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Bayesian estimation

State vector x, belonging to state space S (dimS = n), to be estimated.

Data vector z, belonging to data spaceD (dimD = m), available.

z = F(x, z) (1)

where z is a random element representing the uncertainty on the data (or, more
precisely, on the link between the data and the unknown state vector).

For example

z = Gx + z
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Bayesian estimation (continued)

Probability that x = x for given x ?

x = x Þ z = F(x, z)

P(x = x | z) = P[z = F(x, z)] / òx’ P[z = F(x’, z)]

Unambiguously defined iff, for any z, there is at most one x such that (1) is
verified.

Û data contain information, either directly or indirectly, on any component of x.
Determinacy condition. Implies m ≥ n.
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Bayesian estimation is actually impossible in its general theoretical form in
meteorological or oceanographical practice because

• It is impossible to explicitly describe a probability distribution in a space
with dimension even as low as n ≈ 103, not to speak of the dimension n ≈
106-9 of present Numerical Weather Prediction models (the curse of
dimensionality).

• Probability distribution of errors on data very poorly known (model errors
in particular).
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One has to restrict oneself to a much more modest goal. Two
approaches exist at present

§ Obtain some ‘central’ estimate of the conditional probability
distribution (expectation, mode, …), plus some estimate of the
corresponding spread (standard deviations and a number of
correlations).

§ Produce an ensemble of estimates which are meant to sample the
conditional probability distribution (dimension N ≈ O(10-100)).
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- Reminder on elementary probability theory.
Random vectors and covariance matrices,
random functions and covariance functions

- Optimal Interpolation. Principle, simple
examples, basic properties.

- Best Linear Unbiased Estimate (BLUE)
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Scalar random variable x

Observed outcome of ‘realizations’ of a process that is repeated a large number of times.
And also, a priori uncertainty on that result.

For any interval [a, b], the probability P(a < x < b) is known (whether inequalities are
strict or not may matter).

Probability density function (pdf). Function p(x) such that, for any interval [a, b]

(p(x) may contain diracs)

Expectation. Mean of a large number of realizations of x

(may not exist) 7
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Scalar random variable x (continued)

Variance

Var(x) º E{[x – E(x)]2} = E(x2) – [E(x)]2

Standard deviation

s(x) º √Var(x)

Centred variable x’ º x – E(x)
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Couple of random variables x = (x1, x2)T

Covariance

Cov(x1, x2) º E(x1’ x2’)

Corr(x1, x2) º Cov(x1, x2) / (s(x1) s(x2)) = cos j

Covariance is a scalar product, and defines Euclidean geometry (on space of finite-
variance random variables on a given trial space)

Modulus = standard deviation s, angle = cos-1 (Corr), orthogonality = decorrelation

If x1 and x2 uncorrelated,

Var(x1 + x2) = Var(x1) + Var(x2) (Pythagorean theorem)

E(x1 x2) = E(x1) E(x2)
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Couple of random variables x = (x1, x2)T (continued)

Independence

x1 and x2 independent : knowledge about either one of the variables brings no knowledge
about the other one.

For any intervals [a1, b1], [a2, b2]

P(a1 < x1 < b1 and a2 < x2 < b2) = P(a1 < x1 < b1) P(a2 < x2 < b2)

Equivalently, pdf’s verify

p(x1, x2) = p1(x1) p2(x2)

Independence implies decorrelation. Converse is not true
(consider S = sin a, C = cos a, where a is uniformly distributed over [0, 2p])
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Random vector x = (x1, x2, …, xn)T = (xi) (e. g. pressure, temperature,
abundance of given chemical compound at n grid-points of a numerical model)

§ Expectation E(x) º [E(xi)] ; centred vector x’ º x - E(x)

§ Covariance matrix

E(x’x’T) = [E(xi’xj’)]
dimension nxn

Non-random vector l = (li)i = 1, .., n

G º Si li xi’ G2 = Si,j li lj xi’xj’

E(G2) = Si,j li lj E(xi’xj’) = lTE(x’x’T) l ≥ 0

Covariance matrix E(x’x’T) is symmetric non negative (strictly definite positive
except if linear relationship holds between the xi’‘s with probability 1).
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Change
x ® y º Px

y’y’T = Px’(Px’)T = P x x’ TPT

E(y’y’T) = P E(x’x’T) PT

In change x ® y, eigenvalues of covariance matrix remain
> 0, but can be modified (conserved if PT = P-1,
orthogonal matrix).
Eigenvalues can actually take any positive values.
In particular, covariance matrix can be made equal to the
unit matrix, for instance in the basis of principal
components.
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§ Two random vectors

x = (x1, x2, …, xn)T

z = (z1, z2, …, zp)T

E(x’z’T) = E(xi’zj’)

dimension nxp

Change  

x  ® u º Ax z  ® v º Bz

E(u’v’T) = A E(x’z’T) BT
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Covariance matrices will be denoted

Cxx º E(x’x’T)

Cxy º E(x’y’T)
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Random function F(x) (field of pressure, temperature, abundance of
given chemical compound, … ; x is now spatial and/or temporal
coordinate) (aka stochastic process if function of time)

§ Expectation E[F(x)] ; F’(x) º F(x) - E[F(x)]
§ Variance      Var[F(x)] = E{[F’(x)]2}

§ Covariance function

(x1, x2)® CF(x1, x2) º E[F’(x1) F’(x2)]

§ Correlation function

CorF(x1, x2) º E[F’(x1) F’(x2)] / {Var[F(x1)] Var[F(x2)]}1/2
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After N. Gustafsson
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After N. Gustafsson



After N. Gustafsson
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Covariance function can be

homogeneous CF(x1, x2) = H(x1 - x2)

or isotropic CF(x1, x2) = K(çx1 - x2ç)
(on the sphere, no difference)

N points x1, x2, …, xN  in state space
N non-random coefficients l1, l2, …, lN

G º Si liF’(xi)

E(G2) = Si,j li lj CF(xi, xj) ≥ 0
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E(G2) = Si,j li lj CF(xi, xj) ≥ 0

covariance functions are of positive type (or definite
positive). Conversely, a function of positive type can be
shown to be the covariance function of a random function.

Example
On a circle, function C(x1, x2) = cos(x1-x2) is covariance
function of random function F(x) = 2 cos(x + a), where a
is uniformly distributed over [0, 2p].
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More generally, random function on 2p-circle of the form

F(x) = Sk=-K, +K fk exp (ikx)

with fk = rk exp (iqk), rk real, k ≥ 0, f-k = rk exp (-iqk)

All rk and qk random, the qk’s being uniformly distributed
over [0, 2p], mutually independent, and independent of the
rk ‘s.

F(x) is the superposition of a spatially uniform random r0
(we assume E(r0)=0) and of K sine waves with random
and mutually independent (uniformy distributed) phases qk
and amplitudes rk.



F’(x1) F’(x2) = [Sk rk exp(iqk) exp(ikx1)]
x [Sk’ rk’ exp(-iqk’) exp(-ik’x2)]

= Skk’ rk rk’ exp[i(qk-qk’)] exp[i (kx1 – k’x2)]

On taking expectation, E[exp[i(qk-qk’)] = 0 if k ≠ k’ and there
remains

E[F’(x1) F’(x2)] = CF(x1, x2) = Sk E(rk2) exp[ik(x1 – x2)]

CF(x1, x2) = E(r02) + 2 Sk>0E(rk2) cos [k(x1 – x2)]



Bochner-Khintchin theorem. Homogeneous function
C (x1, x2) = H(x1 - x2) over Rn of positive typeÛ Fourier
Transform of H is real ≥ 0.

In Rn, squared exponential

C(x1, x2) = exp[- (x1- x2)TB-1 (x1- x2) ] B > 0

is of positive type
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Gaussian variables

Unidimensional (expectation m, variance a)

N [m, a] ~ (2p a)-1/2 exp [- (1/2a) (x-m)2]

Dimension n (expectation m, covariance matrix A)

N [m, A] ~
[(2p)n detA]-1/2 exp [- (1/2) (x-m)TA-1(x-m)]
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Gaussian variables

Gaussian couple z = (xT, yT) T with distributionN [0, C]

pdf ~ exp [- (1/2) zTC-1z]

x and y uncorrelated Cxy= 0, Cyx= 0

zTC-1z = xTCxx-1 x + yTCyy-1 y



Gaussian variables

zTC-1z = xTCxx-1 x + yTCyy-1 y

exp [- (1/2) zTC-1z] =
exp [- (1/2) xTCxx-1 x ] exp [- (1/2) yTCyy-1 y]

p(z) = p(x) p(y)

For globally Gaussian variables, decorrelation implies independence
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- ‘Optimal Interpolation’. Basic theory and
basic properties. A simple example.
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Optimal Interpolation

x x1 x x3

X x
x x2 x x5

x x4

Random field F(x), with known probability distribution

Observations yj at points xj , j = 1, …, p

Value x = F(x) at point x ?
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Optimal Interpolation  (continued 1)

Random field F(x)

Observation network x1, x2, …, xp

For one particular realization of the field, observations

yj = F(xj) + ej ,  j = 1, …, p        , making up vector y = (yj)

Estimate x = F(x) at given point x, in the form

xa = a + Sj bj yj = a + bTy, where b = (bj)

a and the bj’s being determined so as to minimize the expected quadratic 
estimation error E[(x-xa)2]
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Optimal Interpolation (continued 2)

E[(x-xa)2] minimum Þ E(x-xa) = 0 Estimate xa is unbiased.

xa = a + Sj bj yj

E(xa) = a + Sj bj E(yj)

xa - E(x) = Sj bj [yj - E(yj)]

Computations are to be made on centred variables 

x’a º xa - E(x) is the linear combination of the yj’ = yj - E(yj) that
minimizes the distance to x’ = x - E(x). It is the orthogonal projection,
in the sense of covariance, of x’ onto the space spanned by the yj’’s.
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Optimal Interpolation (continued 3)

x’ - x’a uncorrelated with yj’

E[(x’ – x’a) yj’] = 0
x’a = Sk bk yk’

Þ Sk bk E(yk’ yj’) = E(x’ yj’)

in matrix form Cyy b = Cyx
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Optimal Interpolation (continued 4)
Solution

xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]
= E(x) + Cxy [Cyy]-1 [y - E(y)]

i. e., bT = Cxy [Cyy]-1

a = E(x) - bTE(y)

Estimate is unbiased E(x-xa) = 0

Minimized quadratic estimation error

E[(x-xa)2] = E(x’2) - E[(x’a)2]
= Cxx - Cxy [Cyy]-1 Cyx

Estimation made in terms of deviations x’ and y’ from expectations E(x)
and E(y).
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Optimal Interpolation (continued 5)

xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]

yj = F(xj) + ej

E(yj’yk’) = E {[F’(xj) + ej’][F’(xk) + ek’]}

If observation errors ej are mutually uncorrelated, have common
variance r, and are uncorrelated with field F, then

E(yj’yk’) = CF(xj, xk) + rdjk

and
E(x’yj’) = CF(x, xj)
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Optimal Interpolation (continued 6)

Unique observation (p=1)  y1 = F(x1) + e1

Value x = F(x) at some point x to be estimated
(all values assumed to be centred)

Cyy b  = Cyx

Cyy = E(y1
2) = CF(x1, x1) + r Cyx = CF(x, x1)
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Optimal Interpolation (continued 7)

x y1

36
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After N. Gustafsson
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Optimal Interpolation (continued 8) 

Two mutually close observations (p=2)  yj = Φ(ξj) + εj    ,  j = 1,2 

Homogeneous covariance function  CΦ(χ1, χ2) = Γ(χ1- χ2)

Linear system for weights βj’s  
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Optimal Interpolation (continued 9)
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Optimal Interpolation (continued 10)

xa = E(x) + Cxy [Cyy]-1 [y - E(y)]

Vector
µ = (µj) º [Cyy]-1 [y - E(y)]

is independent of variable to be estimated

xa = E(x) + Sj µj  E(x’yj’)
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Optimal Interpolation (continued 11)

xa = E(x) + Sj µj  E(x’yj’)

Fa(x) = E[F(x)] + Sj µj  E[F’(x) yj’]

Under hypotheses made above, E[F’(x) yj’] = CF(x, xj) 

Fa(x) = E[F(x)] + Sj µj  CF(x, xj)

Correction made on background expectation is a linear
combination of the p functions CF(x, xj)

CF(x, xj), considered as a function of estimation position x, is the
representer associated with observation yj.
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Optimal Interpolation (continued 12)

Univariate interpolation. Each physical field (e. g. temperature)
determined from observations of that field only.

Multivariate interpolation. Observations of different physical fields are
used simultaneously. Requires specification of cross-covariances
between various fields.

Cross-covariances between mass and velocity fields can simply be
modelled on the basis of geostrophic balance.

Cross-covariances between humidity and temperature (and other)
fields still a problem.
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After N. Gustafsson



After A. Lorenc, MWR, 1981
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Optimal Interpolation (continued 13)

Observation vector y

Estimation of a scalar x

xa = E(x) + Cxy [Cyy]-1 [y - E(y)]

pa º E[(x-xa)2] = E(x’2) - E[(x’a)2])
= Cxx - Cxy [Cyy]-1 Cyx

Estimation of a vector x

xa = E(x) + Cxy [Cyy]-1 [y - E(y)]

Pa º E[(x-xa) (x-xa)T] = E(x’x’T) - E(x’a x’aT)
= Cxx - Cxy [Cyy]-1 Cyx
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Optimal Interpolation (continued 14)

xa = E(x) + Cxy [Cyy]-1 [y - E(y)]
Pa = Cxx - Cxy [Cyy]-1 Cyx

If probability distribution for couple (x, y) is Gaussian (with, 
in particular, covariance matrix

then Optimal Interpolation achieves Bayesian estimation, in 
the sense that

P(x | y) = N [xa, Pa]
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Optimal Interpolation (continued 15)

Optimal Interpolation is a particular (and
relatively simple) case of a more general approach
called kriging, originally developed for the
estimation of the content of an ore field.
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Best Linear Unbiased Estimate

State vector x, belonging to state space S (dimS = n), to be estimated.
Available data in the form of

§ A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n

xb = x + zb

§ An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx + e

H is known linear observation operator.

Assume probability distribution is known for the couple (zb, e).
Assume E(zb) = 0, E(e) = 0, E(zbeT) = 0 (not restrictive)
Set E(zbzbT) º Pb (also often denoted B), E(eeT) º R
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Best Linear Unbiased Estimate (continuation 1)

xb = x + zb (1)

y = Hx + e (2)

A probability distribution being known for the couple (zb, e), eqs (1-2) define
probability distribution for the couple (x, y), with

E(x) = xb , x’ = x - E(x) = - zb

E(y) = Hxb , y’ = y - E(y) = y - Hxb = e - Hzb (H is linear)

d º y - Hxb is called the innovation vector.
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Best Linear Unbiased Estimate (continuation 2)

Apply formulæ for Optimal Interpolation for estimating x

xa = E(x) + Cxy [Cyy]-1 [y - E(y)]
Pa = Cxx - Cxy [Cyy]-1 Cyx

E(x) = xb , x’ = x - E(x) = - zb
E(y) = Hxb , y’ = y - E(y) = y - Hxb = e - Hzb

Cxy = E(x’y’T) = E[-zb(e - Hzb)T] = - E(zbeT) + E(zbzbT)HT = PbHT

0 Pb

Cyy = E(y’y’T) = E[(e - Hzb) (e - Hzb)T] = E(eeT) + HE(zbzbT)HT

R Pb
Cyy = R + HPbHT
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Best Linear Unbiased Estimate (continuation 3)

xa = xb + PbHT [HPbHT + R]-1 (y - Hxb)
Pa = Pb - PbHT [HPbHT + R]-1 HPb

xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.

Equivalent set of formulæ

xa = xb + PaHTR-1 (y - Hxb)
[Pa]-1 = [Pb]-1 + HTR-1H

Vector d º y – Hxb is innovation vector
Matrix K º PbHT [HPbHT + R]-1 = PaHTR-1 is gain matrix.

If couple (zb, e) is Gaussian, BLUE achieves bayesian estimation, in the sense that
P(x | xb, y) = N [xa, Pa].
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After A. Lorenc, MWR, 1981
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Best Linear Unbiased Estimate (continuation 4)

H can be any linear operator

Example : (scalar) satellite observation

x = (x1, …, xn)T temperature profile

Observation y = Si hixi + e = Hx + e , H = (h1, …, hn) , E(e2) = r
Background xb = (x1

b, …, xn
b)T , error covariance matrix Pb = (pik

b)

xa = xb + PbHT [HPbHT + R]-1 (y - Hxb)

[HPbHT + R]-1 (y - Hxb) = (y - Si hixib) / (Sikhihk pik
b + r) º µ scalar !

� Pb = pb In xi
a  = xi

b + pb hi µ

� Pb = diag(pii
b) xi

a  = xi
b + pii

b hi µ

� General case xi
a  = xi

b + Sk pik
b hk µ

Each level i is corrected, not only because of its own contribution to the observation, but because
of the contribution of the other levels with which its background error is correlated.
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Best Linear Unbiased Estimate (continuation 6)

BLUE is invariant in any invertible linear change of
variables, in either state or observation space.

Equivalently, BLUE is independent of the possible choice
of a scalar product in either one of the two spaces.

Again, if the couple (zb, e) is Gaussian, the BLUE is
Bayesian in the sense that P(x | xb, y) =N [xa, Pa]
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Next step

How to introduce temporal dynamics in
assimilation ?

Kalman Filter. Variational Assimilation
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Conference
on "IA and mathematics for meteorology and climatology »
May 5th 2025 at the Collège de France, organised by Pierre-Louis Lions
and Stéphane Mallat

….

- Marc Bocquet, École Nationale des Ponts et Chaussées, "Artificial
Intelligence for gephysical data assimilation"

Program and information available at: https://www.college-de-
france.fr/fr/agenda/grand-evenement/ia-et-les-mathematiques-pour-la-
meteorologie-et-la-climatologie
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Cours à venir

Mercredi 2 avril
Vendredi 11 avril
Vendredi 18 avril
Mercredi 23 avril
Lundi 12 mai
Mercredi 28 mai
Mercredi 11 juin
Mercredi 18 juin


