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From course 4

Kalman Filter

Two questions

- How to propagate information backwards in time ? (useful
for reassimilation of past data)

- How to take into account possible dependence in time ?

Kalman Filter, whether in its standard linear form or in its Ensemble form,
does neither.



Rudolf Kalman (1930-2016)



Lissage de Kalman.

Assimilation variationnelle. Principe
M¢thode adjointe. Principe.
Assimilation variationnelle. Résultats
La M¢éthode incrémentale

Compléments sur I’Estimation Statistique (BLUE)



Kalman smoother

Propagates information both forward and backward in time, as does 4DVar,
but uses Kalman-type formula

Various possibilities

Define new state vector XT= (x,7, ..., xg")

and use general BLUE formula from a background X? and associated
covariance matrix /7.

Model equations, which bring information on the x; ‘s, must be included in the
observation vector and the associated observation operator.

Can take into account temporal correlations

Update sequentially vector (x,', ..., x,') ! for increasing k
Cannot take into account temporal correlations

Algorithms exist in ensemble form



E. Cosme (2015)

Ensemble smoother based on Singular Evolutive Extended
Kalman Filter (SEEK)

Of second type above. Retropropagates corrections on
fields backwards in time, but without modifying relative
weights given to previous data, i.e. cannot be optimal in
case of temporal dependence between errors.
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F1GURE 3.6 — Evolution du champ d’erreur en SSH du jour 38, an cours des étapes
d’analyse successives. En haut a gauche : prévision du filtre; en haut a droite : analyse
du filtre. Les observations utilisées pour cette analyse sont distribuées le long des traces
grises. En bas a gauche : analyse du lisseur apres introduction des observations des jours
40 et 42; En bas a droite : analyse du lisseur apres introduction des observations des
jours 40 a 46. !
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FicuRrE 3.7 — Evolution de l'erreur RMS de SSH au cours du temps. Ligne continue :
Résultat du filtre (les dents de scie refletent I'alternance des étapes de prévision et d'ana-
lyse); Points : lisseur a retard fixe de 8 jours.

E. Cosme, HDR, 2015, Lissage d’ensemble SEEK



Other variants of Ensemble Kalman Smoothers

An iterative ensemble Kalman smoother (Bocquet and Sakov, 2014. Q. J. R.
Meteorol. Soc.)

An Iterative Ensemble Kalman Smoother in Presence of Additive Model Error
(Fillion et al., 2019, SIAM/ASA J. Uncertainty Quantification)



Case of data that are distributed over time
Suppose for instance available data consist of

- Background estimate at time 0

X" = xo + & E(6"¢"") = Py’
- Observations at times k=0, ..., K
Vi =Hx,+ g E(g&") = R, 0

- Model (supposed for the time being to be exact)
X :kak k:(),...,K-]

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear
Then objective function
e S —

(&) = (172) (x” - )T [PT (xo” - &) + (172) Zylyi - HL ST R [y - Hi&dl
jb + jo

SUbjeCt to §k+1 = Mkék’ k = 0, ceey K-1
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Principle of 4D-VAR assimilation
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J(&) = (1/2) (xob - &)t [Pob]'1 (xob - &)+ (172) Zyly - HEA" R [y - H &yl

subjectto &, =M, &, k=0,...,K-1

Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

Four-Dimensional Variational Assimilation

‘4D-Var’
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How to minimize objective function with respect to initial state u = &, (u is
called the control variable of the problem) ?

Use iterative minimization algorithm, each step of which requires the explicit
knowledge of the local gradient V /] = (0/0u;) of ] with respect to u.

13



How to numerically compute the gradient V] ?

Direct perturbation, in order to obtain partial derivatives 07/0u; by finite

differences ? That would require as many explicit computations of the
objective function /] as there are components in u. Practically impossible.

Gradient computed by adjoint method.

14



- M¢thode adjointe. Principe.
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Adjoint Method

Input vector u = (u;), dimu = n

Numerical process, implemented on computer (e. g. integration of numerical
model)

u—>v==0G~wu)
v = (v;) is output vector, dimy = m

Perturbation ou = (ou;) of input. Resulting first-order perturbation on v
ov; =X, (0v/0u;) ou;

or, in matrix form

ov = G’ ou

where G’= (0v/0u;) is local matrix of partial derivatives, or jacobian matrix, of
G.

16



Adjoint Method (continued 1)
ov = G’ ou
Scalar function of output
Jv) = JlG(u)]
Gradient V] of /] with respect to input u?
‘Chain rule’

0/0u;= %, 0J/0v; (0v/ou,)

or

Vu.] = GV, ]

(D)

(A)

17



Adjoint Method (continued 2)

G is the composition of a number of successive steps

G=Gy- ...~ G- G

‘Chain rule’
G =Gy ..G G

Transpose

GC'=G’TGT ... GYT
Transpose, or adjoint, computations are performed in reversed order of direct computations.
If G 1s nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an
argument of a nonlinear operation in the direct computation will be used again in the adjoint

computation. It must be kept in memory from the direct computation (or else be recomputed again in
the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).

18



A few basics

- Basic (nonlinear) model

X1 = M(x;)

- Perturbation odx, at time 0. Resulting perturbation odx, evolves in time
according to

Oxp) = M(x; + Oxy) - Mi(xy) f

=M (x;) o+ o(ax)

where M, '(x;) is jacobian of M, at point x,.

01 = M. '(xy) 68

1s tangent linear model along solution x;.



A few basics (continuation)

Tangent linear model

01 = My '(xy) 68

Adjoint model
A= M (x)]" A

Describes evolution with respect to k of gradient of a scalar function /] with
respect to x;.



Adjoint Method (continued 3)

J(&) = (172) (xo” - &) [P"T! (xo” - &) + (172) Zylyy - Hi &l ™ Ry [y - Hi &yl
subject to &y = MG, k=0, ...,K-1

Control variable E=u

Adjoint equation

Ag= Hy' Ry [Hy Sk - y«]

ﬂk= M A+ H R, [H, & - y] k=K-1,...,1

A= My"A, +Hy"Ry' [Hy & -yl + [Po"]' (& - x0")

Vuﬂ - A'O

Result of direct integration (&), which appears in quadratic terms in expression of objective
function, must be kept in memory from direct integration.
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Principle of 4D-VAR assimilation
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Adjoint Method (continued 4)

Nonlinearities ?

&) = (172) (xo” - &) [PST! (xo” - &) + (172) Zilyi - H(E)TT R [yye - Hy(&)]
subjectto &, = M, (&), k=0, ..., K-1

Control variable &=u
Adjoint equation

Ak = Hy " Rt [H(&) - yi]

A= M, ’Tﬂkﬂ"'HA ’TRk'l [H (&) - v k=K-1,...,1

Ao= My A +HyT Ry [Hy(&) -yl + [PT1 (& - x)

Vuj - /IO

Not approximate (it gives the exact gradient V,/]), and really used as described here.
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Assimilation variationnelle. Résultats

24
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Temporal evolution of the 500-hPa geopotential autocorrelation with respect to

point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.
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0000 UTC 16 October 1987. Shown here are the Northern Hemisphere (a) 500-
for 15 October and the (¢) S00-hPa geopotential height and (d) mean sea level
m the initial estimate of the initial conditions for the dDVAR minimization. The
1l forecast from the initial conditions. Contour intervals are 80 m and 5 hPa.

F1G. 1. Background fields for 0000 UTC 15 October-
hPa geopotential height and (b) mean sea level pressure
pressure for 16 October. The fields for 15 October are fro
fields for 16 October are from the 24-h T63 adiabatic moc

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix&7

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)
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Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Figure 3: 500 hPa geopotential height mean square error skill score for Europe (top) and the northern hemisphere
extratropics (bottom). showing 12-month moving averages for forecast ranges from 24 to 192 hours. The last point
on each curve 1s for the 12-month period August 2013-July 2014

Persistence = 0 ; climatology = 50 at long range 2
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Strong Constraint 4D-Var 1s now used operationally at
several meteorological centres (Météo-France, UK
Meteorological Office, Canadian Meteorological Centre,
Japan Meteorological Agency, ...) and, for a number of
years, at ECMWEF. The latter now has a ‘weak constraint’
component 1n its operational system.
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Time-correlated Errors (continuation from course 4)

If data errors are correlated in time, it is not possible to discard observations as they are
used. In particular, if model error is correlated in time, all observations are liable to be

reweighted as assimilation proceeds.
Variational assimilation can take time-correlated errors into account.
Example of time-correlated observation errors. Global covariance matrix
R= Ry = E(g8.7))
Objective function

e S —>
J(&) = (172) (xo” - &) [P"T! (xo” - &) + (1/2) Zkk’[)’k - Hi &l [R i [yie - Hieodid

where [R '], is the kk’-sub-block of global inverse matrix R -!.

Similar approach for time-correlated model error.
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Time-correlated Errors (continuation 4)

Temporal correlation of observational error has been introduced by ECMWF (Jarvinen et
al., 1999) in variational assimilation of high-frequency surface pressure observations
(correlation originates in that case in representativeness error).

Identification and quantification of time correlation of errors, especially model errors ?

36



In the linear case, and if errors are uncorrelated in time, Kalman
Smoother and Variational Assimilation are algorithmically equivalent,
and produce the BLUE of the state of the system from all data available
over the assimilation window (Kalman Filter produces the BLUE only
at the end of the final time of the window). If in addition errors are
globally Gaussian, both algorithms achieve Bayesian estimation.

If errors are correlated in time, only some Kalman Smoothers can take
into account the corresponding correlations, and be equivalent with
Variational Assimilation.

37



- La Méthode incrémentale
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Incremental Method for Variational Assimilation

Variational assimilation, as it has been described, requires the use of
the adjoint of the full model.

Simplifying the adjoint as such can be very dangerous. The computed
gradient would not be exact, and experience shows that optimization
algorithms (and especially efficient ones) are very sensitive to even
slight misspecification of the gradient.

Principle of Incremental Method (Courtier et al., 1994, Q. J. R.

Meteorol. Soc.) : simplify simultaneously the (local tangent linear)
dynamics and the corresponding adjoint.
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Incremental Method (continuation 1)

- Basic (nonlinear) model

¢kl = Mi(&)

- Tangent linear model
OGk+1 = M}’ 05

where M’ is jacobian of M, at point &,.
- Adjoint model
ﬂ’k: Mk’Tﬂk_H + ...

Incremental Method. Simplify both M,"and M, " consistently.

40



Incremental Method (continuation 2)

More precisely, for given solution &9 of nonlinear model, replace tangent
linear and adjoint models respectively by

01 = Ly 0, (2)
and
ﬂ’k: LkT A’/ﬁ—l + ...

where L, 1s an appropriate simplification of jacobian M.

It is then necessary, in order to ensure that the result of the adjoint integration
is the exact gradient of the objective function, to modify the basic model in
such a way that the solution emanating from &+ 6&, is equal to &+ o6&,
where 0&, evolves according to (2). This makes the basic dynamics exactly

linear.
41



Incremental Method (continuation 3)

As concerns the observation operators in the objective function, a similar procedure can
be implemented if those operators are nonlinear. This leads to replacing H,(&,) by
H,(5)+ N,.0&, where N, is an appropriate ‘simple’ linear operator (possibly, but not
necessarily, the jacobian of H at point &©). The objective function depends only on the
initial 0&, deviation from &,*), and reads

(&) = (1/2) (x” - & - 0&)T [Po"T (xo” - & - 6&))
+(172) Zyldy - N,O& T R [d - N O&,]

where d, =y, - H,(&?) is the innovation at time k, and the 6&, evolve according to

01 = Ly 0 (2)

With the choices made here, 7(6&) is an exactly quadratic function of 6&,. The

minimizing perturbation 6&,,, defines a new initial state &= &+ &, ,, from which
a new solution & of the basic nonlinear equation is determined. The process is
restarted in the vicinity of that new solution.

42



Incremental Method (continuation 4)

This defines a system of two-level nested loops for minimization. Advantage
1s that many degrees of freedom are available for defining the simplified
operators L, and N,, and for defining an appropriate trade-off between
practical implementability and physical usefulness and accuracy. It is the
incremental method which, together with the adjoint method, makes
variational assimilation possible.

First-Guess-At-the-right-Time 3D-Var (FGAT 3D-Var). Corresponds to L, =
I,. Assimilation is four-dimensional in that observations are compared to a
first-guess which evolves in time, but is three-dimensional in that no dynamics
other than the trivial dynamics expressed by the unit operator is present in the
minimization.
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Buehner et al. (Mon. Wea. Rev., 2010)

For the same numerical cost, and in meteorologically realistic
situations, Ensemble Kalman Filter and Variational Assimilation
produce results of similar quality.
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- Compléments sur [I’Estimation Statistique
(BLUE)
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From course 3
Best Linear Unbiased Estimate

State vector x, belonging to state space S (dimS$ = n), to be estimated.
Available data in the form of

» A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension 7

xt=x+

= An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx+ ¢
H is known linear observation operator.

Assume probability distribution is known for the couple (&, &).
Assume E(£) =0, E(e) = 0, E({’&") = 0 (not restrictive)

Set E(£P£PT) = PP (also often denoted B), E(g€") = R 46



From course 3

Best Linear Unbiased Estimate
x‘=x>+ P H"[HP’H" + R]"' (y - Hx")
P:=P> - PPHT[HP'H" + R]' HP®
x® is the Best Linear Unbiased Estimate (BLUE) of x from x? and y.
Equivalent set of formule

x*=xt+ P*HT"R' (y - Hx?)
[Pe]! = [P*]' + HT RH

Vector d = y — Hx" is innovation vector
Matrix K= PP H' [HP’H" + R]' = P* H" R is gain matrix.

If coupleﬂ(/gb, ) 1s Gaussian, BLUE achieves bayesian estimation, in the sense that P(x |
x’, y) = N[x*, P].

47



Condition E(&£'T) = 0 is not mathematically restrictive. Setting E(&£°T) = D

(possibly # 0), and coming back to the general formula

x4 = E(X) + ny [vay]_1 [y - E(y)]
Pi=Cy- C,[C,]" Cyy

with againx’ =x - E(x)=- ¢, E({T) = PP
y' =y-E@)=y-Hx"=g-HJ

Cy=E&y™) = E[-¢(6- HOY] = - B(Q6") + (P ¢MHT = - DT+ PPHT
D! pp

C,,=- DT+ PPHT

C,=Eyy™) = E[(e-HS) (- HS)']
= E(&g") - E(e{’")H™ - HE(&l'") + HE({PCPT)HT

R D DT P’

C,,= R-DH' - HD"+ HP'H"
48



Leading to expressions
x¢=xb+ [PPH'-D"] [HPPH"-DH"-HD"+R]! (y - Hx?)
Pe= P> - [PPHT-D'] [HPPH"-DH"-HD™+R]' [HP?%-D]

This 1s equivalent to replacing the observation vector y with the vector

v =y - D[P"]''x?, the error of which is uncorrelated with £, and then
using the formula@ for the case of no correlation between background
and observation errors.

But the hypothesis of no correlation 1s almost always made in practice,
although 1t 1s certainly not always verified (observations performed by a
same satellite instrument, which have been through a same post-
processing, are very likely to have correlated errors).
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Now, taking into account correlations between backgound and observation
errors does not render, as shown 1n course 4, the corresponding estimate
optimal. That would require to modify the weights that have been given
to previous data.
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Bayesian Estimation
Data of the form
:=Ix+ ¢ &~ M0, 8]

Known data vector z belongs to data space D, dim D= m,
Unknown state vector x belongs to state space X, dimX =n
I'known (mxn)-matrix, { unknown ‘error’

Probability that x = Egivenin X ? x=¢&E=(=z-T¢
P(g=z-I¢) cexp[-(z- 18" S (z-15)/2 ] oc exp[ -(&x)" (P! (&§-x9)/2]

where

X4 = (FTS-ID-I FT S-l z
Pe = (FTS—ID-I

Then conditional probability distribution is

P(x | z) = N[x4, P

51



Bayesian Estimation (continuation 1)

z=Ix+ ¢ c~ MN[0, S]
Then

P(x | z) = N[x¢, P]
with

X4 = (FTS—I_I')—l ]"T S—l zZ
Pe = (FTS—I_I')—l

Determinacy condition : rankl = n. Data contain information, directly or
indirectly, on every component of state vector x. Requires m > n.
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Variational form
P(x | z) cexp[ -(z- )" S (z- IE)/2 ] o exp[ (& -x)' (P! (&-x)/2 ]

Conditional expectation x* minimizes following scalar objective function, defined
on state space X

;e X—> A9 =U2)IZF-2)]' S[I5-7]

Pi=[27/08]"

53



If data still of the form

z=Ix+ ¢

but ‘error’ ¢, which still has expectation 0 and covariance S, is not
Gaussian, expressions

x4 = (FTS—I]‘)—] ]"TS—IZ
Pe = (]"TS—I]‘)—I

do not achieve Bayesian estimation, but define least-variance linear
estimate of x from z (Best Linear Unbiased Estimator, BLUE), and
associated estimation error covariance matrix.
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Expressions

x4 = (FTS—I]‘)—] ]"TS—IZ
P = (]"TS—I]‘)—I

are valid in both the Gaussian case and the general linear (BLUE) case.
But, although, they are algebraically identical, they do not have the same
significance. In the Gaussian case, as said, they solve entirely the
problem of Bayesian estimation. For any data vector z, x* and P“ are
respectively the expectation and covariance of the conditional
(Gaussian) probability distribution P(x | z). In the general linear case, x“
and P“have no necessary Bayesian meaning. In particular, for a given z,
P¢, which 1s the covariance matrix of the estimation error over all
possible realizations of z (i.e. of the error ), can be very different from
the corresponding Bayesian covariance matrix.
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Expressions

=TSy ISy

P = TS 1-)-1
are invariant in linear invertible change of coordinates, in either data or
state space. If determinacy condition 1s verified, data vector z can be

transformed, through linear invertible change of coordinates in data
space, into

xb=x+¢

y = Hx+ ¢

from which the formulae derived previously can be obtained (in both
cases E(&’")=0and # 0) .
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Three sets of equivalent equations

t=Ix+ ¢ E()=0,E(g)=8"

xt= (TS Iy TS
Pa — (FT S—ll')—l
X0 = x+ ¢ E()=0, E(&¢T) = P,

y = Hx + ¢ E(&)=0,E(eeh =R
E(&P€") = 0 (not restrictive)

x¢=x"+ P H' [HP’H" + R]"! (y - Hx?)
P =P~ P> HT [HP'H™ + R]"' HP"

x*=xt+P*H"R' (y - Hx)
(Pl =[PP+ HTR'H

o7



The three equations have the same algebraic structure

:=Ix+ ¢

xt =TSN IT8 7
P = (FT S—ll')—l

xt=x+¢,y=Hx+e¢

x*=x+ P H'[HP'H" + R]! (y - Hx?)
Pe=Pb- PP HT[HP°HT + R]"' HP"

x*=xt+P*H"R' (y - Hx)
(Pl =[PP+ HTR'H
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Data vector

z=Ix+ ¢

Analysis x¢ (whatever 1ts exact meaning) minimizes following scalar objective
function, defined on state space X

e X > A9 =U2)[I8-2)] S'[IE-1]
where §' = E(£¢7) 1s covariance matrix of data error £

(for example 4D-Var

J(&) = (1/2) (xob - &)t [Pob]'1 (xob - &)+ (172) Zyly - HEd" R [y - Hi &)
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Consider quantity D=z 8'z,=zT[E({{D)] ! z,

where z; and z, are any two vectors in data space

Change of coordinates z = Tw
=Ty = S=E(cc") =E[TxTy']=TE(xy"HT"
D=w T TE(uyH)T'|''Tw, =w ' T TT[E(yyD)]! T Tw,

D=w"[E(xxD)]' w,

60



Expression D=z"8z,

defines proper scalar product, and associated norm, on data
space

Called Mahalanobis norm

61



Prasanta Chandra Mahalanobis (1893 -1972)
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Minimizing objective function

A8 = (12) [IE-2)]' ST [IE-z]
amounts to orthogonal projection onto space Z(.X), followed by
inversion through 7°(generalized inverse)




Gaussian variables
Unidimensional

Nm, a] ~Q2ra)y'?exp [- (1/2a) (&m)?]
Dimension »
Nm, A] ~ [27)" detd]2 exp [- (1/2) (&-m)TA (Em)]
\ J
|

Mahalanobis norm
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Entropy of a probability distribution

Probability distribution over domain described by coordinate & with
probability density p(&). Entropy

E—Iplnpdzf

Entropy of a probability distribution is a measure of the associated
uncertainty. The larger the entropy, the larger the uncertainty. A uniform
probability distribution over an interval of length a has entropy Ina, which
tends to -0 as a tends to zero. A one-dimensional Gaussian probability
distribution with variance s has entropy InV(27es).

For given variance s, entropy is largest for the Gaussian distribution.
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Entropy of a probability distribution (continuation)
Data of the form (see slide 51)
:=Ix+ ¢

The knowledge of a probability distribution for £ defines a conditional
probability distribution P(x|z) for x. Assuming that only the expectation
and covariance matrix § of ¢ are known, for which distribution of £ is
the entropy of P(x|z) largest ?

Response. The entropy of P(x|z) is largest when £'is Gaussian.

If the probability distribution for £ is unknown, assuming that it is
Gaussian 1s 1n a sense the ’least committing’ choice.
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Cours a venir

v i 23 o]
Lundi 12 ma;
Mercredi 28 mai
Mercredi 11 juin
Mercredi 18 juin




