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From course 4

Kalman Filter

Two questions

- How to propagate information backwards in time ? (useful
for reassimilation of past data)

-How to take into account possible dependence in time ?

Kalman Filter, whether in its standard linear form or in its Ensemble form,
does neither.
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3Rudolf Kálmán (1930-2016)



- Lissage de Kalman.

- Assimilation variationnelle. Principe

- Méthode adjointe. Principe.

- Assimilation variationnelle. Résultats

- La Méthode incrémentale

- Compléments sur l’Estimation Statistique (BLUE)
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Kalman smoother

Propagates information both forward and backward in time, as does 4DVar, 
but uses Kalman-type formulæ

Various possibilities

§ Define new state vector XT º (x0
T, …, xKT)

and use general BLUE formula from a background Xb and associated
covariance matrix Pb.
Model equations, which bring information on the xi ‘s, must be included in the
observation vector and the associated observation operator.
Can take into account temporal correlations

§ Update sequentially vector (x0
T, …, xkT) T for increasing k

Cannot take into account temporal correlations

Algorithms exist in ensemble form
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E. Cosme (2015)

Ensemble smoother based on Singular Evolutive Extended
Kalman Filter (SEEK)

Of second type above. Retropropagates corrections on
fields backwards in time, but without modifying relative
weights given to previous data, i.e. cannot be optimal in
case of temporal dependence between errors.

6



E. Cosme, 
HDR, 
2015, 
Lissage 
d’ensemble 
SEEK

Données
synthétiques
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E. Cosme, HDR, 2015, Lissage d’ensemble SEEK
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Other variants of Ensemble Kalman Smoothers

An iterative ensemble Kalman smoother (Bocquet and Sakov, 2014. Q. J. R.
Meteorol. Soc.)

An Iterative Ensemble Kalman Smoother in Presence of Additive Model Error
(Fillion et al., 2019, SIAM/ASA J. Uncertainty Quantification)
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Case of data that are distributed over time

Suppose for instance available data consist of

- Background estimate at time 0
x0

b = x0 + z0
b E(z0

bz0
bT) = P0

b

- Observations at times k = 0, …, K
yk = Hkxk + ek E(ekej

T) = Rk dkj

- Model (supposed for the time being to be exact)
xk+1 =Mkxk k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time, Hk andMk linear

Then objective function

x0 Î S ®

J(x0) º (1/2) (x0
b - x0)T [P0

b]-1 (x0
b - x0) + (1/2) Sk[yk - Hkxk]T Rk

-1 [yk - Hkxk]
º Jb + Jo

subject to xk+1 = Mkxk , k = 0, …, K-1
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J(x0) =  (1/2) (x0
b - x0)T [P0

b]-1 (x0
b - x0) + (1/2) Sk[yk - Hkxk]T Rk

-1 [yk - Hkxk]

subject to xk+1 = Mkxk , k = 0, …, K-1

Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

Four-Dimensional Variational Assimilation

‘4D-Var’
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How to minimize objective function with respect to initial state u = x0 (u is
called the control variable of the problem) ?

Use iterative minimization algorithm, each step of which requires the explicit
knowledge of the local gradient Ñu J º (¶J/¶ui) of J with respect to u.
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How to numerically compute the gradient Ñu J ?

Direct perturbation, in order to obtain partial derivatives ¶J/¶ui by finite
differences ? That would require as many explicit computations of the
objective function J as there are components in u. Practically impossible.

Gradient computed by adjoint method.

14



- Assimilation variationnelle. Principe

- Méthode adjointe. Principe.

Résultats de l'assimilation variationnelle

- La Méthode incrémentale

- Assimilation à contrainte faible
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Adjoint Method

Input vector u = (ui), dimu = n
Numerical process, implemented on computer (e. g. integration of numerical
model)

u ® v = G(u)
v = (vj) is output vector, dimv = m

Perturbation du = (dui) of input. Resulting first-order perturbation on v

dvj = Si (¶vj/¶ui) dui

or, in matrix form
dv  =  G’du

where G’º (¶vj/¶ui) is local matrix of partial derivatives, or jacobian matrix, of
G.
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Adjoint Method (continued 1)

dv  =  G’du (D)

Scalar function of output
J(v) =  J[G(u)]

Gradient Ñu J of J with respect to input u?

‘Chain rule’

¶J/¶ui = Sj ¶J/¶vj (¶vj/¶ui)

or
Ñu J =  G’T Ñv J (A)
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Adjoint Method (continued 2)

G is the composition of a number of successive steps

G = GN ° … ° G2 ° G1

‘Chain rule’

G’ = GN’ … G2’ G1’

Transpose

G’T = G1’T G2’T … GN’T

Transpose, or adjoint, computations are performed in reversed order of direct computations.

If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an
argument of a nonlinear operation in the direct computation will be used again in the adjoint
computation. It must be kept in memory from the direct computation (or else be recomputed again in
the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).
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A few basics

- Basic (nonlinear) model
xk+1 =Mk(xk)

- Perturbation dx0 at time 0. Resulting perturbation dxk evolves in time
according to

dxk+1 =Mk(xk + dxk) -Mk(xk)

=Mk’(xk) dxk+ o(dx0)

whereMk’(xk) is jacobian ofMk at point xk.

dxk+1 =Mk’(xk) dxk

is tangent linear model along solution xk.



A few basics (continuation)

Tangent linear model

dxk+1 =Mk’(xk) dxk

Adjoint model

lk = [Mk’(xk)]T lk+1

Describes evolution with respect to k of gradient of a scalar function J with
respect to xk.



Adjoint Method (continued 3)

J(x0) =  (1/2) (x0
b - x0)T [P0

b]-1 (x0
b - x0) + (1/2) Sk[yk - Hkxk]T Rk

-1 [yk - Hkxk]
subject to xk+1 = Mkxk , k = 0, …, K-1

Control variable x0 = u

Adjoint equation

lK = HK
T RK

-1 [HK xK - yK]
….
lk =  Mk

Tlk+1 + Hk
T Rk

-1 [Hk xk - yk] k = K-1, …, 1
….
l0 =  M0

Tl1    + H0
T R0

-1 [H0 x0 - y0]   +  [P0
b]-1 (x0 - x0

b)

Ñu J = l0

Result of direct integration (xk), which appears in quadratic terms in expression of objective
function, must be kept in memory from direct integration.
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Adjoint Method (continued 4)

Nonlinearities ?

J(x0) =  (1/2) (x0
b - x0)T [P0

b]-1 (x0
b - x0) + (1/2) Sk[yk - Hk(xk)]T Rk

-1 [yk - Hk(xk)]
subject to xk+1 = Mk(xk) , k = 0, …, K-1

Control variable x0 = u

Adjoint equation

lK = HK’T RK
-1 [HK(xK) - yK]

….
lk =  Mk’Tlk+1 + Hk’T Rk

-1 [Hk(xk) - yk] k = K-1, …, 1
….
l0 =  M0’Tl1      + H0’T R0

-1 [H0(x0) - y0]   +  [P0
b]-1 (x0 - x0

b)

Ñu J = l0

Not approximate (it gives the exact gradient ÑuJ), and really used as described here.
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- Assimilation variationnelle. Principe

- Méthode adjointe. Principe.

- Assimilation variationnelle. Résultats

- La Méthode incrémentale

- Assimilation à contrainte faible
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Temporal evolution of the 500-hPa geopotential autocorrelation with respect to
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.
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Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414

Same as before, but at the end of a 24-hr 4D-Var
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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ECMWF, Results on one FASTEX case (1997) 31



Persistence = 0 ; climatology = 50 at long range 32



Initial state error reduction

4DVar EDA

Reforecasts from 
reanalysis

Operational 
forecasts

Credit E. Källén, ECMWF 33



Strong Constraint 4D-Var is now used operationally at
several meteorological centres (Météo-France, UK
Meteorological Office, Canadian Meteorological Centre,
Japan Meteorological Agency, …) and, for a number of
years, at ECMWF. The latter now has a ‘weak constraint’
component in its operational system.

34



35

Time-correlated Errors (continuation from course 4)

If data errors are correlated in time, it is not possible to discard observations as they are
used. In particular, if model error is correlated in time, all observations are liable to be
reweighted as assimilation proceeds.

Variational assimilation can take time-correlated errors into account.

Example of time-correlated observation errors. Global covariance matrix

R = (Rkk’ = E(ekek’
T))

Objective function

x0 Î S ®

J(x0) =  (1/2) (x0
b - x0)T [P0

b]-1 (x0
b - x0) + (1/2) Skk’[yk - Hkxk]T [R -1]kk’ [yk’ - Hk’xk’]

where [R -1]kk’ is the kk’-sub-block of global inverse matrix R -1.

Similar approach for time-correlated model error.
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Time-correlated Errors (continuation 4)

Temporal correlation of observational error has been introduced by ECMWF (Järvinen et
al., 1999) in variational assimilation of high-frequency surface pressure observations
(correlation originates in that case in representativeness error).

Identification and quantification of time correlation of errors, especially model errors ?



In the linear case, and if errors are uncorrelated in time, Kalman
Smoother and Variational Assimilation are algorithmically equivalent,
and produce the BLUE of the state of the system from all data available
over the assimilation window (Kalman Filter produces the BLUE only
at the end of the final time of the window). If in addition errors are
globally Gaussian, both algorithms achieve Bayesian estimation.

If errors are correlated in time, only some Kalman Smoothers can take
into account the corresponding correlations, and be equivalent with
Variational Assimilation.
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- Assimilation variationnelle. Principe

- Méthode adjointe. Principe.

- Résultats de l'assimilation variationnelle

- La Méthode incrémentale
similation à contrainte faible
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Incremental Method for Variational Assimilation

Variational assimilation, as it has been described, requires the use of
the adjoint of the full model.

Simplifying the adjoint as such can be very dangerous. The computed
gradient would not be exact, and experience shows that optimization
algorithms (and especially efficient ones) are very sensitive to even
slight misspecification of the gradient.

Principle of Incremental Method (Courtier et al., 1994, Q. J. R.
Meteorol. Soc.) : simplify simultaneously the (local tangent linear)
dynamics and the corresponding adjoint.
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Incremental Method (continuation 1)

- Basic (nonlinear) model
xk+1 =Mk(xk)

- Tangent linear model
dxk+1 =Mk’ dxk

whereMk’ is jacobian ofMk at point xk.

- Adjoint model

lk=Mk’T lk+1 + …

Incremental Method. Simplify bothMk’ andMk’T consistently.
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Incremental Method (continuation 2)

More precisely, for given solution xk(0) of nonlinear model, replace tangent
linear and adjoint models respectively by

dxk+1 = Lk dxk (2)

and

lk= LkT lk+1 + …

where Lk is an appropriate simplification of jacobianMk’.

It is then necessary, in order to ensure that the result of the adjoint integration
is the exact gradient of the objective function, to modify the basic model in
such a way that the solution emanating from x0(0) + dx0 is equal to xk(0) + dxk,
where dxk evolves according to (2). This makes the basic dynamics exactly
linear.
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Incremental Method (continuation 3)

As concerns the observation operators in the objective function, a similar procedure can
be implemented if those operators are nonlinear. This leads to replacing Hk(xk) by
Hk(xk(0)) + Nkdxk, where Nk is an appropriate ‘simple’ linear operator (possibly, but not
necessarily, the jacobian of Hk at point xk(0)). The objective function depends only on the
initial dx0 deviation from x0

(0), and reads

JI(dx0) =  (1/2) (x0
b - x0

(0) - dx0)T [P0
b]-1 (x0

b - x0
(0) - dx0)

+ (1/2) Sk[dk - Nkdxk]T Rk-1 [dk - Nkdxk]

where dk º yk - Hk(xk(0)) is the innovation at time k, and the dxk evolve according to

dxk+1 = Lk dxk (2)

With the choices made here, JI(dx0) is an exactly quadratic function of dx0. The
minimizing perturbation dx0,m defines a new initial state x0

(1) º x0
(0) + dx0,m, from which

a new solution xk(1) of the basic nonlinear equation is determined. The process is
restarted in the vicinity of that new solution.
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Incremental Method (continuation 4)

This defines a system of two-level nested loops for minimization. Advantage
is that many degrees of freedom are available for defining the simplified
operators Lk and Nk, and for defining an appropriate trade-off between
practical implementability and physical usefulness and accuracy. It is the
incremental method which, together with the adjoint method, makes
variational assimilation possible.

First-Guess-At-the-right-Time 3D-Var (FGAT 3D-Var). Corresponds to Lk =
In. Assimilation is four-dimensional in that observations are compared to a
first-guess which evolves in time, but is three-dimensional in that no dynamics
other than the trivial dynamics expressed by the unit operator is present in the
minimization.
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Buehner et al. (Mon. Wea. Rev., 2010)

For the same numerical cost, and in meteorologically realistic
situations, Ensemble Kalman Filter and Variational Assimilation
produce results of similar quality.

44



- Compléments sur l’Estimation Statistique
(BLUE)
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From course 3

Best Linear Unbiased Estimate

State vector x, belonging to state space S (dimS = n), to be estimated.
Available data in the form of

§ A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n

xb = x + zb

§ An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx + e

H is known linear observation operator.

Assume probability distribution is known for the couple (zb, e).
Assume E(zb) = 0, E(e) = 0, E(zbeT) = 0 (not restrictive)
Set E(zbzbT) º Pb (also often denoted B), E(eeT) º R 46



From course 3

Best Linear Unbiased Estimate

xa = xb + PbHT [HPbHT + R]-1 (y - Hxb)
Pa = Pb - PbHT [HPbHT + R]-1 HPb

xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.

Equivalent set of formulæ

xa = xb + PaHTR-1 (y - Hxb)
[Pa]-1 = [Pb]-1 + HTR-1H

Vector d º y – Hxb is innovation vector
Matrix K º PbHT [HPbHT + R]-1 = PaHTR-1 is gain matrix.

If couple (zb, e) is Gaussian, BLUE achieves bayesian estimation, in the sense that P(x |
xb, y) = N [xa, Pa].
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Condition E(ezbT) = 0 is not mathematically restrictive. Setting E(ezbT) º D
(possibly ¹ 0), and coming back to the general formula

xa = E(x) + Cxy [Cyy]-1 [y - E(y)]
Pa = Cxx - Cxy [Cyy]-1 Cyx

with again x’ = x - E(x) = - zb , E(zbzbT) = Pb

y’ = y - E(y) = y - Hxb = e - Hzb

Cxy = E(x’y’T) = E[-zb(e - Hzb)T] = - E(zbeT) + E(zbzbT)HT = - DT + PbHT

DT Pb

Cxy = - DT + PbHT

Cyy = E(y’y’T) = E[(e - Hzb) (e - Hzb)T]
= E(eeT) - E(ezbT)HT - HE(ezbT) + HE(zbzbT)HT

R D DT. Pb

Cyy = R - DHT - HDT + HPbHT
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Leading to expressions

xa = xb + [PbHT-DT] [HPbHT-DHT-HDT+R]-1 (y - Hxb)

Pa = Pb - [PbHT-DT] [HPbHT-DHT-HDT+R]-1 [HPb-D]

This is equivalent to replacing the observation vector y with the vector
v º y - D[Pb]-1xb, the error of which is uncorrelated with zb, and then
using the formulæ for the case of no correlation between background
and observation errors.

But the hypothesis of no correlation is almost always made in practice,
although it is certainly not always verified (observations performed by a
same satellite instrument, which have been through a same post-
processing, are very likely to have correlated errors).
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Now, taking into account correlations between backgound and observation
errors does not render, as shown in course 4, the corresponding estimate
optimal. That would require to modify the weights that have been given
to previous data.
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Bayesian Estimation

Data of the form

z = Gx + z, z ~ N [0, S]

Known data vector z belongs to data space D, dimD = m,
Unknown state vector x belongs to state space X, dimX = n
G known (mxn)-matrix, z unknown ‘error’

Probability that x = x given in X ?      x = x Þ z = z - Gx

P(z = z - Gx) µ exp[ -(z - Gx)T S-1 (z - Gx)/2 ] µ exp[ -(x -xa)T (Pa)-1 (x -xa)/2 ]

where

xa = (G T S-1G)-1 G T S-1 z
Pa = (G T S-1G)-1

Then conditional probability distribution is

P(x | z) = N [xa, Pa]
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Bayesian Estimation (continuation 1)

z = Gx + z, z ~ N [0, S]
Then

P(x | z) = N [xa, Pa]

with

xa = (G T S-1G)-1 G T S-1 z
Pa = (G T S-1G)-1

Determinacy condition : rankG = n. Data contain information, directly or 
indirectly, on every component of state vector x. Requires m ≥ n.
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Variational form

P(x | z) µ exp[ -(z - Gx)T S-1 (z - Gx)/2 ] µ exp[ -(x -xa)T (Pa)-1 (x -xa)/2 ]

Conditional expectation xa minimizes following scalar objective function, defined
on state space X

x Î X ® J(x)  º (1/2) [Gx - z)]T S-1 [Gx - z]

Pa = [∂2J /∂x2]-1
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If data still of the form

z = Gx + z

but ‘error’ z , which still has expectation 0 and covariance S, is not
Gaussian, expressions

xa = (G T S-1G)-1 G T S-1 z
Pa = (G T S-1G)-1

do not achieve Bayesian estimation, but define least-variance linear
estimate of x from z (Best Linear Unbiased Estimator, BLUE), and
associated estimation error covariance matrix.
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Expressions 

xa = (G T S-1G)-1 G T S-1 z
Pa = (G T S-1G)-1

are valid in both the Gaussian case and the general linear (BLUE) case.
But, although, they are algebraically identical, they do not have the same
significance. In the Gaussian case, as said, they solve entirely the
problem of Bayesian estimation. For any data vector z, xa and Pa are
respectively the expectation and covariance of the conditional
(Gaussian) probability distribution P(x | z). In the general linear case, xa
and Pa have no necessary Bayesian meaning. In particular, for a given z,
Pa, which is the covariance matrix of the estimation error over all
possible realizations of z (i.e. of the error z), can be very different from
the corresponding Bayesian covariance matrix.
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Expressions 

xa = (G T S-1G)-1 G T S-1 z
Pa = (G T S-1G)-1

are invariant in linear invertible change of coordinates, in either data or
state space. If determinacy condition is verified, data vector z can be
transformed, through linear invertible change of coordinates in data
space, into

xb = x + zb

y = Hx + e

from which the formulæ derived previously can be obtained (in both
cases E(ezbT) = 0 and ¹ 0) .
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Three sets of equivalent equations

z = Gx + z, E(z) = 0, E(zzT) º Sb

xa = (G T S-1G)-1 G T S-1 z
Pa = (G T S-1G)-1

xb = x + zb , E(zb) = 0, E(zbzbT) º Pb,
y = Hx + e, E(e) = 0 , E(eeT) º R
E(zbeT) = 0 (not restrictive)

xa = xb + PbHT [HPbHT + R]-1 (y - Hxb)
Pa = Pb - PbHT [HPbHT + R]-1 HPb

xa = xb + PaHTR-1 (y - Hxb)
[Pa]-1 = [Pb]-1 + HTR-1H
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The three equations have the same algebraic structure

z = Gx + z

xa = (G T S-1G)-1 G T S-1 z
Pa = (G T S-1G)-1

xb = x + zb, y = Hx + e

xa = xb + PbHT [HPbHT + R]-1 (y - Hxb)
Pa = Pb - PbHT [HPbHT + R]-1 HPb

xa = xb + PaHTR-1 (y - Hxb)
[Pa]-1 = [Pb]-1 + HTR-1H
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Data vector

z = Gx + z

Analysis xa (whatever its exact meaning) minimizes following scalar objective
function, defined on state space X

x Î X ® J(x)  º (1/2) [Gx - z)]T S-1 [Gx - z]

where S = E(zzT) is covariance matrix of data error z

(for example 4D-Var

J(x0) =  (1/2) (x0
b - x0)T [P0

b]-1 (x0
b - x0) + (1/2) Sk[yk - Hkxk]T Rk-1 [yk - Hkxk])
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Consider quantity D = z1T S-1 z2 = z1T [E(zzT)]-1 z2
where z1 and z2 are any two vectors in data space

Change of coordinates z º Tw

z = Tc Þ S = E(zzT) = E[Tc(Tc)T] = T E(ccT)TT

D = w1T TT [T E(ccT)TT]-1Tw2 = w1T TT T-T [E(ccT)]-1 T-1 Tw2

D = w1T [E(ccT)]-1 w2
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Expression D = z1T S-1 z2

defines proper scalar product, and associated norm, on data
space

CalledMahalanobis norm



Prasanta Chandra Mahalanobis (1893 -1972)
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Minimizing objective function
J(x)  º (1/2) [Gx - z)]T S-1 [Gx - z]

amounts to orthogonal projection onto space G(X), followed by
inversion through G (generalized inverse)

z

Gxa

G(X)



Gaussian variables

Unidimensional

N [m, a] ~ (2p a)-1/2 exp [- (1/2a) (x-m)2]

Dimension n

N [m, A] ~ [(2p)n detA]-1/2 exp [- (1/2) (x-m)TA-1(x-m)]

64

Mahalanobis norm
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Entropy of a probability distribution (continuation)

Data of the form (see slide 51)

z = Gx + z

The knowledge of a probability distribution for z defines a conditional
probability distribution P(x|z) for x. Assuming that only the expectation
and covariance matrix S of z are known, for which distribution of z is
the entropy of P(x|z) largest ?

Response. The entropy of P(x|z) is largest when z is Gaussian.

If the probability distribution for z is unknown, assuming that it is
Gaussian is in a sense the ’least committing’ choice.



Cours à venir

Mercredi 2 avril
Vendredi 11 avril
Vendredi 18 avril
Mercredi 23 avril
Lundi 12 mai
Mercredi 28 mai
Mercredi 11 juin
Mercredi 18 juin


