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- Best Linear Unbiased Estimator. Complements

- How to introduce temporal dynamics in
assimilation ? Kalman Filter. Theory. One
didactic example.

- How to introduce nonlinearity ? Reduced
Rank Kalman Filters. Ensemble Kalman Filter

- Kalman Smoother
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Best Linear Unbiased Estimate

State vector x, belonging to state space S (dimS = n), to be estimated.
Available data in the form of

§ A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n

xb = x + zb

§ An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx + e

H is known linear observation operator.

Assume probability distribution is known for the couple (zb, e).
Assume E(zb) = 0, E(e) = 0, E(zbeT) = 0 (not restrictive)
Set E(zbzbT) º Pb (also often denoted B), E(eeT) º R

3



Best Linear Unbiased Estimate (continuation 1)

xb = x + zb (1)

y = Hx + e (2)

A probability distribution being known for the couple (zb, e), eqs (1-2) define
probability distribution for the couple (x, y), with

E(x) = xb , x’ = x - E(x) = - zb

E(y) = Hxb , y’ = y - E(y) = y - Hxb = e - Hzb (H is linear)

d º y - Hxb is called the innovation vector.
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Best Linear Unbiased Estimate (continuation 2)

Apply formulæ for Optimal Interpolation for estimating x

xa = E(x) + Cxy [Cyy]-1 [y - E(y)]
Pa = Cxx - Cxy [Cyy]-1 Cyx

E(x) = xb , x’ = x - E(x) = - zb
E(y) = Hxb , y’ = y - E(y) = y - Hxb = e - Hzb

Cxy = E(x’y’T) = E[-zb(e - Hzb)T] = - E(zbeT) + E(zbzbT)HT = PbHT

0 Pb

Cyy = E(y’y’T) = E[(e - Hzb) (e - Hzb)T] = E(eeT) + HE(zbzbT)HT

R Pb
Cyy = R + HPbHT
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Best Linear Unbiased Estimate (continuation 3)

xa = xb + PbHT [HPbHT + R]-1 (y - Hxb)
Pa = Pb - PbHT [HPbHT + R]-1 HPb

xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.

Equivalent set of formulæ

xa = xb + PaHTR-1 (y - Hxb)
[Pa]-1 = [Pb]-1 + HTR-1H

As said, vector d º y – Hxb is innovation vector
Matrix K º PbHT [HPbHT + R]-1 = PaHTR-1 is gain matrix.

If couple (zb, e) is Gaussian, BLUE achieves bayesian estimation, in the sense that
P(x | xb, y) = N [xa, Pa].

6



After A. Lorenc, MWR, 1981
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Best Linear Unbiased Estimate (continuation 4)

H can be any linear operator

Example : (scalar) satellite observation

x = (x1, …, xn)T temperature profile

Observation y = Si hixi + e = Hx + e , H = (h1, …, hn) , E(e2) = r
Background xb = (x1

b, …, xn
b)T , error covariance matrix Pb = (pik

b)

xa = xb + PbHT [HPbHT + R]-1 (y - Hxb)

[HPbHT + R]-1 (y - Hxb) = (y - Si hixib) / (Sikhihk pik
b + r) º µ scalar !

Pb = diag(pii
b) xi

a  = xi
b + pii

b hi µ

General case xi
a  = xi

b + Sk pik
b hk µ

Each level i is corrected, not only because of its own contribution to the observation,
but also because of the possible correlation of its background error with other levels
which contribute to the observation
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Best Linear Unbiased Estimate (continuation 5)

BLUE is invariant in any invertible linear change of
variables, in either state or observation space.

Equivalently, BLUE is independent of the possible choice
of a scalar product, or norm, in either one of the two
spaces.
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Best Linear Unbiased Estimate (continuation 6)

Again, if the couple (zb, e) is Gaussian, the BLUE is Bayesian in the sense that
P(x | xb, y) =N [xa, Pa]

xa = xb + PbHT [HPbHT + R]-1 (y - Hxb)
Pa = Pb - PbHT [HPbHT + R]-1 HPb

The estimate xa depends on the value of the data xb and y.
The estimation error covariance matrix Pa does not. The algebraic expression
for Pa is the same in both cases, but its significance is not the same.

- in the Gaussian case, Pa denotes the Bayesian error covariance matrix
for any set of data (xb, y) (or any set of errors (zb, e))

- in the general BLUE case, Pawill not in general be the Bayesian error
covariance matrix for a given set of errors (zb, e), but the average covariance
matrix over all realizations of the errors (zb, e).
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Best Linear Unbiased Estimate (continuation 7)

Variational form of the BLUE

BLUE xa minimizes following scalar objective function, defined on state space

x Î S ®

J(x) º (1/2) (xb - x)T [Pb]-1 (xb - x) +  (1/2) (y - Hx)TR-1 (y - Hx)

º Jb + Jo

Pa = [∂2J/∂x2]-1 (inverse Hessian)

‘3D-Var’

Can easily, and heuristically, be extended to the case of a nonlinear observation operator
H.

(has been, or is still) used operationally in USA, Australia, China, … 11



Best Linear Unbiased Estimate (continuation 8)

A large part of what has been done, and is still
being done, in assimilation is based on a heuristic
and empirical extension of the BLUE to
moderately nonlinear and/or non-Gaussian
situations.
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Best Linear Unbiased Estimate (continuation 9)

The case of a nonlinear observation operator

xb = x + zb

y = H(x) + e H nonlinear

Innovation d º y – H(xb) = H(x) - H(xb) + e

≈ H’(x – xb) + e if x – xb small

where H’ is Jacobian matrix of H (matrix of partial derivatives) at point xb

Problem becomes linear in x – xb

Tangent linear approximation
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Best Linear Unbiased Estimate (continuation 10)

0 = x – xb+ zb

d = H’(x – xb) + e

xa = xb + PbH’T [H’PbH’T + R]-1 [y - H(xb)]
Pa = Pb - PbH’T [H’PbH’T + R]-1 H’Pb

For variational form, no linear approximation is necessary, and one can
directly minimize

x Î S ®

J(x) º (1/2) (xb - x)T [Pb]-1 (xb - x) +  (1/2) [y – H(x)]T R-1 [y – H(x)]

(not equivalent is general !)
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- How to introduce temporal dynamics in
assimilation ? Kalman Filter. Theory. One
didactic example.

- How to introduce nonlinearity ? Reduced
Rank Kalman Filters. Ensemble Kalman Filter
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Question. How to introduce temporal dimension in
estimation process ?

§ Logic of Optimal Interpolation and of BLUE can be extended to time
dimension.

§ But we know much more than just temporal correlations. We know
explicit dynamics.

Real (unknown) state vector at time k (in format of assimilating model) xk. Belongs to
state space S (dimS = n)

Evolution equation

xk+1 =Mk(xk) + hk

Mk is (known) model, hk is (unknown) model error
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Sequential Assimilation

• Assimilating model is integrated over period of time over which observations
are available. Whenever model time reaches an instant at which observations
are available, state predicted by the model is updated with new observations.
In the jargon of the trade, Optimal Interpolation designates an algorithm for
sequential assimilation in which the matrix Pb is constant with time, and 3D-
Var an algorithm in which, in addition, the analysis xa is obtained through a
variational algorithm.

Variational Assimilation

• Assimilating model is globally adjusted to observations distributed over
observation period. Often achieved by minimization of an appropriate scalar
objective function measuring misfit between data and sequence of model states
to be estimated.
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Sequential Assimilation

Optimal Interpolation

§ Observation vector at time k

yk = Hkxk + ek k = 0, …, K
E(ek) = 0   ;  E(ekej

T) = Rk dkj

Hk linear

§ Evolution equation

xk+1 = Mk (xk) + hk k = 0, …, K-1
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Optimal Interpolation (2)

At time k, background xb
k and associated error covariance matrix Pb known,

assumed to be independent of k.

§ Analysis step

xa
k = xb

k + PbHk
T [HkPbHk

T + Rk]-1 (yk - Hkxb
k)

In 3D-Var, xa
k is obtained by (iterative) minimization of associated objective

function

• Forecast step

xb
k+1 =  Mk( xa

k)
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Sequential Assimilation. 

Kalman Filter. Standard Kalman filter is purely linear

§ Observation vector at time k

yk = Hkxk + ek k = 0, …, K
E(ek) = 0   ;  E(ekej

T) = Rk dkj

Hk linear

§ Evolution equation

xk+1 = Mkxk + hk k = 0, …, K-1
E(hk) = 0   ;  E(hkhj

T) = Qk dkj 

Mk linear

• E(hkej
T) = 0 (model and observation errors are uncorrelated)
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At time k, background xb
k and associated error covariance matrix Pb

k known

§ Analysis step

xa
k = xb

k + Pb
k Hk

T [HkPb
kHk

T + Rk]-1 (yk - Hkxb
k)

Pa
k = Pb

k - Pb
k Hk

T [HkPb
kHk

T + Rk]-1Hk Pb
k

§ Forecast step (Mk linear)

xb
k+1 = Mk xa

k

Pb
k+1 = E[(xb

k+1 - xk+1)(xb
k+1 - xk+1)T] = E[(Mk xa

k - Mkxk - hk)(Mk xa
k - Mkxk -

hk)T]
= Mk E[(xa

k - xk)(xa
k - xk)T]Mk

T

- E[hk (xa
k - xk)T] Mk

T - MkE[(xa
k - xk)hk

T]  + E[hkhk
T] 

= Mk Pa
k Mk

T + Qk 
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At time k, background xb
k and associated error covariance matrix Pb

k known

§ Analysis step

xa
k = xb

k + Pb
k Hk

T [HkPb
kHk

T + Rk]-1 (yk - Hkxb
k)

Pa
k = Pb

k - Pb
k Hk

T [HkPb
kHk

T + Rk]-1Hk Pb
k

§ Forecast step

xb
k+1 = Mk xa

k

Pb
k+1 = Mk Pa

k Mk
T + Qk 

Kalman filter (KF, Kalman, 1960, also named Stratonovich–Kalman–Bucy 
filter)

Must be started from some initial estimate (xb
0, Pb

0)
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If all operators are linear, and if errors are uncorrelated in time,
Kalman filter produces at time k the BLUE xbk (resp. xak) of the real
state xk from all data prior to (resp. up to) time k, plus the associated
estimation error covariance matrix Pbk (resp. Pak).

If in addition errors are globally gaussian, the corresponding
conditional probability distributions are the respective gaussian
distributionsN [xbk, Pbk] and N [xak, Pak].
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Shallow-water equations
Describe motion of layer of incompressible fluid, with small 

aspect ratio

25
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Nous ne pouvons pas afficher l’image.



Unidimensional domain

‘Ocean’ ‘Continent’
(no observation) (observations)

Geopotential j and velocity vector U (two components) observed over
land every 12 hours
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M. Ghil et al. 28



M. Ghil et al.
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Uncertainty evolves in time under the effect of

- Introduction of observations (decreases uncertainty)

- Model error (increases uncertainty)

- Dynamics of the system (increases or decreases uncertainty
depending on stability of the state of the system) (dynamics is neutral
in previous example)
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Nonlinearities ?

Linearity of observation and model operators has been explicitly used in

d º y - Hxb = Hx + e - Hxb = H(x - xb) + e = - Hzb + e

Mk xa
k - Mkxk = Mk(xa

k – xk)

If H nonlinear, and x – xb  small
H(x) – H(xb) ≈ H’(x - xb)
where H’ is Jacobian matrix of H (matrix of partial derivatives) at point xb

Similarly, if Mk nonlinear, and xa
k – xk small

Mk (xa
k) – Mk(x) = Mk’(xa

k – xk)
where Mk’ is Jacobian matrix of Mk at point xa

k

Tangent Linear Approximation
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Nonlinearities ?

Model is usually nonlinear, and observation operators (satellite observations) 
tend more and more to be nonlinear.

§ Analysis step

xa
k = xb

k + Pb
k Hk’T [Hk’Pb

kHk’T + Rk]-1 [yk - Hk(xb
k)]

Pa
k = Pb

k - Pb
k Hk’T [Hk’Pb

kHk’T + Rk]-1 Hk’Pb
k

§ Forecast step

xb
k+1 =  Mk(xa

k)
Pb

k+1 = Mk’Pa
k Mk’T + Qk 

Extended Kalman Filter (EKF, heuristic !)
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Costliest part of computation

Pb
k+1 = Mk Pa

k Mk
T + Qk 

Multiplication of one vector by Mk = one integration of the model
between times k and k+1
Computation of MkPa

kMk
T ≈ 2n integrations of the model

Need for determining the temporal evolution of the
uncertainty on the state of the system is the major
difficulty in assimilation of meteorological and
oceanographical observations
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Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral 
truncation T21, unit m. After F. Bouttier)
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Temporal evolution of the 500-hPa geopotential autocorrelation with respect to
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.
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Two solutions :

• Low-rank filters
Use low-rank covariance matrix, restricted to
modes in state space on which it is known, or at
least assumed, that a large part of the uncertainty is
concentrated (this requires the definition of a norm
on state space).

Reduced Rank Square Root Filters (RRSQRT,
Heemink)
Singular Evolutive Extended Kalman Filter (SEEK,
Pham)
…. 36



Reduced Rank Square Root Kalman Filter (RRSQRT, Verlaan and Heemink, 
1997)

A covariance matrix P can be written as

P = S ST

where the column vectors of S are the (orthogonal) principal components
(eigenvectors) of P (the modulus of each vector is the square root of the
associated eigenvalue).

The principle of RRSQRT is to restrict the background error covariance matrix Pb

to r « n principal components, thereby approximating Pb by (the time index k is
dropped)

Pb ≈ Sb SbT

where Sb has dimensions n x r.
37



RRSQRT (continuation 1)

Setting Y º (HSb)T, the gain matrix of the Kalman filter and the analysis error
covariance matrix respectively become

K = Sb Y (YTY + R)-1

and

Pa = Sa SaT

with

Sa = Sb [Ir - Y (YTY + R)-1YT] 1/2
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RRSQRT (continuation 2)

In the prediction phase, the column vectors of Sa are evolved by the tangent linear
model (an evolution of a perturbed state by the full model is also possible). If a
model error is to be introduced, that is done by reducing the order r of Sa to r-
q, and introducing q new column vectors meant to represent the model error.

Orthogonality of the column vectors is lost in the prediction, and has to be
reestablished. And, even if process is started from dominant column vectors,
that dominance may of course be lost.

Advantages : in addition to reduced computational cost, numerical errors are
smaller when dealing with square root covariance matrices, as done here, than
with full matrices (better conditioning).
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Singular Evolutive Extended Kalman Filter (SEEK, Pham, 1996)

Based on the fact that, because of the linearity of Kalman Filter, the rank of the
covariance matrix Pa or Pb cannot increase, in the case no model error is
present, in either the update or the model evolution. SEEK performs a linear
filter starting from a low rank Pb0, and so runs the exact Kalman filter in the
case of a perfect model. The algorithmic implementation takes advantage of
the rank-deficiency of the covariance matrix. The rank of the latter is
conserved (or decreased), but the subspace spanned by the directions with non-
zero error evolves, in both the update and the dynamic evolution.

In case model error is present, the corresponding covariance matrix Qk is projected
onto the directions with non-zero error (this is of course an approximation).
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Singular Evolutive Interpolated Kalman Filter (SEIK, Pham, 2001)

Non-trivial extension of SEEK to nonlinear model or observation operators. Rank
deficiency is now forced.
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Second solution :

• Ensemble filters
Uncertainty is represented, not by a covariance matrix, but by
an ensemble of point estimates in state space that are meant to
sample the conditional probability distribution for the state of
the system (dimension L ≈ O(10-100)).
Ensemble is evolved in time through the full model, which
eliminates any need for linear hypothesis as to the temporal
evolution.

Ensemble Kalman Filter (EnKF, Evensen, Anderson, …)
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How to update predicted ensemble with new observations ?

Predicted ensemble at time k : {xb
l}, l = 1, …, L

Observation vector at same time : y = Hx + e

• Gaussian approach

Produce sample of probability distribution for real observed quantity Hx
yl = y - el
where el is distributed according to probability distribution for observation error e.

Then use Kalman formula to produce sample of ‘analysed’ states

xa
l = xb

l + PbHT [HPbHT + R]-1 (yl - Hxb
l) , l = 1, …, L (2)

where Pb is the sample covariance matrix of predicted ensemble {xb
l}.

Remark. In case of Gaussian errors, if Pb was exact covariance matrix of
background error, (2) would achieve Bayesian estimation, in the sense that {xa

l}
would be a sample of conditional probability distribution for x, given all data up
to time k.
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C. Snyder 44



¾ EnKF ¾ 3DVar (prior, solid; posterior, dotted)

Prior 

posterior

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 
analysis in terms of root-mean square difference averaged over the entire month 

Month-long Performance of EnKF vs. 3Dvar with WRF

(Meng and Zhang 2007c, MWR, in review )
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The case of a nonlinear observation operator ?

Predicted ensemble at time k : {xb
l}, l = 1, …, L

Observation vector at same time :   y = H(x) + e H nonlinear

Two possibilities

1. Take tangent linear approximation (as in Extended KF) and introduce jacobian H’

2. Come back to original formula

xa = E(x) + Cxy [Cyy]-1 [y - E(y)]

That formula does not require any other link between x and y than the one defined by the
covariances matrices Cxy and Cyy.

Here, as shown on the occasion of the derivation of the BLUE, E(x) is the backgound xb, and y -
E(y) is the innovation y – H(xb)

Solution. Compute Cxy and Cyy as sample covariances matrices of the ensembles {xb
l} and {yl -

H(xb
l)}, where the yl’s are, as before, the perturbed observations yl = y - el.
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But problems

- Collapse of ensemble for small ensemble size (less than a few hundred). Collapse originates
in the fact that gain matrix PbHT [HPbHT + R]-1 is nonlinear wrt background error matrix
Pb, resulting in a systematic sampling effect. Solution : empirical ‘covariance inflation’.

- Spurious correlations appear at large geographical distances. Empirical ‘localization’ (see
Gaspari and Cohn, 1999, Q. J. R. Meteorol. Soc.)

- In formula

xa
l = xb

l + PbHT [HPbHT + R]-1 (yl - Hxb
l) , l = 1, …, L

Pb, which is covariance matrix of an L-size ensemble, has rank L-1 at most. This means that
corrections made on ensemble elements are contained in a subspace with dimension L-1.
Obviously very restrictive if L « p , L « n.
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Houtekamer and Mitchell (1998) use two ensembles, the elements of each of
which are updated with covariance matrix of other ensemble.
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There exist many variants of Ensemble Kalman Filter

Ensemble Transform Kalman Filter (ETKF, Bishop et al., Mon. Wea. Rev., 2001)

Requires a prior ‘control’ analysis xc
a, emanating from a background xc

b. An ensemble is
evolved about that control without explicit use of the observations (and without feedback
to control)

More precisely, define L x L matrix T such that, given Pb = ZZT, then Pa = ZTTTZT (not trivial,
but possible). Then the background deviations xb

l – xc
b are transformed through Z ® ZT

into an ensemble of analysis deviations xa
l – xc

a.

(does not avoid collapse of ensembles)

Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., Physica D, 2007)

Each gridpoint is corrected only through the use of neighbouring observations.
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Other variants of Ensemble Kalman Filter

‘Unscented’ Kalman Filter (Wan and van der Merve, 2001, Wiley Publishing)

Weighted Kalman Filter (Papadakis et al., 2010, Tellus A)

Inflation-free Ensemble Kalman Filters (Bocquet and Sakov, 2012, Nonlin.
Processes Geophys.)

An iterative ensemble Kalman filter in the presence of additive model error (Sakov et
al., 2017, Q. J. R. Meteorol. Soc.)
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51

Bayesian properties of Ensemble Kalman Filter ?

Very little is known.

Le Gland et al. (2011). In the linear and Gaussian case, the discrete pdf
defined by the filter, in the limit of infinite sample size L, tends to the
bayesian gaussian pdf.

No result for finite size (note that ensemble elements are not mutually
independent)

In the nonlinear case, the discrete pdf tends to a limit which is in general
not the bayesian pdf.

Situation still not entirely clear



Two questions

- How to propagate information backwards in time ? (useful
for reassimilation of past data)

-How to take into account possible dependence in time ?

Kalman Filter, whether in its standard linear form or in its Ensemble form,
does neither.
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Time-correlated Errors

Example of time-correlated observation errors

z1 = x + z1

z2 = x + z2

E(z1) = E(z2) = 0   ;  E(z1
2) = E(z2

2) = s ;     E(z1z2) = 0 

BLUE of x from z1 and z2 gives equal weights to z1 and z2. The weights given to
z1 and z2 will remain equal in sequential assimilation in the successive
background and analyzed estimates xb and xa

Additional observation then becomes available
z3 = x + z3

E(z3) = 0    ;    E(z3
2) = s ;    E(z1z3) = cs ;    E(z2z3) = 0 

BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)
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Time-correlated Errors (continuation 1)

Example of time-correlated model errors

Evolution equation
` xk+1 = xk + hk E(hk

2) = q

Observations
yk = xk + ek , k = 0, 1, 2 E(ek

2) = r, errors uncorrelated in time

Sequential assimilation. Weights given to y0 and y1 in analysis at time 1 are in the ratio
r/(r+q). That ratio will be conserved in sequential assimilation. All right if model errors are
uncorrelated in time.

Assume E(h0h1) = cq
Weights given to y0 and y1 in estimation of x2 are in the ratio 

Nous ne pouvons pas afficher l’image.
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Conclusion

Sequential assimilation, in which data are processed by batches, the data of one batch
being discarded once that batch has been used, cannot be optimal if data in different
batches are affected with correlated errors. This is so even if one keeps trace of the
correlations.

Solution

Process all correlated data  in the same batch (4DVar, some smoothers)

Nous ne pouvons pas afficher l’image.
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Kalman smoother 

Propagates information both forward and backward in time, as does 4DVar, 
but uses Kalman-type formulæ

Various possibilities 

§ Define new state vector XT º (x0
T, …, xK

T)
and use Kalman formula from a background Xb and associated covariance 
matrix Pb.
Model equations, which bring information on the xi ‘s, must be included in the 
observation vector and the associated observation operator.
Can take into account temporal correlations 

§ Update sequentially vector (x0
T, …, xk

T) T for increasing k
Cannot take into account temporal correlations 

Algorithms exist in ensemble form
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E. Cosme (2015)

Ensemble smoother based on Singular Evolutive Extended
Kalman Filter (SEEK)

Of second type above. Retropropagates corrections on
fields backwards in time, but without modifying relative
weights given to previous data, i.e. cannot be optimal in
case of temporal dependence between errors.
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E. Cosme, 
HDR, 
2015, 
Lissage 
d’ensemble 
SEEK

Données
synthétiques
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E. Cosme, HDR, 2015, Lissage d’ensemble SEEK
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Other variants of Ensemble Kalman Smoothers

An iterative ensemble Kalman smoother (Bocquet and Sakov, 2014. Q. J. R.
Meteorol. Soc.)

An Iterative Ensemble Kalman Smoother in Presence of Additive Model Error
(Fillion et al., 2019, SIAM/ASA J. Uncertainty Quantification)
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Best Linear Unbiased Estimate

State vector x, belonging to state space S (dimS = n)
xb = x + zb E(zbzbT) º Pb dimPb = n x n

Observation vector y, belonging to observation space O (dimO = p)
y = Hx + e E(eeT) º R dimR = p x p
H linear operator from S into O dimH = p x n

xa = xb + PbHT [HPbHT + R]-1 (y - Hxb)

S ¬ S * ¬ O * ¬ O

Alternative form of gain matrix 

xa = xb + PaHTR-1 (y - Hxb)

structure is the same
61

gain matrix



History of Numerical Weather Prediction

Cleveland Abbe

The Physical Basis of Long Range Weather Forecasts, 1901,

Monthly Weather Review

Wilhelm Bjerknes

Das Problem der Wettervorhersage, betrachtet von Standpunkt

der Mechanik und Physik, 1904, Meteorologische Zeitschrift

V. Bjerknes at the origin of the ‘Bergen School of Meteorology'
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From course 2

Physical laws governing the flow
§ Conservation of mass

Dr/Dt + r divU = 0

§ Conservation of energy
De/Dt - (p/r2) Dr/Dt = Q

§ Conservation of momentum
DU/Dt + (1/r) gradp - g + 2 W ÙU =  F

§ Equation of state
f(p, r, e) = 0 (p/r = rT, e = CvT)

§ Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, …)
Dq/Dt + q divU = S

These physical laws must be expressed in practice in discretized (and necessarily imperfect) form, both in space and time



History of Numerical Weather Prediction (continuation)

Lewis Fry Richardson

Weather Prediction by Numerical Process, 1922

Cambridge University Press *

Forecast Factory

Richardson number, fractals, pacifism

* Accessible at URL

https://energy4climate.pages.in2p3.fr/public/education/ensemble_data_assimilation_tu
torial/notebooks/T1%20-
%20Introduction%20to%20Ensemble%20Data%20Assimilation%20for%20Nume
rical%20Weather%20Prediction.html 64



https://energy4climate.pages.in2
p3.fr/public/education/ensemble
_data_assimilation_tutorial/note
books/T1%20-
%20Introduction%20to%20Ens
emble%20Data%20Assimilatio
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History of Numerical Weather Prediction (continuation 3)

John von Neumann

Institute for Advanced Studies, Princeton, 1946-1950

First electronic computers (ENIAC)

(J. Charney, N. A. Phillips, R. Fjørtoft, C. G. Rossby,

J. Smagorinsky, …)
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Institute for Advanced Study, about 1948-50. J. von Neumann is second from left. And
from right, J. Charney, C. G. Rossby (?), R. Fjørtoft (?)

History of Numerical Weather Prediction (continuation 4)



History of Numerical Weather Prediction (continuation 5)

Charney developed vorticity barotropic model

First simulation of real atmospheric situation in 1950

First operational numerical forecast performed in 1954 in Sweden

(C. G. Rossby)
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History of Numerical Weather Prediction (continuation 6)

Numerical prediction has gradually been implemented in more and more
meteorological services around the world.

European Centre for Medium-Range Weather Forecasts (ECMWF, 1975)

Ensemble prediction
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History of Numerical Weather Prediction (continuation 7)

Extension to simulation of oceanic circulation and climate

(early 1970’s, S. Manabe and K. Bryan, GFDL).

Climate simulations (S. Manabe, R. Wetherald)

S. Manabe awarded Nobel Prize in Physics in 2021
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History of Numerical Weather Prediction (continuation 8)

A large variety of models covering different spatial and temporal scales and
phenomena (small-scale convection, monthly and seasonal prediction, atmospheric
chemistry, …) have been developed over the years and are used for research and
operational applications.

Intergovernmental Panel on Climate Change (IPCC, 1988)

Publishes reports that describe the state of climate science and presents
‘projections’ largely based on numerical simulations

First report in 1990

…

Fifth report in 2014

Sixth report in 2023
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History of Numerical Weather Prediction (continuation 9)

More recently, as concerns short and medium-range prediction, a major
change has been the development of algorithms based on machine
learning, trained on long series of past analyses. These algorithms produce
forecats or quality similar to those of physical forecasts, but at a much
lower numerical cost.
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Cours à venir

Mercredi 2 avril
Vendredi 11 avril
Vendredi 18 avril
Mercredi 23 avril
Lundi 12 mai
Mercredi 28 mai
Mercredi 11 juin
Mercredi 18 juin



Conference
on "IA and mathematics for meteorology and climatology »
May 5th 2025 at the Collège de France, organised by Pierre-Louis Lions
and Stéphane Mallat

….

- Marc Bocquet, École Nationale des Ponts et Chaussées, "Artificial
Intelligence for gephysical data assimilation"

Program and information available at: https://www.college-de-
france.fr/fr/agenda/grand-evenement/ia-et-les-mathematiques-pour-la-
meteorologie-et-la-climatologie
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