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Physical laws governing the flow
§ Conservation of mass

Dr/Dt + r divU = 0

§ Conservation of energy
De/Dt - (p/r2) Dr/Dt = Q

§ Conservation of momentum
DU/Dt + (1/r) gradp - g + 2 W ÙU =  F

§ Equation of state
f(p, r, e) = 0 (p/r = rT, e = CvT)

§ Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, …)
Dq/Dt + q divU = S

These physical laws must be expressed in practice in discretized (and necessarily
imperfect) form, both in space and time



The climate system is a heat engine, which produces
mechanical motion from heat (efficiency of about 7%).

Equations above are partial differential equations involving
derivatives with respect to spatial and temporal
coordinates, but they express physical laws that apply to
finite masses or volumes (the basis of discretization in
finite elements)



Geostrophic balance

In midlatitudes, and in both the atmosphere and the ocean,
the horizontal components of the Coriolis acceleration and
of the pressure gradient force are in approximate balance
(» 10% accuracy)



Large-scale Numerical Weather Prediction is based on the
primitive equations, themselves based on a number of
simplifications, and particularly the hydrostatic
approximation

Climatic simulations are also built on primitive equations,
and contain a much more detailed description of the
oceanic circulation.

More costly nonhydrostatic models are used for small scale
meteorology, and are being developed for global modeling.



- Numerical Weather Prediction. Present
performance (mostly ECMWF)

- The meteorological observation system

- The problem of ‘Assimilation’

- Inverse Problems. Bayesian Estimation
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- European Centre for Medium-Range Weather
Forecasts (ECMWF)

- Centre européen pour les prévisions météorologiques
à moyen terme (CEPMMT)

- Europäisches Zentrum für mittelfristige
Wettervorhersage (EZMW)

As of 2025, 23 member states, 12 co-operating states
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ECMWF established in 1975. Has produced daily
forecasts since 1980

Headquarters in Reading (UK), Data Centre in
Bologna (Italy)

ECMWF hosts part EU’s Earth Observation
Copernicus programme. That part has moved to
Bonn (Germany)
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Centre Européen pour les Prévisions Météorologiques à 
Moyen Terme (CEPMMT, Reading, GB)

Modèle IFS-HRES (Integrated Forecasting System – High Resolution). 
Depuis mars 2016 :

Modèle hydrostatique, semi-spectral. Troncature triangulaire
TCO1279 / O1280 (résolution horizontale ≈ 9 kilomètres)

137 niveaux dans la direction verticale (0 - 80 km)

Discrétisation en éléments finis dans la direction verticale
(coordonnée hybride)

Dimension du vecteur d’état correspondant > 109

Pas de discrétisation temporelle (schéma semi-Lagrangien semi-
implicite): 450 secondes

Intégré 2 fois par jour (00 et 12 UTC) à une échéance de 10
jours
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Results on site of ECMWF

In particular

• 09/2024. T. Haiden et al., Evaluation of ECMWF
forecasts, Technical Memorandum 918, ECMWF,
Reading, UK.

Available at the address :
1582-evaluation-of-ecmwf-forecasts.pdf
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Spatial correlation between anomalies from 
climatology of forecast and verifying analysis

ECMWF



Spatial correlation between anomalies from 
climatology of forecast and verifying analysis

ECMWFECMWF







RMS forecast errors 
as functions of 
forecast range for 
different variables and 
forecasting centres 
(extratropical 
Northern 
Hemisphere) 

ECMWF
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Night time: blue 
curves
Day time: red 
curves

Europe

ECMWF
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Continuous Ranked 
Probability Skill 
Score measures both 
reliability and 
resolution

ECMWF



Remaining problems

- Water cycle (evaporation, condensation, influence on absorbed
or emitted radiation)

- Exchanges with ocean or continental surface (heat, water,
momentum, …)
- …
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That is for physical approach to prediction, based on known physical laws

Another approach is now being developed, based on Machine Learning (aka
Deep Learning)

Why not directly use observations (for instance, in the case of a weather forecast,
why not look for analogues in the past, and make the forecast from those
analogues) ?

E. N. Lorenz (1960s). Sample of past observations will never be large enough for
competing with physically-based models.

But :
- there is no incompatibility between the two approaches

- there remain many processes in numerical models which we do not know
how to describe on the basis of well-established physical laws (interactions
between atmosphere and underlying medium, such as e.g. vegetation, all kinds
of subgrid scale processes, …)

- amount of data of all kinds, as well as computing power, are increasing very
rapidly.
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Machine Learning (continuation)

Powerful numerical tools have been developed for the exploitation of very large
sets of data (big data)

Neural networks. Define an explicit numerical link between an input set and an
output set. Define function F such that, to some useful degree of
approximation

y = F(x)

where x and y belong to the input and output sets respectively.

The function F is typically built as a composition of sigmoid functions
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Machine Learning (continuation 2)

Neural networks have turned out to be extremely efficient in
many applications. In the context of assimilation of
observations, they have been used for defining for instance the
observation operators (H) corresponding to satellite
observations. But they have been used more recently, in
evaluation studies and on idealized situations, but with some
success, for determining ‘dynamical laws’.

32



Machine Learning (continuation 3)

And, more importantly, they have been used for developing
softwares for meteorological predictions at a range of a few
days, using as training ensembles reanalyses produced by
meteorological centres.

ECMWF has for instance developed the AIFS software, with its
own ERA5 reanalysis (1979-present) as training ensemble. The
forecasts thus obtained are of similar quality as those of HRES,
but at a much lower numerical cost (a few minutes, instead of a
few hours, for a 10-day forecast).
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Amount of 40 million scalar data used over each 24-
hour period still valid as of 2025



§ Synoptic observations (ground observations, radiosonde observations),
performed simultaneously, by international agreement, in all meteorological
stations around the world (00:00, 06:00, 12:00, 18:00 UTC)

§ Asynoptic observations (satellites, aircraft), performed more or less
continuously in time.

§ Direct observations (temperature, pressure, horizontal components of the
wind, moisture), which are local and bear on the variables used for describing
the flow in numerical models.

§ Indirect observations (radiometric observations, …), which bear on some more
or less complex combination (most often, a one-dimensional spatial integral)
of variables used for for describing the flow

y = H(x)

H : observation operator (for instance, radiative transfer equation)
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ARGO Programme
International programme for observation of the ocean. Has
been in operation for 20 years. 4000 floaters drift at about
1000-m depth, measuring temperature, pressure and
biochemical parameters. Drifters come to the surface every 10
days or so, and send their data, including profiles, to satellites.
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E. Rémy, Doctoral Dissertation, 1999
50



Purpose of assimilation : reconstruct as accurately as possible the state of the
atmospheric or oceanic flow, using all available appropriate information. The latter
essentially consists of

§ The observations proper, which vary in nature, resolution and accuracy, and
are distributed more or less regularly in space and time.

§ The physical laws governing the evolution of the flow, available in practice in
the form of a discretized, and necessarily approximate, numerical model.

§ ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although
they basically are necessary consequences of the physical laws which govern the flow, these
properties can usefully be explicitly introduced in the assimilation process.

51



Both observations and ‘model’ are affected with some uncertainty Þ
uncertainty on the estimate.

For some reason, uncertainty is conveniently described by probability
distributions (don’t know too well why, but it works; see, e.g. Jaynes,
2007, Probability Theory: The Logic of Science, Cambridge University
Press).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the
system, knowing everything we know (see Tarantola, A., 2005, Inverse
Problem Theory and Methods for Model Parameter Estimation, SIAM).
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Assimilation is one of many ‘inverse problems’ encountered
in many fields of science and technology

• solid Earth geophysics

• plasma physics

• ‘nondestructive’ probing

• navigation (spacecraft, aircraft, ….)

• …

Solution most often (if not always) based on Bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.
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Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n ≈ 106-109 parameters to be
estimated, p ≈ 4-5.107 observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast to
be ready in time.

- Non-trivial, actually chaotic, underlying dynamics
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Gaussian variables

Unidimensional

N [m, a] ~ (2p a)-1/2 exp [- (1/2a) (x-m)2]

Dimension n

N [m, A] ~
[(2p)n detA]-1/2 exp [- (1/2) (x-m)TA-1(x-m)]
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Bayesian Estimation. A simple example

Determine conditional probability distribution of the state of the system,
given the probability distribution of the uncertainty on the data

z1 = x + z1 z1 = N [0, s1]

density function p1(z) µ exp[ - (z2)/2s1]

z2 = x + z2 z2 = N [0, s2]

density function p2(z) µ exp[ - (z2)/2s2]

z1 and z2 mutually independent

What is the conditional probability P(x = x | z1, z2) that x be equal to some
value x ?



z1 = x + z1 density function p1(z) µ exp[ - (z2)/2s1]
z2 = x + z2 density function p2(z) µ exp[ - (z2)/2s2]

z1 and z2 mutually independent

x = x Û z1 = z1-x and z2 = z2 -x

P(x = x | z1, z2) µ p1(z1-x) p2(z2 -x)

µ exp[ - (x - xa)2/2pa]

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1 + z2/s2)

Conditional probability distribution of x, given z1 and z2 :N [xa, pa]
pa < (s1, s2) independent of z1 and z2
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Conditional expectation xa minimizes following scalar objective function,
defined on x-space

x ® J(x) º (1/2) [(z1 - x)2 / s1 + (z2 - x)2 / s2 ]

In addition

pa = 1/ J’’(xa)

Conditional probability distribution in Gaussian case

P(x = x | z1, z2) µ exp[ - (x -xa)2/2pa]

J(x) + Cst

60



Estimate

xa = pa (z1/s1 + z2/s2)

with error pa such that

1/pa = 1/s1 + 1/s2

can also be obtained, independently of any Gaussian hypothesis, as simply
corresponding to the linear combination of z1 and z2 that minimizes the
error E [(xa-x) 2]

Best Linear Unbiased Estimator (BLUE)
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z1 = x + z1

z2 = x + z2

Same as before, but z1 and z2 are now distributed according to exponential law with 
parameter a, i. e.  

p (z) µ exp[-|z |/a]   ; Var(z) = 2a2

Conditional probability density function is now uniform over interval [z1, z2],
exponential with parameter a/2 outside that interval

E(x | z1, z2) = (z1+z2)/2

Var(x | z1, z2) = a2 (2d3/3 + d2 + d +1/2) / (1 + 2d), with d =½z1-z2½/(2a)
Increases from a2/2 to ¥ as d increases from 0 to ¥. Can be larger than variance
2a2 of original errors (probability 0.08)
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Bayesian estimation

State vector x, belonging to state space S (dimS = n), to be estimated.

Data vector z, belonging to data spaceD (dimD = m), available.

z = F(x, z) (1)

where z is a random element representing the uncertainty on the data (or, more
precisely, on the link between the data and the unknown state vector).

For example

z = Gx + z
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Bayesian estimation (continued)

Probability that x = x for given x ?

x = x Þ z = F(x, z)

P(x = x | z) = P[z = F(x, z)] / òx’ P[z = F(x’, z)]

Unambiguously defined iff, for any z, there is at most one x such that (1) is
verified.

Û data contain information, either directly or indirectly, on any component of x.
Determinacy condition. Implies m ≥ n.
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Bayesian estimation is actually impossible in its general theoretical form in
meteorological or oceanographical practice because

• It is impossible to explicitly describe a probability distribution in a space
with dimension even as low as n ≈ 103, not to speak of the dimension n ≈
106-9 of present Numerical Weather Prediction models (the curse of
dimensionality).

• Probability distribution of errors on data very poorly known (model errors
in particular).
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One has to restrict oneself to a much more modest goal. Two
approaches exist at present

§ Obtain some ‘central’ estimate of the conditional probability
distribution (expectation, mode, …), plus some estimate of the
corresponding spread (standard deviations and a number of
correlations).

§ Produce an ensemble of estimates which are meant to sample the
conditional probability distribution (dimension N ≈ O(10-100)).
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Cours à venir

Mercredi 2 avril

Vendredi 11 avril

Vendredi 18 avril
Mercredi 23 avril
Lundi 12 mai
Mercredi 28 mai
Mercredi 11 juin
Mercredi 18 juin



- Reminder on elementary probability theory.
Random vectors and covariance matrices,
random functions and covariance functions

- Optimal Interpolation. Principle, simple
examples, basic properties.

- Best Linear Unbiased Estimate (BLUE)
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