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Last course (May 28)

-  Weak-constraint Variational Assimilation.

- Dual Algorithm for Variational Assimilation
- Complements on Variational Assimilation.

- How to write (and validate) an adjoint code
- Value of objective function at minimum. #? test

- Compared qualities of Sequential and Variational
Assimilation

- Assimilation and (In)stability (introduction)



This course

- Assimilation and (In)stability (continued)

Quasi-Static Variational Assimilation

- Variational assimilation 1n the unstable subspace

- Basics on dynamical systems

- Brief history of Numerical Weather Prediction



- Assimilation and (In)stability



[f there 1s uncertainty on the state of the system, and dynamics of
the system 1s perfectly known, uncertainty on the state along
stable modes decreases over time, while uncertainty along

unstable modes increases.

Stable (unstable) modes : perturbations to the basic state that

decrease (increase) over time.
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Consequence : Consider 4D-Var assimilation, or any form of smoother,
which carries information both forward and backward in time, performed
over time interval [f, ¢;] over uniformly distributed noisy data. If
assimilating model is perfect, estimation error is concentrated in stable
modes at time 7,, and in unstable modes at time #;. Error is smallest

somewhere within interval [7,, #,].

Similar result holds true for Kalman filter (or more generally any form of
sequential assimilation), in which estimation error 1s concentrated in

unstable modes at any time.



Gurumoorthy et al. (2017a, 2017b) have shown that in the linear perfect
model case, the error covariance matrix of the Kalman filter converges to
the neutral-unstable subspace of the system (space spanned by the non-

negative Lyapunov exponents of the system)



T T T T T T T T T
R R EE BT SRR RE BN O BN RE RN B BN R RE NE NN NN RE RN NE NN NE RECRE NN NN RN EE Y

‘= = ohservation error std
m—T\2AN EITOr .
I

error mean
raw assimilation error

0.09

0.08

0.07

0.06

errors

0.05

0.04

0.03

0.02 1 1 1 | 1 1 1 | 1
-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

time(days)

Linearized Lorenz’96. 5 days

Jardak and Talagrand



4DVar. =40, 6,=10"

66-06 !
56-06 '
4e-06

3e-06

RMSE

2e-06

1e-06

4DVar. 1=40, 6,=0.2

0.12 T

0.1 .
0.08
0.06

RMSE

0.04

~
~
...

0.02 kv S

MW MM
H

-5 -3
v

total, T=1d ——
Stable’ T=1d wewssnuns

6e-06

4e-06

0.12

4DVar-AUS. 1=40, 6,=10"

B@-06 |-

s =

TN Y ISR

Y i -

X

-3

t

4DVar-AUS. 1=40, 6,=0.2

00 .U S

:

e
Y

-5

total, T=3d
stable, t=3d

N e S
0 'I :. L L L L L L

-3

-1 0
t

total, T=5d
Stable’ T:Sd SEsEEEEE.

Figure 3. Time average RMS error within 1, 3, 5 days assimilation windows as a function of ' = ¢ — 7, with o, = .2, 10~° for the model
configuration I = 40. Left panel: 4DVar. Right panel: 4DVar-AUS with N = 15. Solid lines refer to total assimilation error, dashed lines

refer to the error component in the stable subspace eis, ....

Trevisan et al., 2010, Q. J. R. Meteorol. Soc.
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Lorenz (1963)

dx/dt = o(y-x)
dyldt = px -y - xz
dz/dt = -z + xy

with parameter values o= 10, p=28, f=8/3 = chaos
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Fig. 3. Variations of the error-free forward cost-function J(z, £, x) (Lorenz system) in the plane spanned by the stable
and unstable directions, as determined from the tangent linear system (see text), and for 7 =6 (panel (a)) and 7=8
(panel (b)) respectively. The metric has been distorted in order to make the stable and unstable manifolds orthogonal
to each other in the figure. The scale on the contour lines is logarithmic (decimal logarithm). Contour interval:
0.1. For clarity, negative contours, which would be present only in the central “valley” directed along the stable

manifold, have not been drawn.
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Fig. 2. Time variations, along the reference solution, of
the variable x(7) of the Lorenz system.



Twin (strong constraint) experiment. Observations y, =
Hx+ g at successive times k, and objective function of
form

(&) = (72) Zylyi - H&ld' Ry [y - Hiyl

x; denotes here the complete state vector, and H, 1s the unit
operator (all three components of x; are observed)

No ‘background’ term from the past, but observation y, at
time k= 0.



Cost Function
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Fig. 4. Panel (a): Cross-section of the error-free forward
cost-function Ji (7, £, x) along the unstable manifold, for
various values of 7. Panel (b). As in panel (a), for t =9.7,
and with a display interval ten times as large, respectively
for the error-free forward cost-function J(t, X, x) (solid
curve) and for the error-contaminated cost-function
Jo(1, %, x) (dashed curve). In the latter case, the total
variance of the observational noise is £2 = 75.

Pires et al., Tellus, 1996 ; Lorenz system (1963)



n

S

lllllilll

§ —
% 0
-5

1 —p

: ...... A

10 - B

10 = o

LN
N
L
—

-
P—
[\

Time

Fig. 5. Variations of the coordinate x along the orbits originating from the minima P, 4, B, C (indicated in Fig. 4b)
of the error-free cost-function.

Minima in the variations of objective function correspond to solutions that have bifurcated
from the observed solution, and to different folds in state space.



Cloud of points Linear tangent

u(C(z, x)) Cloud of points QSVA raw assimilation system Upper bound
=0 ] | 1 1
=1 0.36 0.37 0.39 0.46
t=2 59x1072 5.74 45x%x107? 0.401
=3 33x10°2 294 29x1077? 0.397
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In the left column, the estimates are calculated from the ensemble of 100 assimilations (see also Fig. 7). The 2nd
column contains the values obtained from the raw assimilation. In the 3rd column, the estimates are obtained from
the tangent linear system and eqgs. (3.5-3.9) (the star indicates a computational overflow). The estimates in the right-
hand column are the upper bounds defined by eq. (3.13).



Quasi-Static Variational Assimilation (QSVA). Increase

progressively length of the assimilation window, starting each

new assimilation from the result of the previous one. This
should ensure, at least 1f observations are In a sense
sufficiently dense in time, that current estimation of the
system always lies in the attractive basin of the absolute
minimum of objective function (Pires ef al., Swanson et al.,

Luong, Jarvinen et al.)



Quasi-Static Variational Assimilation (QSVA)

0 Data Assimilation over [0 T] with T=N .dt =M. dt T
4D-Var over [0 1] starting from the observations

0 T
e

4D-Var over [0 21] starting from the minimizer found above
)
0 27

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T

0. Talagrand & M. Jardak Optimization for Bayesian Estimation
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Fig. 7. Projection of the 100 minimizing solutions, at the end of the assimilation period, onto the plane spanned by
the stable and unstable directions, defined as in Fig. 3. Values of r are indicated on the panels. The projection is not
an orthogonal projection, but a projection parallel to the local velocity vector (dx/dr, dy/dr, dz/dr) (central manifold ).

Pires et al., Tellus, 1996 ; Lorenz system (1963)
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In the left column, the estimates are calculated from the ensemble of 100 assimilations (see also Fig. 7). The 2nd
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hand column are the upper bounds defined by eq. (3.13).
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Since, after an assimilation has been performed over a period of time,
uncertainty 1s likely to be concentrated in modes that have been unstable, it
might be useful for the next assimilation, and at least in terms of cost

efficiency, to concentrate corrections on the background in those modes.

Actually, presence of residual noise in stable modes can be damageable for

analysis and subsequent forecast.

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for
the case of 3D-Var)

24



Four-dimensional variational assimilation in the unstable subspace
(4DVar-AUS)

Trevisan et al., 2010, Four-dimensional variational assimilation in the unstable
subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136,
487-496.
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Experiments performed on the Lorenz (1996) model

d

W‘l‘j = (Tj+1 —2j-2)Tj—1 —x; + F
4

with 7 =1,....1.

with periodic conditions in j, and value F' = 8, which gives rise to chaos.

Three values of / have been used, namely 7 =40, 60, 80, which correspond

to respectively N"= 13, 19 and 26 positive Lyapunov exponents.

In all three cases, the largest Lyapunov exponent corresponds to a doubling time of about 2 days
(with 1 ‘day’ = 1/5 model time unit).

Identical twin experiments (perfect model)

26



System produces wavelike chaotic motions, with properties similar to those of
midlatitude atmospheric waves

- generally westward phase velocity
- typical predictability time : 5 ‘days’

- in addition, quadratic terms conserve ‘energy’

HMWWM.WMNW mqngbmuqm‘esandﬂwmmmhmrmwm
12 B

10

Erme{days)



4D-Var-AUS

Algorithmic implementation

Define N perturbations to the current state, and evolve them according to the tangent linear
model, with periodic reorthonormalization in order to avoid collapse onto the dominant

Lyapunov vector (same algorithm as for computation of Lyapunov exponents).

Cycle successive 4D-Var*s, restricting at each cycle the modification to be made on the current
state to the space spanned by the N perturbations emanating from the previous cycle (if N is

the dimension of state space, that is identical with standard 4D-Var).

28



Observing system’ defined as in Fertig et al. (Tellus, 2007):

At each observation time, one observation every four grid points
(observation points shifted by one grid point at each observation time).

Observation frequency : 1.5 hour

Random gaussian observation errors with expectation 0 and standard
deviation oy = 0.2 (‘climatological’ standard deviation 5.1).

Sequences of variational assimilations have been cycled over windows

with length 7 =1, ... , 5 days. Results are averaged over 5000 successive
windows.

29
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Figure 1. Time average RMS analysis error at ¢ = 7 as a function of the subspace dimension /N for three model configurations: /=40, 60,
80. Different curves in the same panel refer to different assimilation windows from 1 to 5 days. The observation error standard deviation 1s

o, = 0.2.

No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Best performance for N slightly above number N* of positive Lyapunov exponents.
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Figure 2. Time average RMS analysis error at £ = 7 as a function of the length of the assimilation window for three model configurations:

I=40, 60, 80. Different curves in the same panel refer to a different subspace dimension /N of 4DVar-AUS and to standard 4DVar. o, = 0.2.

Different curves are almost identical on all three panels. Relative improvement obtained by decreasing

subspace dimension N to its optimal value is largest for smaller window length 7 (for small window
lengths, the system does not know which modes are stable or unstable).
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Experiments have been performed in which an explicit background term was present, the

associated error covariance matrix having been obtained as the average of a sequence of full
4D-Var’s.

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-AUS. But

they remain qualitatively similar, with best performance for 4D-Var-AUS with N slightly
above N*.
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Minimum of objective function cannot be made smaller by reducing control space. Numerical
tests show that minimum of objective function is smaller (by a few percent) for full 4D-Var
than for 4D-Var-AUS. Full 4D-Var is closer to the noisy observations, but farther away from
the truth. And tests also show that full 4D-Var performs best when observations are perfect

(no noise).

Results show that, if all degrees of freedom that are available to the model are used, the
minimization process introduces components along the stable modes of the system, in which
no error is present, in order to ensure a closer fit to the observations. This degrades the
closeness of the fit to reality. The optimal choice is to restrict the assimilation to the unstable

modes.

Results are improved when an explicit background is available at the initial time of the
assimilation window. One can expect that a proper background (obtained for instance from a
properly implemented Kalman Filter, or from an Ensemble Variational Assimilation) would
not only say that the uncertainty is restricted to the unstable space, but how it is distributed in

that subspace. The ‘restriction’ to the unstable subspace would be automatically made.
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Can have major practical algorithmic implications.

Questions.

- Degree of generality of results ?

- Impact of model errors ?

35
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Conclusions

Error concentrates in unstable modes at the end of assimilation window.
It must therefore be sufficient, at the beginning of new assimilation
cycle, to introduce increments only in the subspace spanned by those
unstable modes.

In the perfect model case, assimilation 1s most efficient when
increments are introduced 1n a space with dimension slightly above the
number of non-negative Lyapunov exponents.

In the case of imperfect model (and of strong constraint assimilation),
preliminary results lead to similar conclusions, with larger optimal
subspace dimension, and less well marked optimality. Further work
necessary.

In agreement with theoretical and experimental results obtained for
Kalman Filter assimilation (Trevisan and Palatella, McLaughlin).
37



[terative Ensemble Kalman Smoother (IEnKS, Bocquet and Sakov, 2014)

Minimization performed at time #,, in an appropriately chosen reduced
subspace, assimilating observations performed between times zg and #;,

Wlth to S tS S tL

|

control observations

If the dimension of the reduced subspace is small enough, gradient of
objective function can be computed by finite differences, and approximate
Hessian can be determined. Once the minimization has been achieved, a

new ensemble of perturbations can be obtained by transport of the
approximate inverse Hessian.
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Dynamical system

State vector x = (x;, x,, ..., x,)!. Evolves in time according to
equation

dx/dt = F(x) (1)
or, componentwise

dx;/dt=Fi(x), i=1,...,n

Purely deterministic (no stochastic component)



dx/dt = F(x) (1)
Initial condition x(7,) = x, defines unique solution (or orbit)

x(0) = R(2, tp) (xo)

R(1, t,) 1s the resolvent of Eq. (1) between times ¢, and .
System can be discretized in time

X1 = My (x;)



Typical questions about dynamical systems
- Stationary points (F(x) = 0) and associated stability ?
- Stability of orbits ?

- Long term behaviour of orbits (convergence to fixed points,
periodicity, convergence to limit cycle or torus, divergence to
infinity, non-periodic oscillations, ...) ?

- Uncertainty in initial conditions. How does it evolve ?



dx/dt = F(x) (1)
Solution x(¢). Perturbation ax(¢7). Evolves according to
dox/dt = F[x(t) + ox] - F{x(?)] = F’(¢) ox

where F’(¢) is Jacobian (matrix of partial derivatives) of
operator F' at point x(¢)

do/dt = F (1) & (TLM)

1s tangent linear system of system (1) along solution x(7).
Describes evolution of perturbation ax on x(¢) to first order wrt
initial value of perturbation.

ox(t) = F[x(?)] 1s solution of (TLM)



dox/dt = F’(t) ox (TLM)
Adjoint equation

di/dt=- [F ()] A (ADJ)



For system discretized in time
X1 = M (x)
5xk_|_1 — Mk, §xk (TLM)

Adjoint
A= IMCT Ay (ADIJ)



Lorenz (1963)

dx/dt = o(y-x)
dyldt = px -y - xz
dz/dt = -z + xy

with parameter values o= 10, p=28, f=8/3 = chaos



All orbits end up trapped in the
same neighbourhood, within which
they have accumulation points
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By continuity, the set of
accumulation points of any orbit
consists of full orbits. The
accumulation points of almost all
orbits are the same, and make up
the attractor of the system.

48






dx/dt = o(y-x)
dyldt = px -y - xz
dz/dt = -z + xy

with parameter values o= 10, p= 28, f=8/3 (= chaos)

divF = A(dx/di) 16k + O(dylde) 16 + O(dzldr) | &
— _(6+1+B) =-13.666... <0

Volume element V(¢) = V(0) exp [ -13.67 ] decreases
exponentially with time



Probability Density Function (PDF) p(x, t) for state vector.
Evolves 1n time according to equation

dp/dt + p div F =0

which expresses conservation of probability in the flow F. It
1s fundamentally the same equation as the ‘continuity’
equation, which expresses conservation of mass in physical
motion. It is called in the present context the Liouville
equation.
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Loss of predictability in dissipative chaos
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Fig. 4. Panel (a): Cross-section of the error-free forward
cost-function Ji (7, £, x) along the unstable manifold, for
various values of 7. Panel (b). As in panel (a), for t =9.7,
and with a display interval ten times as large, respectively
for the error-free forward cost-function J(t, X, x) (solid
curve) and for the error-contaminated cost-function
Jo(1, %, x) (dashed curve). In the latter case, the total
variance of the observational noise is £2 = 75.

Pires et al., Tellus, 1996 ; Lorenz system (1963)



The attractor, which consists of infinitely many foliations,
1s called strange




Linear constant coefficient system with dimension 7
dx/dt = Ax
Eigenvectorse;, j=1,...,n
Eigenvalues y,= A+ iv, 4, >...> 4,
x(ty) = 2; x{(ty) e x1(ty) 0

x(tot7) = 2, exp(u; 1) x(%) €;
= exp(4 7) x(Zp)
X {e + 21 eXpl(a-141) 7] x(10)/x1(2p) ej}



x(tyt7) = exp(uy 1) x,(%) [e; T o(1)]
| x(t+2) | = exp(2,2) y(@) [ [ ey | +0(1) ]

lim _ [(1/f) In | x(0) | 1= 2,

If x,(¢)) = 0, x,(¢y) # 0, the limit is A,, and so on ...



There exist a sequence of real numbers (real parts of
eigenvalues of matrix A)

and a sequence of (sub)spaces of R”

t, =0 ctc..ctc..ct=R

such that lim ,_, [(1/7) In[ x(z) [ 1= 2, when x(2,) € &/ E,,,



The same 1s fundamentally true for dynamical systems with attractors
(solutions constantly return to the vicinity of same points — ergodicity)

dx/dt = F(x)

Solution x(¢). Associated TLM
dox/dt = F’(t) ox (TLM)

Oseledets theorem. There exist a sequence of real numbers (Lyapunov
exponents)

Ar> . > A, m<n

and a sequence of (sub)spaces of R”

t, =Jdctc..ctc..ct=R"

]

such that lim ., [(1/) In | x(2) [ ] = 4, when &x(t) € E/ E;1,



Lorenz 1963

dx/dt = o(y-x)

dyldt = px -y - xz

dz/dt = -z + xy

with parameter values o= 10, p= 28, f=8/3 (= chaos)
Lyapunov exponents

0.9056, 0, —14.5723 (sum = -13.6667)

[divE=- (o +1 +8) =-41/3 = - 13.6666.. < 0]



Lyapunov exponents

0.9056, 0, —-14.5723

Lyapunov exponents measure rate of growth of
perturbations, averaged over the whole attractor

Presence of at least one positive Lyapunov exponent is
signature of chaos.

In an ergodic system, one exponent is equal to 0. It
corresponds to perturbations in the direction of the motion,
which will be neither amplified nor damped over long
periods.



Experiments performed on the Lorenz (1996) model

d | | .
El‘j = (Tj+1 —Tj—2)Tj—1 — T + F

with 7 =1,.... 1.
with periodic co

v I (7

Divergence. divF' =X, d(dx/dt) /a;=-1 <0

Three values of 7 have been used, namely / = 40, 60, 80, which correspond to respectively N"= 13, 19
and 26 positive Lyapunov exponents.

In all three cases, the largest Lyapunov exponent corresponds to a doubling time of about 2 days
(with 1 ‘day’ = 1/5 model time unit).

Identical twin experiments (perfect model)
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Lyapunov exponents

ﬂil > .. ﬂ“m m S n
associated (sub)spaces of R”

t . =Jdctc..ctc...cE=R"

7/
lim , . [(1/2) In] &(2) [ 1= 4 when ox(t) € &/ E;\,

Modulus | &(7) | depends on choice of norm, but asymptotic
exponential rate of growth or decay does not. Lyapunov

exponents do not depend on position on orbit, and are the
same for all orbits with the same attractor. Subspaces E,

depend on position on orbit, but evolve with the motion.



Lyapunov vectors

At a given point along an orbit, forward Lyapunov vectors are vectors that
will concentrate most rapidly on the Lyapunov rate of growth or decay.

Similarly backward Lyapunov vectors are vectors that have concentrated
most rapidly in the past on the Lyapunov rate of growth or decay. In
assimilation, they tend to dominate the background error.

These vectors depend on the choice of a norm and are orthogonal with
respect to the chosen norm. They do not follow the evolution of the flow.

One also defines covariant Lyapunov vectors, which are exactly amplified
or damped according to the Lyapunov exponents, and evolve with the
motion. They do not depend on the choice of a norm, and are not
orthogonal wrt to a time-independent norm.



The notions of Lyapunov exponents and vectors have turned out to be very
useful for the study of the dynamics of the atmosphere and the ocean,
They are relatively easy to determine (identifying them does not require
long numerical integrations, which means that the atmosphere and the
ocean have in a sense ‘good ergodicity’). They more or less explicitly
underlie the approach of Assimilation in the Unstable Subspace
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Figure 1. Time average RMS analysis error at ¢ = 7 as a function of the subspace dimension /N for three model configurations: /=40, 60,
80. Different curves in the same panel refer to different assimilation windows from 1 to 5 days. The observation error standard deviation 1s
o, = 0.2.

No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Best performance for N slightly above number N* of positive Lyapunov exponents.

Trevisan et al., 2010 s
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Figure 1: Lyapunov spectra based on the forward integration (FLEs, red line),
backward integration (BLEs, full green squares), and on the CLVs (CLEs, empty
blue squares). Panel (a): the full spectrum of LEs. Panel (b) a zoom around 0. The
parameter values are C, =350 Wm 2 and d =1 x 107%s7L.

Lyapunov exponents of a low-order coupled

atmosphere—ocean model (Vannitsem and Lucarini, J. Phys. A,
2016)
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History of Numerical Weather Prediction

Cleveland Abbe

The Physical Basis of Long Range Weather Forecasts, 1901,
Monthly Weather Review

Wilhelm Bjerknes

Das Problem der Wettervorhersage, betrachtet von Standpunkt
der Mechanik und Physik, 1904, Meteorologische Zeitschrift

V. Bjerknes at the origin of the ‘Bergen School of Meteorology'




From course 2

Physical laws governing the flow

= Conservation of mass
Dp/Dt + pdivU = 0

= (Conservation of energy
De/Dt - (p/p?) Dp/Dt = Q

= (Conservation of momentum
DU/Dt + (1/p)gradp -g +2 QA U= F

= Equation of state
A, p,e)= 0 (p/p=rT, e=C\T)

= (Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, ...)

Dq/Dt + g divU =S8

These physical laws must be expressed in practice in discretized (and necessarily imperfect) form, both in space and time
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History of Numerical Weather Prediction (continuation)

Lewis Fry Richardson
Weather Prediction by Numerical Process, 1922
Cambridge University Press *

Forecast Factory

Richardson number, fractals, pacifism

* Accessible at URL
https://energy4climate.pages.in2p3.fr/public/education/ensemble data assimilation tu
torial/notebooks/T1%20-

%20Introduction%20t0%20Ensemble%20Data%20Assimilation%20for%20Nume
rical%20Weather%20Prediction.html 69



History of Numerical Weather Prediction (continuation 2)

https://energy4climate.pages.in2
p3.fr/public/education/ensemble
_data_assimilation_tutorial/note
books/T1%20-
%20Introduction%20t0%20Ens
emble%20Data%20Assimilatio
n%?20for%20Numerical%20We
ather%?20Prediction.html




History of Numerical Weather Prediction (continuation 3)

John von Neumann

Institute for Advanced Studies, Princeton, 1946-1950
First electronic computers (ENIAC)

(J. Charney, N. A. Phillips, R. Fjertoft, C. G. Rossby,
J. Smagorinsky, ...)
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History of Numerical Weather Prediction (continuation 4)

Institute for Advanced Study, about 1948-50. J. von Neumann is second from left. And
from right, J. Charney, C. G. Rossby (?), R. Fjertoft (?)
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History of Numerical Weather Prediction (continuation 5)

Charney developed vorticity barotropic model

First simulation of real atmospheric situation in 1950

Jule Gregory Charney en 1978.

First operational numerical forecast performed in 1954 in Sweden

(C. G. Rossby)




History of Numerical Weather Prediction (continuation 6)

Numerical prediction has gradually been implemented in more and more

meteorological services around the world.

European Centre for Medium-Range Weather Forecasts (ECMWF, 1975)

Ensemble prediction
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History of Numerical Weather Prediction (continuation 7)

Extension to simulation of oceanic circulation and climate

(early 1970’s, S. Manabe and K. Bryan, GFDL).
Climate simulations (S. Manabe, R. Wetherald)

S. Manabe awarded Nobel Prize in Physics in 2021
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History of Numerical Weather Prediction (continuation 8)

A large variety of models covering different spatial and temporal scales and
phenomena (small-scale convection, monthly and seasonal prediction, atmospheric

chemistry, ...) have been developed over the years and are used for research and
operational applications.

Intergovernmental Panel on Climate Change (IPCC, 1988)

Publishes reports that describe the state of climate science and presents

‘projections’ largely based on numerical simulations

First report in 1990

Fifth report in 2014
Sixth report in 2023
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History of Numerical Weather Prediction (continuation 9)

Another application has been to reanalyses of past data, with present models and
assimilation algorithms (as well as all observations which are now available, and

may not have been when they were performed).

ECMWEF : ERA-15, ERA-40, ERA-Interim, ERA5 (1940 - present, with ~ 31-km
horizontal resolution),

ERAG6 1s in development with 14-km horizontal resolution

NCEP/NCAR (National Centers for Environmental Prediction / National Center
for Atmospheric Research) :1948 - present
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History of Numerical Weather Prediction (continuation 10)

More recently, as concerns short and medium-range prediction, a major
change has been the development of algorithms based on machine
learning, trained on long series of past analyses. These algorithms produce

forecats or quality similar to those of physical forecasts, but at a much

lower numerical cost.
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Artificial Intelligence
(aka Machine Learning or Deep Learning)

Numerical modelling of the atmospheric and oceanic flow, as presented in the
course, 1s fundamentally built on known physical laws (conservation of mass,
momentum and energy).

Why not directly use observations (for instance, in the case of a weather forecast,

why not look for analogues in the past, and make the forecast from those
analogues) ?

E. N. Lorenz (1960s). Sample of past observations will never be large enough for
competing with physically-based models.

But :
- there 1s no incompatibility between the two approaches

- there remain many processes in numerical models which we do not know
how to describe on the basis of well-established physical laws (interactions
between atmosphere and underlying medium, such as e.g. vegetation, all kinds
of subgrid scale processes, ...)

- amount of data of all kinds, as well as computing power, are increasing very
rapidly. 79



Artificial Intelligence (aka Machine Learning) (continuation)

Powerful numerical tools have been developed for the exploitation of very large
sets of data (big data)

Neural networks. Define an explicit numerical link between an input set and an
output set. Define function F such that, to some useful degree of
approximation

y = F(x)

where x and y belong to the input and output set respectively.

The function F is typically built as a composition of activation functions
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Artificial Intelligence (aka Machine Learning) (continuation 2)

Activation functions

Sigmoid functions, relu function

1.00

—  logistic
0.75 tanh /

— relu
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Figure 6.2: Classical activation functions.

Bocquet and Farchi, 2025



Artificial Intelligence (aka Machine Learning) (continuation 2)

Neural networks have turned out to be extremely efficient in
many applications. In the context of assimilation of
observations, they have been used for defining for instance the
observation operators (H) corresponding to satellite
observations. But they have been used more recently, in
evaluation studies and on 1dealized situations, but with some
success, for determining ‘dynamical laws’.
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Machine Learning (continuation 3)

And, more importantly, they have been used for developing
softwares for meteorological predictions at a range of a few
days, using as training ensembles reanalyses produced by
meteorological centres.

- GraphCast
- Pangu-Weather

Forecasts obtained are of similar quality to those of best
physical models, but at a much lower numerical cost (a few
minutes, instead of a few hours, for a 10-day forecast). ECMWF
has for instance developed the AIFS software, with its own
ERAS reanalysis (1979-present) as training ensemble.
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ECMWF

500 hPa geopotential (dm)

850 hPa temperature (C)
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Base time: Thu 10 Apr 2025 06 UTC Valid time: Thu 10 Apr 2025 06 UTC (+0h) Area : Europe
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Figure 17: Anomaly correlation of 500 hPa geopotential in the northern hemisphere extratropics at day 5.
CAMS forecast (black) shown in comparison to the HRES (red) and forecasts from other global centres (thin
lines). Also shown are forecasts from machine learning (ML) models: GraphCast (olive), Pangu (grey), and

ATFS (red dashes).
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Figure 18: Anomaly correlation of 500 hPa geopotential in the northern extratropics for the 12-month period

Aug 2023 to July 2024. Black: ENS mean, olive: GraphCast ML forecast, red dashes: AIFS, blue: ENS control,

red: HRES.
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