)

λδ
[
ε∂tη +Ro(2)D(2)

h η
]
− (1 − δ − λδη)Ro(2)

[
∂xu

(2) + ∂yv
(2)

]
= (1 − δ)Ro(2)

√
E

(2)
k

2
ζ (2)

(38)
where the relative elevation parameterλ correponds here to the characteristic deviation of the
internal interface rescaled by the upper layer thicknessH1.

According to the above equations, if the thickness ratio parameterδ and the density ratio
parameterN are small enough and if the motion has a strong baroclinic component (intense ve-
locities in the thin upper layer while the deep lower layer remains almost at restRo(2) ' δRo(1)

(Cushman-Roisin, 1992), the interface deviationη is controlled by the upper layer pressure only
η ' π(1). In such case, at the first order of approximation, the upper layer motion is not affected
by the lower layer which acts as a neutral layer. Hence, the upper layer dynamics can be de-
scribed by the shallow-water reduced-gravity model. Namely, a one layer RSW model where
the gravityg is replaced by the reduced gravityg

′

induced by the two-layer stratification.
However, as for the single layer case, non-hydrostatic wavemotions or inertial instability

may occur in the two-layer experiment when respectivelyλ̃ � 2πH2 orRo(1) > 1. Note that
the hydrostatic constraint on the wave activity is fixed hereby the deep layer thicknessH2 and
not the thin upper layerH1. Recent laboratory experiments performed in a two-layer configu-
ration (α ' 0.66; δ '0.2) exhibit non-hydrostatic wave behaviour forλ̃ ' 80cm wavelength,
whileH1 ' 12.5cm andH2 ' 50cm (Thivolle-Cazat, 2003).

Taking into acount the above mentioned laboratory constraints, the physical modelling of
rotating shallow-water flows looks like a Holy Graal for experimentalist. Nevertheless, for a
specific range of the dynamical parameters, the motion in rotating fluid layers could be close to
the one layer RSW model. We recall bellow, both for single-layer and the two-layer configu-
rations, the distinct conditions needed to be satisfied, respectively, for the slow vortical motion
and the fast wave motion in order to follow the RSW dynamics.

vortical motion wave motion

single layer εα2 � 1 ; Roα2 � 1 ; Ro < 1 kH0 � 1

two layers δ � 1 ; Ro(2) ≤ δRo(1); Ro(i)(α(i))2 � 1 ; Ro(1) < 1 kH2 � 1
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2 Potential vorticity measurements: a new challenge

Both vorticity and potential vorticity play an important role in the dynamics of rotating fluid
layers. The application of the Kelvin theorem to a non-dissipative rotating shallow-water flow
implies the Lagrangian conservation of potential vorticity ( Chapter 3) in each layer:,

D

Dt
(
1 +Roζ

1 + λη
) = 0 (39)

An elementary fluid parcel (i.e. fluid column) moving within alayer could be stretched or
compressed. These changes in the height of the fluid parcel during its motion will be accompa-
nied by a change in its vorticity. In other words, for a purelyincompressible two-dimensional
flow when the free-surface or the interface deviations are negligible (λ � Ro), we recover the
Lagrangian conservation of vorticity:

Dζ

Dt
= 0 (40)

In this case, vorticity will be generated in the flow only if there is an external source (boundary
layer or fluid injection, for instance). For a rotating fluid layer, if the layer thickness varies suf-
ficiently, relative vorticity could be generated from an adjustement process without any external
source.

The potential vorticity conservation is a key concept for adjustment processes even in the
presence of dissipative forces. Hence, as far as laboratoryexperiments on geostrophic adjust-
ment are concerned, it is crucial to perform quantitative measurements of the potential vorticity
field. Such measurements in a rotating fluid layer are indeed not simple. Both the vorticity
field ζ and the height fieldη should be measured simultaneously. If such measurements are
now possible, it is mainly due to recent progress in computers, lasers and cameras technology.
Besides, additional difficulties are encountered on a rotating turntable where sufficiently com-
pact devices (especially lasers) and remote control of the whole setup are needed. Therefore,
direct measurement of the potential vorticity field is always challenging for experimentalists.
We give below some details on the non-intrusive methods which can be used to achieve such
measurements for specific experimental configurations.

2.1 Particle image velocimetry and vorticity field measurements

The particle image velocimetry (PIV) was developped since 1994 to perform accurate and quan-
titative measurements of fluid velocity vectors at a very large number of points simultaneously
(Adrian, 2005). Presently, the 2D PIV method consist to add small neutrally buoyant beads
to the working fluid and lightened them with a laser sheet. The2D particle motion along this
plane are recorded with a digital video camera. Cross-correlation image processing are then
perfomed to measure the mean particle displacement in smallbox region between two succes-
sive images (Fincham, 1997). Standard systems are sold by commercial companies and it is
now the most efficent and non-intrusive technique used in fluid mechanics to obtain a vorticity
map in a given region of the flow field. Nevertheless, some technical limitation appears which
restrict the spatial resolution of such measurements in rotating fluid layers.

The energy necessary to illuminate fine particles and produce images of sufficient exposure
and clarity is the first limitation of PIV. The maximum size ofthe measurement window is
then fixed by the laser intensity and the camera exposure time. Hopefully, vertical motion are
strongly damped in a rotating fluid layer, therefore neutrally buoyant particles could stay for
a relatively long time in a fixed horizontal plane lightened by the laser sheet. Besides, the
horizontal velocities of geostrophic motions are usually not too large (V ' 1 − 10cm.s−1) and
the camera exposure time could be optimized to10−20ms. But nevertheless, if the intensity per
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unit area is too small the clarity of recorded images may not be sufficient enough with classical
digital camera. On a medium size turntable (D ' 1m), high power lasers which require cooling
systems are generally excluded. However, the last generation of compact high power laser
diodes2 can generate an uniform intensity line (non-gaussian) withan output power up to 1W.
With such system we could easily detect the horizontal particle motion (V < 10cm.s−1) from
small (10cm× 10cm) to large (1m× 1m) areas of investigation.

The second limitation is induced by the pixel resolution of the camera. Indeed, to obtain a
precise cross-correlation between two interrogation windows, a minimum number of particles
(∼ 3 − 5) should be present in the interrogation box. This constraint induces generally a min-
imum size of a8 × 8 pixel box. Hence, with a standard750 × 550 pixels camera we usually
get a velocity field of95 × 70 vectors as it is shown in figure 8. Using digital cameras with
higher resolution (3000 × 2000 pixels) we could, for instance, reach a370 × 250 vector grid
field. However, even with very high resolution camera and optimized software, PIV measure-
ments will always give a coarse grid resolution in comparison to direct dye tracer visualizations
(3000×2000 pixels) or high-resolution numerical simulations (4096×4096 for two dimension-
nal flows (Braccoet al. 2000)).

FIGURE 7 Horizontal velocity field of a cyclone obtained fromparticle image velocimetry.
For clarity, only half of the vectors (47 × 35) are displayed instead of the full(94 × 70) field.

The measurement was made in the thin upper layer of a two-layer stratified fluid
corresponding to:Bu ' 0.4, λ ' 0.5, α ' 0.75, δ ' 0.1.

The third limitation comes from the limited precision of thevelocity field. Even with hi-
erarchical correlation methods, where correlations deduced from a large interrogation box are
used to guide correlation analysis at smaller boxes (Hart, 2000), the available dynamical veloc-
ity range is about 100:1. In other words, the method cannot detect fluctuations in the velocity
field below 1%. Besides, experimental noise on recorded images could easily produces 5%
error in the velocity field. This can be a serious problem, because a weak noise in the velocity
field induces a stronger noise in the derivatives and therefore strongly influences the vorticity
measurement. Typical errors of order of 10% (or higher) in the vorticity field could be frequent
and strong efforts on the improvement of the image quality and the software used in the PIV
process are needed to reach such precision on the vorticity field measurements. However, if
the flow evolve slowly in comparison with the frequency of thePIV acquisition system, time
averaging of the velocity field is a simple and efficient way toreduce the experimental noise.

2Lasiris Magnum Laser (www.laser2000.fr)
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For the case of geostrophic adjustment, when a quasi-steadymotion is reached, time averaging
will lead to sufficiently precise vorticity measurements. For instance, the velocity field shown
in figure 8 is an average of ten velocity fields separated by a time interval of120ms. Hence,
this corresponds to a time averaged velocity measurements over1.2s which is smaller than the
inertial periodTf = 12s or the characteristic decay timeTE = H2/

√
νf ' 200s. Such time

averaging reduces the noise on the vorticity field (figure 8(b)) by a factor 10 in comparision
with the instantaneous vorticity measurements (figure 8(a)).

FIGURE 8 Cyclonic (red) and anticyclonic (blue) dimensionless vorticityζ/f calculated
from an instantaneous velocity field (a) or calculated from the time averaged velocity field
(b) shown in figure 8. The Rossby number deduced from the maximum vorticity is about
Ro = ζmax/f ' 0.6. The measurement area is a rectangular window of280mm× 220mm.

According to the above comments, we should emphasize that even if we can easily obtain
a vorticity map from the standard PIV system the accuracy of such measurements should be
checked carefully. Let us recall, that if PIV measurements have a coarse grid resolution corre-
sponding to8×8 or 12×12 pixels on the digitized image, this will be even more pronouced for
the vorticity field. Indeed, to resolve accurately a gradient, at least3− 5 grid points are needed.
Therefore, quantitative vorticity measurements will not be possible if the dynamical structure
under consideration is too small. We can roughly estimate a limiting value as25 × 25 pixels
on the digitized image. Thus, thin vorticity filaments are generally smoothened by the PIV pro-
cess. In such case it could be usefull to use two cameras with awide and a zoom angle in order
to quantify accurately the large scale flow and smaller vortical structures (Perretet al. 2006).
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Hence, the standard PIV method is well suited to quantify slow and large-scale structures in ro-
tating fluid layers. However, for fast and small-scale structures such as high-frequency waves,
this velocimetry method can hardly provide quantitatives measurements, unless an expensive
high-speed PIV technology is used.

2.2 Height field measurements

Laboratory techniques for measuring the velocity field, such as the PIV method described above,
are quite advanced. However, methods for making accurate measurements of the height field of
a fluid layer have remained relatively elusive. As far as we know, four non-invasive techniques
were used to detect or to measure the height field fluctuationsin rotating fluid layers: light
absorption, optical altimetry from the parabolic free-surface, optical rotation of the working
fluid and laser induced visualization (LIV).

Light absorption
The light absorption technique is based on the optical density of a dyed layer. It consists in

measuring the light intensity after absorption through a uniformly dyed fluid layer (Holford et
al. 1996). The fluid layer is usually lightened from below through a transparent vessel while a
video camera records the intensity fluctuations from the top(figure 9(a)). A specific pass-band-
filter, which is centered at the maximum absorption of the dye, is put on the video camera to
increase the sensitivity. With this method a local increaseof the layer thickness induces a higher
absorption and this region will appear darker on the video image (figure 9(b)). This altimetric
measurements was used succesfully on small-scale parabolic vessel where small (10%) and
large (60-100%) relative free-surface deviation were detected with an accuracy of less than one
mm (Stegner and Zeitlin, 1998). Nevertheless, caustic effects induce systematic errors of order
5 − 10% of the layer thickness which limits the precision on the height measurements.
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FIGURE 9 Light absorption technique for a parabolic vessel experiment (a) (Stegner and
Zeitlin, 1998). Intensity fluctuations view from the top of the experiment (b) post-processed
calibrated image corresponding to a relative elevationλ ' 1 of the layer depth (c).

Optical altimetry of the parabolic free-surface

The free-surface fluctuations of a rotating fluid layer can beimaged and analysed using its
parabolic free-surface as a Newtonian telescope mirror. Parallel light rays from a source high
above the rotating table reflects from the water surface and converges on the parabolic focus
Zf = 1

2
Zc (figure 10(a)). However, parallel light rays can hardly be obtained on a rotating

table. The image of a point-light source located atZc (the radius of curvature at the center) no
longer have sharp focus but converge through a small disk located at the same heightZc (figure
10(b)). For practical purpose the light source and the camera are symmetrically displayed off
the axis. Then, putting a knife-edge barrier in the middle ofthis singular disk, where all the rays
converge, can partially obscure the image giving great sensitivity to slight imperfections of the
reflecting surface. This optical altimetry technique is oneof the most sensitive method used so
far in geophysical fluid dynamics experiments. Indeed it is potentialy able to detect free-surface
fluctuations with a one micron precision, independently of the mean thickness of the parabolic
layer. Therefore, this method is particulary suited for theinvestigations of small amplitude
waves (less than 0.1% fluctuation) which are often difficult to detect by other methods. For
instance, an inertia-gravity wave having an amplitude of50µm (0.04% of the mean layer thick-
ness) could be visualized in figure 11. Qualitative observations of a large variety of dynamical
features such as gravity waves, inertial waves, Rossby waves and small-scale convection could
then be performed (Rhineset al., 2006; Rhines, 2006).

FIGURE 10 Focusing of parallel light-rays reflected by the parabolic free-surface (a). Sharp
convergence of a point light-source located close toZc the center of curvature of the apex (b).
A knife-edge barrier induces a contrasted black and white image of the fre-surface. It increases

the sensitivity to deviations from a perfect paraboloid.
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FIGURE 11 Optical altimetry visualisation of inertia-gravity waves (50µm in amplitude)
interacting with a localized vortices. The wave maker is on the bottom left, while the vortices
appears in the center. Courtesy Y. Afanasiev.

Nevertheless, a quantitative method of determination of the slope variation using speckle
patterns is possible. A reference image of the fluid layer in solid-body rotation is first made.
The slope is measured by comparing the original pattern and areflected image of this pattern
distorted by the surface perturbation induced by the relative flow motion. The procedure is
analogous to PIV process where correlations are computed between the small areas of the image
and the reference. Nevertheless, the speckle method is limited by large amplitude deformation
and have a limited spatial resolution due to the minimum sizeof the correlation boxes (Rhines
et al., 2006; Afanasyevet al.,2006).

A different quantitative method based on optical color coding was also developped using
every pixels of the image. A color slide is fixed just below thelight source. For a given rotation
rate (the null point) the entire surface of water is illuminated by only one color. Any perturbation
of the free surface results in the appearance of color different from the null point. It is then
possible to measure from each pixel of the image the x and the ycomponent of the slope with a
0.1% sensitvity (more details are given in (Afanasyevet al., 2006)). Hence, by integrating the
slope field quantitative height measurements of the parabolic fluid layer could be achieved.

Optical rotation
An over sophisticated remote sensing method for measuring the thickness of a fluid layer

relies upon the optical rotation properties of the working fluid. The liquid is chosen to be
optically active (limonene and CFC-113 for instance), so that plane-polarized white light prop-
agating vertically through the fluid layer has its plane of polarization rotated by an angle which
depends upon both the wavelength and the layer depth. After leaving the fluid, the angular-
dispersed white light passes through a sheet of polaroid. For a given layer depth, only light
of a certain wavelength has its polarization axis rotated into exact alignment with the polaroid.
Light of other wavelengths is either partially or fully extinguished by the polaroid, giving a
correlation between the interface height and colour registered by the camera (Hart and Kittel-
man, 1986; Williamset al., 2004. A high-sensitivity up to1 − 2% of the layer height could be
reached with this technique. Both the large-scale geostrophic flow and small-scale waves could
be accurately measured with the technique. According to figure 12 small-scale fluctuations in
the two-layer interface having 1 to 5 mm amplitude are quantitatively detected. However, the
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sensitivity will be optimal when the mean rotation angle is about90◦ and this implies for the
limonene/CFC mixture that the fluid layer should be relatively thick H = 10− 15cm. Besides,
specific precautions should be taken to prevent harmful limonene vapours from evaporating into
the laboratory.

FIGURE 12 Color calibrated visualisation of the internal interface of a two-layer fluid using
opticaly active CFC-13/limonene for the lower layer. Small-scale waves (5 mm amplitude and
2 cm wavelength) are visisble during one cycle of a large-scale and unstable baroclinic mode 2.
Courtesy P.D. Williams.

Laser induced visualization

Laser induced visualization (LIV) technique could also be used in rotating experiments to
measure with precision the fluid layer thickness along a line. Initially, the working fluid is uni-
formly mixed with a fluorescent dye. A vertical laser sheet crosses the horizontal fluid layer and
induces the fluorescence of the dye within this plane (Figure13 (a) and 14). In order to optimize
the fluorescence, the maximum of dye absorptionλabs should be close to the laser wavelength.
Hence, we chose the fluoresceine (λabs = 490nm) or the Rodhamine 6G (λabs = 530nm) if
we use, respectively, an argon laser (488nm) or Nd:Yag laser (532nm). A video camera, fixed
on the side of the tank and perpendicular to the laser sheet could then record the fluorescence
of the fluid layer. Using an adequate image processing we thendetect the position of the in-
terface between the light fluorescent and the dark transparent fluid (figure 13(b)). With this
non-intrusive technique we were able, for the two-layer configuration, to measure the displace-
ment of the fluid interface between the fresh and the dense water with an accuracy of 2% at fast
acquisition rates (Stegneret al.,2004; Perretet al., 2006). The acquisition frequency is limited
by the acquisition rate of the camera and the transfert capacity of the video card. A frequency
of 100Hz could be easily reached nowadays with standard firewire cameras. Note in Figure
15 that the LIV camera is not exactly perpendicular to the fluid layers, in order to reduce the
image distortion due to the ray diffraction through the stratified interface between the two layers
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FIGURE 13 Side view visualization (a) of the fluorescent upper layer. The lower layer ap-
pears dark because it does not contain any fluorescent dye andremains therefore transparent
to the laser sheet. Edge detection processing (b) allows fora precise measurement of the layer
thickness corresponding here to a cyclonic depression:Bu ' 0.4, λ ' 0.5, α ' 0.75, δ ' 0.1.

Unlike the previous techniques which estimate the height field or its fluctuations in the
whole layer, the LIV method gives a measurement of the heightfield only along a line. Hence,
the position of the vertical laser sheet should be carefullychosen. However, this limitation is
compensated by the possibility to detect small-scale and three-dimensional structures along the
vertical. Indeed, this method measure precisely the dye distribution at each point (x, z) of a
vertical plane and does not integrate the information alonga vertical ray path. Besides, we
could also measure the density field from the fluorescent dye emission (figure 14(a)). Indeed,
on short time scale (i.e. few minutes) the mixing of the initial uniform concentration of both dye
and salt is expected to be driven mainly by convection (i.e. turbulent mixing). Hence, dye and
salt gradient are not affected by relative diffusion and they are therefore proportionnal. In a first
step, we measured the relative fluorescent light emission (figure 14(b)) which depends mainly
on the dye concentration and the laser sheet intensity. Then, taking into account the vertical
distribution of the laser sheet intensity, we correlate thelight intensity with the local salinity
(i.e. density) as shown in figure 14(c). This could be, in the next futur, an efficient non-invasise
technique to measure the density field in a continuously stratified fluid.

FIGURE 14 Measurement of the vertical salinity profile from the fluorescent light emission
(Stegneret al., 2004). Initially, the upper fluid is uniformly mixed with a fluorescent dye. (a)
The upper water initially confined in a transparent bottomless cylinder appears white owing to
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the fluorescent light emission while the dense water is black. (b) Vertical distribution of the
light intensity in the central rectangle shown in (a). (c) The salinity profile can be deduced from
(b) if we perform a careful calibration of the laser sheet intensity along the vertical plane. The
disturbance atz = −3.3cm is due to light reflection at the bottom of the cylinder.

2.3 Potential vorticity measurements

In order to measure the potential vorticity field according to (39) we chose to use both PIV
and LIV measurements simultaneously. However, due to the restrictions of the LIV technique,
which gives the height field only along a line, the coupling ofthese non-invasive methods is
best suited for unidirectional flows. It is then possible from a line measurement to estimate a
global potential vorticity field for either circular (Stegneret al., 2004) or parallel flows (Perretet
al., 2006). A typical experimental setup for a circular cyclonic PV anomaly is shown figure 15.
Two lasers having different wavelengths are used in addition with specific optical filters, fixed
on each camera, in order to detect the dye emission only in thevertical plane and the buoyant
particles only in the horizontal plane.

FIGURE 15 A horizontal red (670nm) laser sheet with a vertical green (532nm) laser sheet
are used simultaneously in order to couple PIV and LIV measurements in the upper layer.

Time averaged vorticity and height profiles along a diameterare displayed in figure 18.
Theses profiles corresponds to the PIV and LIV measurements shown in figure 8(b) and figure
13. The temporal averaging (over one inertial periodTf = 2π/f ) filters out the fast wave motion
from both the density interface and the azimuthal horizontal velocity. Hence, these profiles
correspond to the mean adjusted state of the system which evolves slowly in comparison with
the wave motion. From these data we can then easily quantify the potential vorticity (figure
16(c)) of the cyclonic PV anomaly. The PV profile is rescaled here byQ0 = f/H1, the intrinsic
PV of the unperturbed upper fluid layer (solid line in figure 16(c)). For this case, the initial
circular PV anomaly was a constantQ patch withQ/Q0 = 2.

21



FIGURE 16 Plots of the averaged vorticity profile measured byPIV (a) and the averaged
height profile (b) measured by LIV corresponding to the mean steady state att = 2Tf . The
potential vorticity (c) is deduced from these two profiles. These measurements correspond to
the same cyclonic PV anomaly shown in figures 8(b) and 13.

As far as we know, this technique is the first attempt for direct and quantitative measure-
ments of the potential vorticity field in a rotating shallow-water layer experiment. In other
laboratory studies, either the height field or the velocity field were measured but not both of
them simultaneously. In such case, the “missing” field couldbe estimated according to the
geostrophic or cyclo-geostrophic balance and the potential vorticity field reconstructed. Never-
theless, these indirect methods could induce significant errors especially when ageostrophic or
non-hydrostatic motions become non negligible. A more refined method based on data assimi-
lation was used recently (Thivolle-Cazatet al.,2005). The experimental results were compared
with a two-layer isopycnal model and data assimilation was used to extrapolate from PIV mea-
surments both the interface position and the potential vorticity field. However, such PV extrap-
olation depends strongly on the underlying assumptions of the numerical model used and on the
assimilation scheme. Therefore, we do believe that coupledmeasurements is the best way to
quantify the PV. Nevertheless, data assimilation will fully benefit from these coupled measure-
ments and it could become an optimal method to test the limitsof validity of the shallow-water
modelisation for real flows.

3 Simple case studies of geostrophic adjustment

We describe in what follows few cases of geostrophic adjustment based on lock released experi-
ments performed in rotating fluids. In a two-layer configuration, vertical boundaries (i.e. locks)
are used to fix initial height (or density) steps in the upper layer. For such cases when there is

22



no relative motion in the layers the initial PV field is precisely controlled by the layer thickness.
If the release of the vertical walls is rapid enough, we couldthen follow the geostrophic adjust-
ment of a well defined initial condition corresponding to discontinuous profiles of constant PV.
The simplicity of the initial condition makes these experiments easily reproducible.

3.1 “Warm-core” lens

Initial state and experimental configuration
The term warm-core lens is generally used for mesoscale vortices which contain a finite

volume of warm and light water at the ocean surface. A simple experimental configuration
leads to similar dynamical structure (Griffiths and Linden,1991; Rubino and Brandt, 2003). A
fixed volume of buoyant water is initially confined within a bottomless cylinder of radiusRc

on the top of a dense rotating fluid (figure 17 (a)). Assuming that the thin upper layer follows
the reduced-gravity RSW equations (c.f. Chapter 1), the initial PV distribution is constant for
r < Rc and exhibit a singularity atr = Rc (figure 17 (b)) due to the vanishing layer thickness.
Similar experiments were performed to study the baroclinicinstability of a density front leading
to meanders and eddies (Griffith and Linden, 1991; Bouruet-Aubertot and Linden, 2002). The
present experiment was made with a smaller thickness ratio parameterδ ' 0.1 to reduce the
growth rate of baroclinic disturbances and focus the study on the adjustment process (Stegner
et al., 2004).

FIGURE 17 Initial configuration of the “warm-core” lens: thesetup (a), and the initial profile
of the corresponding potential vorticity (b).

Dynamical stages
Three stages were observed during the adjustment process. Just after the rapid withdrawal

of the transparent cylinder, the fresh water spreads radially as a gravity current. During this
initial stage, the flow is fully three-dimensional (figure 18(a)) and the effects of rotation are
expected to be weak. After approximately half of the inertial period, the radial extension of
the lens is stopped (Ungarish and Uppert, 1998). The second stage corresponds to a radial
contraction of the lens where steep jumps at the interface may appear (figure 18 (b)). Then,
after about two inertial periods, the density front reachesan equilibrium characterized by a
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standing wave mode superimposed on the mean state (figure 18 (c), (d)). In all our experiments,
this third stage is rapidly reached after approximately oneor two inertial periods. These results
agree with previous studies (Mahalovet al., 2000) who also found that the inertial period is the
characteristic time of the transition from a density current to a geostrophic front.

FIGURE 18 Dynamical evolution of the interface for the initial configuration corresponding
toBu = (Rd/Rc)

2 ' 0.4; α ' 0.76; δ ' 0.08 (Stegneret al., 2004). The snapshots are taken
at t = 0.5Tf (a), t = 0.8Tf (b), t = 3Tf (c) andt = 0.5Tf (d). The dark rays on the right hand
side of the image are experimental shadows produced by the upper fixations of the cylinder.

Rotating Shallow-Water predictions
We present here the approximations and the calculation of classical Rossby adjustment the-

ory for the axisymmetric warm-core lens configuration (figure 17). According to the small
thickness ratio parameterδ ' 0.1 and the weak motion observed in the lower layerRo(2) '
δRo(1) (Stegneret al., 2004) the reduced gravity RSW equations are expected to provide, in
first order of approximation, an accurate description of theupper layer dynamics. Besides, we
assume that viscosity and dissipative effects are negligible and that the system reaches a final
steady state. Using the deformation radius as the characteristic horizontal scale (i.e.Ro = 1
andλ = 1) we get the following dimensionless cyclo-geostrophic balance for an axisymmetric
steady state:

v2

r
+ v = ∂rη (41)

The Lagrangian conservation of PV implies a constant value for all fluid parcel within the
upper lens:

Q(r ≥ rf) = 1 =
1 + ∂rv + v/r

1 + η
(42)

whererf is the final radius of the density lens. According to (41) and (42) we get:

1

r
∂r(r∂rv) −

v

r2
− (v +

v2

r
) = 0 (43)

with the boundary conditions
v(0) = 0 (44)
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h(rf ) = 1 + η(rf) = 0 ⇒ (∂rv +
v

r
+ 1)(rf) = 0 (45)

For a given radiusrf , we can solve (43), (44) and (45) numerically with standard shooting
methods. Then, the angular momentum conservation or mass conservation or mass conservation
both give the same implicit relation betweenrf and the initial radius of the cylinderrc:

r2
c = r2

f + 2rfv(rf) (46)

The velocityv(r) and the heighth(r) profiles of the steady adjusted density lens are fixed
by a single parameterrc = Rc/Rd = Bu−1/2. Exemples of velocities and height profiles are
given in figure 21 for the same initial state and two differentdeformation radii corresponding to
Bu = 0.05 andBu = 5. For small Burger number we expect an axisymmetric jet (or large-scale
ring) whereas for large Burgers number an eddy (close to solid rotation) is expected.

FIGURE 19 Final steady state according to the standard Rossby adjustment. Two adjusted
velocity (dashed line) and height (solid line) profiles resulting from the same initial density
anomaly (h = H1, r = Rc) are plotted for two different deformation radiiBu = 0.05 and
Bu = 5.

Mean adjusted state
In the warm-core lens configuration, the interface between the two fluids intersects the free

surface. Hence, unlike the standard Rossby adjustment problem (Gill, 1982; Vallis, 2006)
inertia-gravity waves cannot propagate away from the region of the initial density anomaly.
Therefore, the separation between the adjusted state and the wave motion is not direct. Hence,
we used time averaging over one or twoTf , as decribed in the previous section (§ 2), in order to
extract the slow dynamics of the height profile and the velocity field. We first observe that the
averaged height profile, displayed in figure 20(a), remain almost constant betweent ' 1.5Tf

and t ' 7Tf . During that time, the averaged velocity profile experiences a slow dissipation
(figure 20(b)). Therefore, even if a strong wave activity is present according to figure 18, the
averaged mean state remains quasi-steady after one or two inertial periods. Moreover, in the
central region, this quasi-steady state is relatively close to the cyclo-geostrophic adjusted state
predicted by the PV conservation in the RSW framework. According to this inviscid ajustment
model the velocity reaches its maximum and is discontinuousat the edge of the lens. This is
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obviously unrealistic in a physical system where dissipative processes occur. Indeed, accord-
ing to figure 20(b) the maximum velocity is almost three timessmaller than the predicted one.
Hence, both the velocity and the potential vorticity of these anticyclonic lenses are smoothed
near the edge front over a characteristic distance equal to the deformation radius (in the present
caseRd = 3.2cm whileRc = 5.25cm).

FIGURE 20 Mean height (a), velocity (b) and PV (c) profiles averaged over one inertial pe-
riod. The initial density anomaly confined within the bottomless cylinder is plotted with a thin
line in (a). The thick solid line corresponds to the cyclo-geostrophic adjusted state predicted by
the geostrophic adjustment scenario of the inviscid RSW model.

Small-scale instabilities
Detailed analysis of the velocity field evolution show that strong and localized dissipation

occurs in the very initial stage of adjustment (t ≤ 2Tf ) while the flow experiences only a weak
dissipation afterwards. This rapid dissipation which occurs at the edge of the anticyclonic lenses
induces a significant deficit in the kinetic energy of the adjusted flow up to 50% or 80% (Stegner
et al., 2004). Dye visualization reveals that transient and rapidthree dimensional instabilities
occur in the very first stage of adjustement (figure 21). A firstunstable perturbation having a
short wavelength grows very quickly, then spiralling arms appear with a larger wavelength. The
first instability scales with the viscous diffusion lengthLv =

√
νTf ' 3 − 4mm and does not

depend on the Burger number while the secondary mode corresponding to the spiralling arms
does scale with the deformation radius. These three-dimensional instabilities localized in time
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(less than one inertial period) and space (the edge of the anticyclonic lens) provide an efficient
mechanism of turbulent dissipation which cascades energy toward small scales in the frontal
region. However, outside the outcropping region the potential vorticity conservation is well
verified.

FIGURE 21 Dye visualization of the three-dimensional perturbations at the edge of the
anticyclonic lens (a)t = 0.3Tf , (b) t = 0.5Tf , (c) t = 0.7Tf and (d)t = 1.7Tf (Stegneret al.,
2004).

3.2 Cyclonic and anticyclonic PV patches

Initial state and experimental configuration
We used the term “PV patches” for localised positive or negative potential vorticity anoma-

lies of constant values within a uniform PV layer. The “PV patch” model is the generalisation
of the Rankine vortex (cylindrical vorticity patch) for a rotating shallow-water layer. It is the
simpliest description of potential vorticity front with nooutcropping. It could be, for instance,
a simplified description of the cyclonic polar vortex in the stratosphere. The corresponding
experimental configurations for anticyclonic and cyclonic“PV patches” are shown respectively
in figure 23 (a) and figure 23 (b). A two-layer stratification with a small thickness parameter
δ = 0.125 is first realized. Then, a bottomless cylinder is used to produced an height step in
the two-layer interface. Assuming that the thin upper layerfollows the reduced-gravity RSW
equations, the initial PV distribution is uniform inside (r < Rc) and outside (r > Rc) the
cylinder. Unlike, the “warm core” lens configuration (figure17) the potential vorticity exhibit
a discontinuity (but not a singularity) atr = Rc due to the finite jump in the layer thickness.
Besides, both positive and negative circular PV jumps couldbe obtain (figure 23 (b), (c)). A
positive (negative) thickness anomaly in the upper layer correspond to a negative (positive) PV
jump and will generally lead to a localized anticyclonic (cyclonic) circular ring or vortex.
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FIGURE 22 Initial configuration of the experimental setup corresponding to an anticyclonic
(a) and a cyclonic (b) PV patch and their respective PV profiles (c) and (d).

Dynamical stages

The very initial stage of adjustment differs from the warm-core lens configuration. Just
after the withdrawal of the transparent cylinder, the vertical density jump get tilted and a local
overturning motion is initiated at the initial position of the cylindrical wall. However, due to
the rotation, the overturning motion is stopped after one inertial period and a localized shock
(steep density front) occurs as shown in figure 23 (b) and figure 24 (b). Due to the absence of
outcropping front no gravity current head is visible for thePV-patch configuration. Afterwards,
the thickness anomaly reaches an equilibrium. Even if, small fluctuations could be detected this
mean adjusted state holds for a relatively long time. According to figures 23 (c)-(e) and figure
24 (c)-(e), for a small Burger number configuration (hereBu = 0.084) the amplitude and size
of the mean adjusted state remain close to the initial unbalanced height profile. Besides, the
thickness anomaly remain almost unchanged fromt = 2Tf to t = 20Tf . Hence, the system
reaches a quasi-steady state in a very short time, approximately one or two inertial periods.
For higher Burger numbers, the amplitude of the fluctuationsis larger and the system seems
to be far from an equilibrium. However, using an accurate time averaging to filter out the
fast wave motion (see below), an averaged mean state is reached with the same rapidity. This
characteristic time for adjustment (one or two inertial periods) does not depends on the size or
the amplitude of the initial PV-patch.

28



FIGURE 23 Dynamical evolution of the interface of an anticyclonic PV patch correspond-
ing toBu = (Rd/Rc)

2 ' 0.084; λ = 0.5; α(1) ' 1.6; δ ' 0.125. The snapshots are taken at
(a) t = 0, (b) t = Tf , (c) t = 2Tf , (d) t = 3Tf and (e)t = 10Tf .

FIGURE 24 Dynamical evolution of the interface of an cyclonic PV patch corresponding to
Bu = (Rd/Rc)

2 ' 0.084; λ = −0.5; α(1) ' 1.6; δ ' 0.125. The snapshots are taken at (a)
t = 0, (b) t = Tf , (c) t = 2Tf , (d) t = 3Tf and and (e)t = 10Tf .
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Rotating Shallow-Water predictions
We present here the calculation of classical Rossby adjustment theory for the cylindrical

“PV-patch” configuration (figure 22). As for the “warm-core”lens case, the small thickness
ratio and weak motions in the lower layer justify to use the reduced gravity RSW equations
for the upper layer dynamics. Here again we neglect, at the first order of approximation, the
dissipation. Therefore, we use the same set of dimensionless equations as the “warm-core” lens
configuration, but we need to consider two distinct regions of uniform PV. We will use the index
0 for the inner PV anomaly region (r < rf ) and the index1 for the outer region (r > rf ) where
rf is the radial position of the PV jump in the final adjusted state. For the case of a anticyclonic
PV patch (figure 22 (c)) we expect a radial extension of the PV front (rc < rf ) while for the
cyclonic PV patch (figure 22 (d)) we expect a radial contraction (rf < rc) . The Lagrangian
conservation of potential vorticity implies a constant butdistinct value of PV for all fluid parcel
within each region of the upper fluid layer. Hence, for the inner PV anomaly region we have:

Q0(r < rf ) =
1

1 + λ
=

1 + ∂rv0 + v0/r

h0

(47)

while for the outer region we have:

Q1(r > rf) = 1 =
1 + ∂rv1 + v1/r

h1
(48)

where the relative PV anomaly is given initially byλ = η1/H1.
Then, looking for a steady adjusted state, implies the cyclo-geostrophic balance (41) and

according to (47-48) we get the second order non-linear ordinary differential equations:

1

r
∂r(r∂rvi) −

vi

r2
−Qi (vi +

v2
i

r
) = 0 (49)

with the boundary conditions:
v0(0) = 0 (50)

v0(rf ) = v1(rf) (51)

h0(rf) = h1(rf) ⇒ (1 + λ)(∂rv0 +
v0

r
+ 1)(rf) = (∂rv1 +

v1

r
+ 1)(rf) (52)

Besides, far away from the potential vorticity front (r � rf ) , a localized solution satisfy
the geostrophic balance which implies to neglect the non-linear term in (49). In such case, the
general solution of the linearized equation (49) is expressed through Bessel functions. The outer
velocity of a localized adujsted state should then decay at infinity as a modified bessel function
of the second kind

v1(r → +∞) ∝ K1(r) (53)

For a given radiusrf , we can solve the equations (49-53) numerically with appropriate shooting
methods. Then, as for the “warm-core” lens configuration, the angular momentum conservation
leads to the same implicit relation (46) betweenrf and the initial position of the frontrc (i.e. the
dimensionless cylinder radius). The velocity and the height profiles of the steady adjusted PV-
patch are then fixed by two dimensionless parameter:rc = Rc/Rd = Bu−1/2 andλ = η1/H1.
Exemples of velocities and height profiles for both cyclonicand anticyclonic PV patches are
given figure 25. For large Burger number, in other words a small cylinder radius in comparison
with the deformation radius, the adjusted state correpond to a localized vortex (figure 25 (a)).
The velocity profile exhibit a core solid rotation analogousto Rankine vortices. For small
Burger number (figure 25 (b)), the adjusted state correspondto a circular jet (i.e. circular
velocity ring). For all these cases, the maximum velocity radius corresponds torf the final
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position of the PV jump. Unlike, the “warm-core” lens configuration, the velocity profiles
for PV-patches are always continuous. Besides, in agreement with previous studies (Kuo and
Polvani, 2000), the geostrophic adjustment process inducea cylone-anticyclone asymmetry.
For the same amplitude of the initial potential energy fluctuation, the cyclonic structures will
be here more intense than the anticyclonic ones. Indeed, according to figure 25, for the same
relative amplitude of the initial thickness anomaly, the maximum velocity of cyclonic vortices
(vmax/(fRd) = 0.3 for λ = −0.5 andrc = 4.47) will always be higher than the anticyclonic
ones (vmax/(fRd) = −0.2 for λ = 0.5 andrc = 4.47).

FIGURE 25 Velocity (dashed lines) and thickness profiles (solid lines) predicted by the stan-
dard geostrophic adjustment for two different sizes of the initial PV patch:rc = Rc/Rd ' 0.45
(a) andrc = Rc/Rd ' 4.47 (b). The anticyclonic (thin line) and the cyclonic (thick line) pro-
files are given respectively forλ = 0.5 andλ = −0.5.

Mean adjusted state
As for the warm-core lens configuration, we used time averaging over one or two inertial

periodTf in order to extract the slow dynamics of the height profile andthe velocity field.
According to figure 26, we observe that both the mean height and the velocity profiles remain
almost constant for several inertial periods, at least up to20Tf for PV-patches having small
Burger number values (Bu = 0.083 in figure 26). Hence, the time-averaged state have reached
an equilibrium even if small wave motion could be detected both in the inner region of the PV
anomaly (figure 27) and the outer region. For the cyclonic structure, the mean-adjusted state
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coincide perfectly with the predictions of standard geostrophic adjustment (figure 26 (a), (c)).
However, for the anticyclonic structure a significant discrepancy occurs for the velocity field
(figure 26(d)). The maximum velocity is at least two times smaller than the predicted one. This
anticyclonic dissipation, in comparision with the non-dissipative predicted state, was observed
in all the experiments from small to large Burger numbersBu = r−2

c . Hence, the cyclone-
anticyclone asymmetry becomes even more pronouced with this unpredicted dissipation. As
for the warm-core lens configuration (which corresponds to the asymptotic limitλ→ +∞), we
could suspect that this rapid dissipation of kinetic energyis due to a transient three-dimensionnal
instability which affects only the anticyclonic PV fronts.However, dye visualisations appeared
to be less efficient for the PV-patch experiments and we couldhardly capture small-scale pertu-
bations. We should note that an outcropping PV front (PV singularity) lead to intense velocities
(Ro ' 1) in comparison with PV-step front (PV discontinuity) whichinduce continuous veloci-
tiy field close to the geostrophic balance. Indeed, the Rossby number never exceedRo = 0.3 in
the PV-patch experiment, therefore ageostrophic motions and related instabilities are expected
to be weaker than for the outcropping configuration.

FIGURE 26 Profiles of the upper layer thickness for a cyclonic(a) and an anticyclonic (b)
vortex resulting from the initial PV-patchrc = Rc/Rd ' 3.47 (Bu = 0.083) andλ = 0.5 or
λ = −0.5. The corresponding velocity profiles are displayed in (c) and (d). All the profiles
were time-averaged over one inertial periodTf . These mean profiles are shown at various time:
t = 2Tf (filled circle), t = 5Tf (filled triangle),t = 10Tf (open circle) andt = 20Tf (open
square).

Inertial and sub-inertial wave activity
The geostrophic adjustment process is expected to transfert a small (large) amount of the

initial potential energy to the fast wave motion for PV-patches having small (large) Burger
number corresponding torc = Rc/Rd > 1 (rc < 1). Hence, for the small Burger number
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case described aboveBu = 0.083, the amplitude of the wave fluctuations were about few
percents of the mean upper layer thickness. The sensitivityof the LIF technique was high
enough to quantify this wave activity in the inner region (inside the PV anomaly) and in the
outer region. Spatio-temporal diagrams (i.e. Hovmöller plots) of the wave oscillations within
the cylonic and the anticyclonic PV patch are rendered figure27. This plot shows qualitatively
the temporal variations (y axis) of the upper layer thickness across a diameter (x axis). The
grayscale levels were decalibrated and intensified in orderto enhance the contrast for a better
visualisation. Unlike the outcropping configuration, the two-layer interface extend here in the
whole experimental domain and the inertia-gravity waves could freely propagate in the outer
region outside the PV anomaly. Nevertheless, a significant wave activity remain for a long time
(several inertial period) inside the PV anomaly even if the mean steady state is already adjusted
(figure 26). A similar behavior was found in previous theoretical (Plougonwen and Zeitlin,
2005) and numerical (Kuo and Polvani, 2000) studies dealingwith sharp PV fronts in the RSW
dynamics.

FIGURE 27 Spatio-temporal diagram of the relative fluctuations of the upper layer thick-
ness for an anticyclonic (a) and a cyclonic (b) PV patch . The time evolve along the y axis from
top (t = 0) to bottom (t = 7Tf ), while the layer thickness is plotted along the x axis corre-
sponding to a full length of 260 mm. The grayscale levels weredecalibrated and intensified
in order to enhance the contrast. The white rectangular areaon both panels corresponds to the
initial positive (λ = 0.5) or negative (λ = −0.5) height anomaly.

The most striking results is a strong cyclone-anticyclone asymmetry in the wave frequency.
According to the spatio-temporal plots, the oscillation isfaster for the positive PV anomaly
(figure 27 (b)) in comparison with the negative PV anomaly (figure 27 (a)). Indeed, if we

33



measure the relative fluctuations of the upper layer thickness at the center (r = 0), the frequency
is sub-inertial (ω/f ' 0.7) in the anticyclonic PV patch while an inertial (ω ' f ) frequency is
found in the cyclonic PV patch (figure 28).

In the rotating shallow-water configuration, the apparition of sub-inertial modes (ω ≤ f )
corresponds to trapped modes in other words, these modes must have an evanescent structure
outside the PV-patch. If the relative vorticity is strong enough, a finite number of trapped modes
could appear in anticyclonic vorticity region only (Kunze,1985; Klein and Treguier, 1995;
Young and BenJelloul, 1997; Llewellyn Smith, 1999; Plougonwen and Zeitlin, 2005). The
present experiment shows, for the first time in laboratory, the existence of sub-inertial modes
within an anticyclonic PV-patch. However, according to figure 28, these modes have a finite
lifetime. Unlike, the long-lived trapped modes these sub-inertial waves probably radiate their
energy to the lower layer. According to figure 28, there is no cyclone-anticyclone asymmetry in
the life time of the inner wave modes. Besides, according to the spatio-temporal graph displayed
in figure 27, the characteristic size of the inner wave structure, both the cyclonic (inertial) and
the anticyclonic (sub-inertial) one, decays with time. This is a signature of dispersive effects,
which could be induced by the high value of the wave aspect ratio α(2) = H2/L ' 10 in the
lower layer.

FIGURE 28 Evolution of the relative amplitude of the upper layer thickness at the center
(r = 0) of the initial height anomaly. The case of a cyclonic (anticyclonic) PV-patch is displayed
in the upper (lower) panel.

3.3 Uniform PV front

Initial state and experimental configuration
The geostrophic adjustment of a motionless horizontal density gradient generally leads to

a baroclinic tilted front corresponding to a simplified model of synoptic atmospheric fronts.
However, recent studies (Ou, 1984; Blumen and Wu 1995; Kalashnik 2004; Plougonwen and
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Zeitlin 2005) have shown that even if the initial unbalancedstate is smooth, a well defined con-
tinuous adjusted state may no longer exist. Indeed, for the case of uniform potential vorticity
when the horizontal density gradient is sharp enough the steady adjusted solution exhibits dis-
continuities in both the density and the velocity field when the front outcropp the top or the
bottom boundary.

We use a three layer setup to study the adjustment of an uniform PV front (figure 29(a)).
Two upper fluid layers having different densityρ1 andρ2 but the same thicknessH1 are initially
separated by a bottomless cylinder. A third deep and dense lower layer acts as a neutral layer
which separates the thin upper layers from the bottom boundary. According to the small thick-
ness parameterδ = 0.125 and the weak motion in the lower layer we assume that two upper
layers follows the reduced-gravity RSW equations. Hence, if the upper layers have exactly the
same thickness, the initial PV distribution is uniform and have the same value inside (r < Rc)
and outside (r > Rc) the cylinder (figure 29(b)). However, as for the warm-core lens configura-
tion, the PV distribution exhibit a singularity atr = Rc for both the inner layerρ2 and the outer
layerρ1 due to the vanishing of the layer thickness.

We can define two baroclinic deformation radius namely:Rd =
√

((ρ2 − ρ1)/ρ2)gh/f re-
lated to the tilted density interface between the two upper layers,RD =

√
((ρ3 − ρ2)/ρ3)gh/f

related to the horizontal density interface between the upper layers and one barotropic defor-
mation radius corresponding to the dense bottom layerRB =

√
gH/f ' 1m. The density

difference between the layers (ρ2 − ρ1 = 3 − 25g.l−1; ρ3 − ρ2 ' 100g.l−1) were adjusted, in
the present experiment, in order to getRd = 2 − 3cm � RD ' 12cm. Besides, the size of the
rotating tankL = 45cm was large enough (L � Rc ≥ Rd) to neglect side wall effects. More
details on the experimental procedure are given in (Mitkinet al. 2006).

FIGURE 29 Experimental three-layer setup (a) and initial distribution of the potential vor-
ticity (b).

Dynamical stages
Several dynamical stages were observed during the adjustment process. Just after the with-

drawal of the separating cylinder, the inner dense fluid spreads radially at the bottom interface.
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During this very initial stage, the flow exhibits strong three dimensional motions (figure 30(b))
identical to those in a gravity current’s head (Pattersonet al. 2006). At this stage horizontal
vorticity is generated at the interface between the inner and the outer upper fluid layers. After
half of the inertial period the radial tilting of the densityfront is stopped and a reverse flow
occurs. Then, in about one inertial period this tilted baroclinic front reaches an equilibrium
characterized by an oscillating mean state. Theses oscillations can be seen in the fluctuations
of the extremal positionsrin androut of the tilted front (figures 30(c) and(d)). At longer time
(t = 5 − 10Tf ) this tilted front experiences a large-scale baroclinic instability. The initial vol-
ume of dense fluid looses its axial symmetry and splits in two vortices which move away from
the center of the tank. Hence, the vertical laser sheet does not capture the central cross-section
of the density field any more (figure 30 (e)).

FIGURE 30 Vertical cross-section of the density front between the inner layerρ2 (white
region) and the outer layerρ1 (dark region) visualized by LIV. These snapshots were takenat
t = 0 (a), t = 0.5Tf (b), t = Tf (c), t = 1.5Tf (d) andt = 5Tf (e) wereTf = 2π/f = 5s is the
inertial period. This experiment corresponds torc = Rc/Rd = 2.1 (Bu = 0.22 ; α = 1).

Rotating Shallow-Water predictions
We assume here that: viscosity and dissipative effects are negligible (Re � 1 , Ek � 1);

each layer follows the rotating shallow-water dynamics (α � 1) ; top and bottom boundary
conditions are free-slip and rigid lid (δ � 1 , Bu∗ � 1). Under these assumptions, the
geostrophic adjustement of the density front is now controlled by a single parameter, namely
the Burger numberBu.

We look here for an axisymmetric steady state, solution of the RSW equations in both the
light outer layer 1 and the dense inner layer 2. For simplicity, we neglect the cyclostrophic
terms in the horizontal momentum equations. Such approximation is valid whenRc � Rd. In
this case, the steady state satisfies an exact geostrophic balance and therefore using the pressure
continuity at the interface we get

v1 − v2 = ∂rη (54)
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whereη is the dimensionless thickness of the inner layer 2. The Lagrangian PV conservation
leads to a constant PV value for all fluid parcels in both layers :

Q1(r ≥ rin) =
1 + ζ1
1 − η

= 1 (55)

Q2(r ≤ rout) =
1 + ζ2
η

= 1 (56)

whereζi = 1
r
∂r(rvi) is the relative vorticity andrin (rout) is the position of the upper (lower)

intersection of the tilted density front with the top (bottom) boundary (figure 31(b)). Note that,
the boundary conditionsη(rin) = 1 and η(rout) = 0 imply a singularity in the PV field at
the ends of both layers, even if the PV have the same constant value within the layers. Such
singularities will be the source of discontinuities in the vorticiy and velocity field of the adjusted
state (figure 31(b) and (c)). Then, the angular momentum conservation or the mass conservation
gives both the same implicit relations between (rin, rout) and the initial radius of the density
front rc = Rc/Rd = Bu−1/2:

r2
c = r2

in + 2rinv1(rin) = r2
out + 2routv2(rout) (57)

Besides, outside of the region of the tilted front (r ≤ rin and r ≥ rout) there is no radial
displacement of fluid parcels. Therefore, the angular momentum conservation implies:

v2(r ≤ rin) = v1(r ≥ rout) = 0 (58)

Then, according to equations (54), (55) and (56) we obtain the following system of linear equa-
tions:

∂r2φ+
1

r
∂rφ− (2 +

1

r2
)φ = 0 (59)

∂r(rψ) = −r (60)

where according to (57) and (58)φ(r) = v1 − v2 satifies the following boundary conditions

φ(rin) =
1

2
(rin − r2

c

rin
) ; φ(rout) =

1

2
(
r2
c

rout
− rout) (61)

and

ψ(r) = v1(r) + v2(r) =
1

2
(
r2
c

r
− r) (62)

For a given initial radiusrc = Bu−1/2 we can solve numerically (59) with (61) using a standard
shooting method. An exemple of height, velocity and vorticity profiles in both layers are given
in figure 33 corresponding torc = 3.33 (Bu = 0.09). Due to the volume conservation in
cylindrical geometry, the front displacement in the outer layer (rc − rin) is not identical to the
front displacement in the inner layer (rout − rc). This leads to higher velocity amplitude in the
outer layer (figure 31(b)) according to (57). Even if the velocity field is strongly baroclinic
(opposit direction in the upper and the lower layer) the vorticity is anticyclonic in both layers
(figure31(c)) and reaches the extreme valueζ = −f at both ends of the tilted density front.
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FIGURE 31 Density front (a), velocity (b) and vorticity (c) fields in the inner and outer
layers of the adjusted steady-state according to the Rossbyadjustment theory whenrc = 3.33
(Bu = 0.09).

Mean adjusted state

As for the previous cases, we use a time averaging over one inertial period, in order to
separate the slow dynamics of the mean front and the fast dynamics of the oscillations. This
temporal averaging filters out the fast dynamics on both the density front and the azimuthal
velocity field.

According to figure 32 the qualitative structure of the mean adjusted state measured in the
experiment is in correct agreement with the geostrophic adjustment predicted by a simple two-
layer RSW model. The averaged velocity profile, measured close to the upper free surface,
is displayed in figure 32(b). According to the standard inviscid adjustment model (solid line)
the velocity is expected to be discontinuous in the outer layer at the upper edge of the front.
This is obviously unrealistic in a physical system where dissipative processes occur. Hence,
during the adjustement process a strong but continuous cyclonic shear is formed instead of the
discontinuous velocity jump predicted by the inviscid theory. The width of this cyclonic shear is
much smaller than the deformation radius (0.2−0.3Rd). Besides, the vorticity in such thin shear
layer exceeds the planetary vorticity (ζ = 3 − 4 f in figure 32(b)) and may induce fast small-
scale instabilities. However, the spatio-temporal resolution of the particle image velocimetry
we used could hardly capture such small-scale instability patterns.
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FIGURE 32 Comparison between the mean experimental adjusted state (dots) and the Rossby
adjustment model (solid line). The vertical cross-sectionof the density profile (a) corresponds
toRc/Rd = 2.1 (Bu = 0.22) while the horizontal azimuthal velocity (b) measured closeto the
upper free surface corresponds toRc/Rd = 3.33 (Bu = 0.09).

Small-scale instabilities

By means of LIV, we could visualize an horizontal cross-section of the sharp density gra-
dient just below the free surface. The dynamical evolution of this sharp gradient is shown in
figure 33. After the release of the bottomless cylinder the upper front experiences a rapid radial
contraction. Due to the angular momentum conservation, this radial contraction generates at
the same time a strong azimuthal flow. During this very initial stage, small distrubances ap-
pears at the edge of the front. Using an edge detection image processing we could accurately
measure the initial wavelengthλ of this instability (figure 33(b)). Due to its rapid growth rate
this instability is probably not affected by the rotation and the wavelength of the small-scale
perturbations does not depend on the deformation radius (Mitkin et al. 2006).

In the present case, unlike the outcropping lense configuration, no secondary instability
occurs and the non-linear saturation of the initial perturbation leads to the formation of strong
cusps and small cyclones appear according to figure 33(c). Here again the size of theses intense
cyclones could be much smaller that the deformation radius and remain independant from this
latter. Theses cat eye patterns look like a classical horizontal shear instability. Nevertheless,
due to the baroclinic structure of the flow, the vertical extension of these small cyclones is
limited and they should be formed preferentially at the top or the bottom edge of the density
front. Besides, these vortices are transient features of the adjustment process. Indeed, after half
an inertial period the front reaches his maximal contraction and the small cyclones disappear
during the reverse oscillation (figure 33(d)).
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FIGURE 33 Visualization of small-scale disturbances att = 0 (a), t = 0.25Tf (b), t =
0.5Tf (c) andt = 0.75Tf (d) in an horizontal cross-section of the density front (Bu = 0.09) just
bellow the upper free surface. Local image processing of edge front detection are shown in (b)
and (c), the black pixels corresponds to high values of the intensity gradient.

4 What do we learn from laboratory experiments ?

Laboratory experiments can hardly reproduce the complex thermodynamics (moisture, turbu-
lent boudary layer convection, evaporation, air-sea fluxes...) and the wide range of dynamical
regimes (Re � 1; δ � 1) encounter in the atmophere or the ocean. However, the physical
modeling of rotating shallow water flows is very useful especially for the geostrophic adjust-
ment process, where several dynamical features occur on various temporal and spatial scales.

Previous laboratory experiments have shown that the geostrophic adjustement is a rapid
process (Ungarishet al., 2001; Bouruet-Aubertot and Linden, 2002; Rubino and Brandt, 2003;
Thivolle-Cazat et al., 2005). But very few studies investigate the characteristic time of this
process especially when strong wave activity is present. According to all the cases we studied, a
mean adjusted state is reached after approximately one or two inertial periodTf . The rapidity of
the geostrophic adjustment does not depends on the size or the amplitude of the initial unbalance
state. The so called mean state is obtained from a simple time-averaging overTf , in order to
filter out the fast wave motion. We say that this averaged state reaches an equilibrium (i.e. get
adjusted) when it’s temporal evolution remain small in comparision with the characteristic wave
frequency. Hence, even if a strong wave activity is present in the initial region of unbalance, the
mean flow could nevertheless be adjusted. This experimentalobsevation is in good agreement
with the standard hypothesis of dynamical splitting between the fast (ε ≥ 1) and the slow
(ε � 1) component of motion. In the limit of small Rossby numbers, the asymptotic analysis
shows that the slow component of motion doesn’t feel the fastone (chapter 2). Therefore,
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the existence of a mean adjusted state does not depend on the presence (or not) of fast wave
motion. Besides, the experimental results for both the warm-core lens configuration and the
uniform PV front configuration showed that a mean adjusted state could be extracted from the
wave motion with a simple time-averaging even for finite Rossby numbers. Hence, according
to the whole set of experiments, the fast component of motionseems to have only a weak
influence (if any) on the evolution of the mean adjusted statefor a wide range of parameters
(Ro < 1, Bu ' 0.1 − 10, −0.5 < λ < 0.5).

Theses two-layers or three-layers experiments also show that the PV conservation remain
robust even if the initial state does not satisfy the assumptions of the rotating shallow-water
model. Indeed, in almost all the cases, three-dimensional and non-hydrostatic motions (shocks
or gravity current head) could occur in the early stage of adjustment. Nevertheless, the predic-
tion of the RSW model based on the PV conservation gives a correct estimation of the mean
adjusted state. A very good agreement is found for the cases of cyclonic PV front when there
is no outcropping. However, the PV conservation could be locally broken in the case of out-
cropping fronts when the initial PV profile exhibit a singularity (i.e. the layer thickness vanish
at a given position). In such case, all the experiments exhibit transient and three-dimensional
instabilities localized around the PV singularity. These instabilities are an efficient mechanism
of turbulent dissipation which rapidly cascades energy toward small scales in the frontal region.
For the uniform PV front configuration, small and intense cyclones are formed in a very short
time (∼ 0.5Tf ) during the adjustement of a large scale anticyclonic front. The rapid formation
of these structures, which are much smaller than the deformation radius, were not predicted by
the standard scenario of adjustment and they could hardly becaptured by standard numerical
simulations which have limited spatial resolution. The laboratory experiment shows here a new
mechanism of formation of small and intense structures within a large-scale synoptic front.

The relaxation of any unbalanced initial state in a rotatingshallow-water model will always
leads to the emission of Poincarré waves (away from lateral boundaries). In a real labora-
tory experiment, both hydrostatic and non-hydrostatic waves could be emitted at the same time
and the spectral gap between the fast and the slow component of motion could then be filled.
However, according to our experiments and previsous studies (Bouruet-Aubertot and Linden,
2002; Rubino and Brandt, 2003; Thivolle-Cazat et al., 2003)the energy released to the wave
modes during the adjustment is mainly concentrated around the inertial frequency. A significant
wave activity remain for a long time (several inertial period) inside both the cyclonic and the
anticyclonic structures even if the mean steady state is already adjusted. For some specific con-
figuration the anticyclonic structure may exhibit sub-inertial oscillations. Such wave activity is
in good agreement with the RSW model predictions (chapter 2 and 3) and confirm the dynami-
cal splitting between the fast waves and the slow adjusted motion. However, the inertia-gravity
waves detected in the experiment have a dispersive behaviordue to the finite value of the aspect
ratio parameterα. This could explain why we didn’t see any evidence of the wavebreaking
events predicted in the RSW framework (chapter 3). The smallscale shocks we observed in
the very initial stage of adjustment seems to be due to a localoverturning event rather than a
propagating wave leading to breaking.
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