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Last course (June 11)

- Assimilation and (In)stability (continued)
Quasi-Static Variational Assimilation

- Variational assimilation in the unstable subspace 

- Basics on dynamical systems

- Brief history of Numerical Weather Prediction
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This course

- Particle filters (exactly bayesian)

- Ensemble Variational Assimilation

- Conclusions
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Exact bayesian estimation ?

Particle filters

Predicted ensemble at time t : {xb
l, l = 1, …, L}, each element with its own

weight (probability) P(xb
l)

Observation vector at same time : y = H(x) + e

Bayes’ formula
P(xb

l|y) = P(y|xb
l) P(xb

l) / P(y)

Defines updating of weights
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Bayes’ formula
P(xbl|y) ~ P(y|xbl) P(xbl)

If error e is independent of all previous data

P(y|xbl) = P[e = y - H(xbl)]

Defines updating of weights; particles are not modified. Asymptotically
converges to bayesian pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.
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C. Snyder, 
http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/Snyder.pdf 6



Problem originates in the ‘curse of dimensionality’. Large dimension
pdf’s are very diffuse, so that very few particles (if any) are present
in areas where conditional probability (‘likelihood’) P(y|x) is large.
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Curse of dimensionality

Standard one-dimensional gaussian random
variable X

P[ çX ç < s ] » 0.84

In dimension n = 100, 0.84100 = 3.10-8

.
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c2-probability distribution of order p

c2(p) ~ Sp [N (0, 1)]2

Expectation m = p, variance s2 = 2p
s/m = √(2/p)

for large p, distribution is extremely peaked

Recall that, in gaussian variational assimilation, 2E(Jmin), where
Jmin is minimum of objective function, follows a c2-
probability distribution of order p, where p is the degree of
overdetermination of the minimization



Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of
filter requires the size of ensembles to increase exponentially with
space dimension.
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Alternative possibilities (review in van Leeuwen, 2017, Annales de la faculté des sciences de
Toulouse Mathématiques, 26 (4), 1051-1085)

Resampling. Define new ensemble.

Simplest way. Draw new ensemble according to probability distribution defined by the updated
weights. Give same weight to all particles. Particles are not modified, but particles with
low weights are likely to be eliminated, while particles with large weights are likely to be
drawn repeatedly. For multiple particles, add noise, either from the start, or in the form of
‘model noise’ in ensuing temporal integration.

Random character of the sampling introduces noise. Alternatives exist, such as residual
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights wl are multiplied by
ensemble dimension L. Then p copies of each particle l are taken, where p is the integer
part of Lwl. Remaining particles, if needed, are taken randomly from the resulting
distribution.

However, resampling is not sufficient to avoid degeneracy of filters.
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Markov chain Monte Carlo (MCMC) Methods

Sequence of random vectors {xn, n = 0, …}

Assume P(xn | xn-1, …, x0) = P(xn | xn-1)

Markovianity. Verified in particular if xn = F(xn-1, h), where F is
deterministic, and h is random with a priori known probability
distribution.

Sequence of observations {yn, n = 0, …}

Assume P(yn | xn, xn-1, …, x0) = P(yn | xn)

Verified in particular if yn = G(xn, e), where G is deterministic, and e is 
random with a priori known probability distribution. 12



We want to estimate P(xn | yn, …, y0) º P(xn | y0 : n)

P(xn | y0 : n) = P(xn | yn , y0 : n-1) = P(yn | xn , y0 : n-1) P(xn | y0 : n-1) / P(yn | y0 : n-1)
= P(yn | xn) P(xn | y0 : n-1) / P(yn | y0 : n-1)

P(xn | y0 : n-1) = ò P(xn | xn-1) P(xn-1 | y0 : n-1) dxn-1

Chapman-Kolmogorov equation

This defines a recursive equation for P(xn | y0 : n)

Particular case
xn = Mn xn-1 + hn Mn linear, hn Gaussian with a priori known pdf
yn = Hn xn + en Hn linear, en Gaussian with a priori known pdf

Þ Kalman filter
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Idea :

Use a proposal density that is closer to the new
observations than the density defined by the
predicted particles (for instance the density defined
by EnKF, after the latter has used the new
observations).
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van Leeuwen, 2017, Annales de la faculté des sciences de Toulouse 
Mathématiques, 26 (4), 1051-1085
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van Leeuwen, 2017, ibid. 16
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Several variants of proposal densities have been
defined and studied : perform an EnKF up to
observation time, and then use the obtained
ensemble as proposal density, nudge the model
integration between times n-1 and n towards the
observations at time n, perform a 4D-Var on each
particle, optimal proposal density, …
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van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084
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The Equivalent-Weights Particle Filter (Ades and van
Leeuwen, QJRMS, 2013).

Make the proposal density depend on the whole
ensemble at time n-1, and not only on xln-1, use
density of the form q(xn | xn-11,L, yn), where 1,L
denotes all ensemble indices, rather than of the
more restrictive form q(xn | xln-1, yn). This gives
many degrees of freedom which can be exploited
for obtaining at time n an ensemble with almost
equal weights.
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Example Vorticity equation model with
random error h.

State-vector dimension ≈ 65,000
Decorrelation time: 25 timesteps
One complete noisy model field
observed every 50 timesteps
24 particles
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(12 observations)
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Bayesianity : experts say all these filters are bayesian
(in the limit of infinite ensemble size)

Possible difficulties : numerical implementation,
numerical cost

Particle filters are actively studied (van Leeuwen,
Morzfeld, …)
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- Ensemble Variational Assimilation (EnsVAR).
(work with M. Jardak, 2018)
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Ensemble Variational Assimilation

Data of the form

z = Gx + z, z ~ N [0, S]

Conditional probability distribution is

P(x | z) = N [xa, Pa]
with

xa = (G T S-1G)-1 G T S-1 z
Pa = (G T S-1G)-1
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Variational form

P(x | z) µ exp[ -(z - Gx)T S-1 (z - Gx)/2 ] µ exp[ -(x -xa)T (Pa)-1 (x -xa)/2 ]

Conditional expectation xa minimizes following scalar objective function, defined
on state space X

x Î X ® J(x)  º (1/2) [Gx - z)]T S-1 [Gx - z]

Pa = [∂2J /∂x2]-1
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Ready recipe for determining Monte-Carlo sample of 
conditional pdf P(x | z) : 

- Perturb data vector z according to its own error probability 
distribution  

z ® z’ = z + d, d ~ N [0, S]

and compute  

x’a = (G T S-1G)-1 G T S-1 z’

x’a is distributed according to N [xa, Pa]
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Ensemble Variational Assimilation (EnsVAR) implements that
algorithm, the expectations x’a being computed by standard
variational assimilation.

Used at ECMWF and Météo-France (under the name Ensemble
of Data Assimilations, EDA) for defining initial conditions
of ensemble prediction, and also for defining background
error covariance matrix in 4D-Var, but not for assimilation
per se.
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Present purpose

Evaluate EnsVar as a probabilistic estimator when implemented in nonlinear
and/or non-Gaussian cases, i. e., through minimization of

x Î X ® J(x)  º (1/2) [G(x) – z’]T S-1 [G(x) - z’]

where G may be nonlinear, and errors affecting data z may be non-Gaussian.
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- Objectively compare with other existing ensemble assimilation algorithms :
Ensemble Kalman Filter (EnKF), Particle Filters (PF)

- Simulations performed on two small-dimensional chaotic systems, the
Lorenz’96 model and the Kuramoto-Sivashinsky equation
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System produces wavelike chaotic motions, with properties similar to those of 
midlatitude atmospheric waves
- generally westward phase velocity
- typical predictability time : 5 ‘days’
- in addition, quadratic terms conserve ‘energy’ 
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Experimental procedure (1)

0. Define a reference solution xtr by integration of the numerical model

1. Produce ‘observations’ at successive times tk (every 12 hours) of the form

yk= Hkxkr+ ek

where Hk is (usually, but not necessarily) the unit operator, and ek is a random (usually, but not
necessarily, Gaussian) ‘observation error’.
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Experimental procedure (2)

2. For given observations yk, repeat Nens times the following process

- ‘Perturb’ the observations yk as follows

yk® zk= yk+ dk

where dk is an independent realization of the probability distribution which has produced ek.

- Assimilate the ‘perturbed’ observations zk by variational assimilation

This produces Nens (=30) model solutions over the assimilation window, considered as making up a
tentative sample of the conditional probability distribution for the state of the observed system
over the assimilation window.

The process 1-2 is then repeated over Nreal successive assimilation windows. Validation is
performed on the set of Nreal (=9000) ensemble assimilations thus obtained.
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Linearized Lorenz’96. 5 days
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How to objectively evaluate the performance of an ensemble (or more generally
probabilistic) estimation system ?

- There is no general objective criterion for Bayesianity

- We use instead the weaker property of reliability, i. e. statistical consistency between
predicted probabilities and observed frequencies of occurrence (it rains with frequency
40% in the circonstances where I have predicted 40% probability for rain).

Denote Y the predicted probability distribution, and X the verifying reality. Consider the
probability distribution for the couples (X, Y) (that probability distribution can be
obtained empirically). Reliability is the property that

P(X ½Y) = Y  for any Y

Reliability can be objectively validated, provided a large enough sample of realizations
of the estimation system is available.

Bayesianity implies reliability, the converse not being true.
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In addition, we evaluate resolution (also called sharpness), which bears no
direct relation to bayesianity, and is the capability of the estimation system to a
priori distinguish between different situations. It is best defined as the degree
of statistical dependence between X and Y (J. Bröcker). Total absence of
resolution is independence between X and Y, viz.

P(X ½Y) = P(X) for any Y

Resolution, beyond reliability, measures the degree of usefulness of the
ensembles.



aaaaa

39Linearized Lorenz’96. 5 days
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Objective function

J(x)  º (1/2) [Gx - z]T S-1 [Gx - z]

Jmin º J(xa)  = (1/2) [Gxa - z]T S-1 [Gxa - z]

= (1/2) dT [E(ddT)]-1 d

where d is innovation
Þ E(Jmin)  =  p/2 (p = dimy = dimd)

If p is large, a few realizations are sufficient for determining E(Jmin)

Remark. If in addition errors are gaussian, the quantity 2E(Jmin) follows a c2-probability
distribution of order p. For that reason the criterion E(Jmin) = p/2 is often called the
c2 criterion. Also Var(Jmin) = p/2 in the gaussian case.
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Linearized Lorenz’96. 5 days. Histogram of Jmin
E(Jmin) = p/2 (=200) ; s(Jmin) = √(p/2) (≈14.14)  

Observed values 199.39 and 14.27 



42Nonlinear Lorenz’96. 5 days

(initial time of assimilation window)



43Nonlinear Lorenz’96. 5 days



44Nonlinear Lorenz’96. 5 days. Histogram of Jmin
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Nonlinear Lorenz’96. 10 days. Histogram of Jmin
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( t = 1 day ) 
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( t = 1 day ) 
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- Results are independent of the Gaussian character of the
observation errors (trials have been made with various
probability distributions)

- Ensembles produced by EnsVar are very close to Gaussian,
even in strongly nonlinear cases.
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- Comparison Ensemble Kalman Filter (EnKF) and Particle
Filters (PF)

Both of these algorithms being sequential, comparison is fair only at end

of assimilation window
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Nonlinear Lorenz’96. EnsVAR. Diagnostics after 5 days of assimilation
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Nonlinear Lorenz’96. EnKF. Diagnostics after 5 days of assimilation
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Nonlinear Lorenz’96. PF. Diagnostics after 5 days of assimilation
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EnsVAR. Diagnostics for 5-day forecasts



56EnKF. Diagnostics for 5-day forecasts
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PF. Diagnostics for 5-day forecasts
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RMS errors at the end of 5-day assimilations and 5-day forecasts



Weak constraint variational assimilation
Allows for errors in the assimilating model

In the present case, data

- Observations at times k = 0, …, K

yk = Hkxk + ek E(ekek’
T) = Rkdkk’

(no background, but observation, at time 0)

- Nonlinear model (Lorenz’ 96)

xk+1 = Mk(xk) + hk E(hkhk’
T) = Qkdkk’ k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time
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Control variables : initial state x0, and K model errors {hk , k = 0, …, K-1}

Objective function of the form

(x0, h0, ..., hK-1)®

J(x0, h0, ..., hK-1)  

= (1/2) Sk=0,…,K[yk - Hkxk]T Rk-1 [yk - Hkxk]

+ (1/2) Sk=0,…,K-1hk
TQk-1hk

subject to 

xk+1 = Mk(xk) + hk , k = 0, …, K-1
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It turns out that QSVA is no more necessary. The model
error term in the objective function has a regularizing
effect which makes the function much smoother.
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Weak-constraint 
ensemble 
variational 
assimilation
18 days, Q = 0.1
1200 realizations
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Kuramoto-Sivashinsky equation

with periodicity in x, L = 32p
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Ensembles obtained are Gaussian, even if errors in data are not

Produces Monte-Carlo sample of (probably not) bayesian pdf
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Summary and wrapping up

- Assimilation originated from the need of providing initial
conditions for Numerical Weather Forecasts.

- Its purpose can be defined as estimation of the state of the
atmospheric flow from all the available relevant information
(i.e., observations and numerical model, or even differential
equations, describing the dynamics of the flow).

- General bayesian approach. Determine the probability
distribution for the state of the system, conditioned to
everything we know (impossible to achieve in practice, but
nevertheless very useful as providing consistent conceptual
principle and guidelines as to which directions to take).
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Best Linear Unbiased Estimator (BLUE).

Data of the form

Background xb = x + zb

Observations y = Hx + e

Analysis

xa = xb + PbHT [HPbHT + R]-1 (y - Hxb)
analysis background gain matrix innovation

Pa = Pb - PbHT [HPbHT + R]-1 HPb

70

error covariance matrices



BLUE achieves bayesian estimation in linear cases with
(globally) gaussian additive errors)

Implemented in practice, more or less heuristically and
empirically, in non-gaussian and (not too strongly) nonlinear
cases in the form of

- Ensemble Kalman Filter (EnKF)

- Variational Assimilation (VA)

for both of which there exist inumerable variants

Particle Filters independent of either linearity or gaussianity
hypotheses
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In assimilation of meteorological and oceanographic data,
powerful methods require taking into account the temporal
evolution of the state of the flow over the assimilation window.
Achieved by Kalman Filter and Variational Assimilation, as well as
by Particle Filters.

In the course of assimilation, uncertainty on the state of the flow is
concentrated in the modes that have been recently unstable
(because of the dynamics or of the model error)

Þ Assimilation in the Unstable Subspace (AUS), which is the
subject of active research

The expected development of machine learning methods will
certainly have a strong impact on assimilation, but which one ?
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Assimilation is related to many different theoretical and
practical aspects (is multidisciplinary !)

• Estimation theory
• Probability theory
• Theory of dynamical systems
• Atmospheric and oceanic dynamics
• Atmospheric and oceanic predictability
• Instrumental physics
• Optimisation theory
• Control theory
• Algorithmics and computer science
• …
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Assimilation, which originated from the need of defining initial conditions for numerical weather forecasts, has
gradually extended to many diverse applications

• Oceanography
• Palaoclimatology
• Atmospheric chemistry (both troposphere and stratosphere)
• Oceanic biogeochemistry
• Ground hydrology
• Terrestrial biosphere and vegetation cover
• Glaciology
• Magnetism (both planetary and stellar)
• Plate tectonics
• Planetary atmospheres (Mars, …)
• Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)
• Identification of source of tracers
• Parameter identification
• A priori evaluation of anticipated new instruments
• Definition of observing systems (Observing Systems Simulation Experiments)
• Validation of models
• Sensitivity studies (adjoints)
• Mathematical studies, independently of direct real life applications
• …

It has now become a major tool of numerical environmental science, and a subject of mathematical study in its 
own right.



A few of the (many) remaining problems :

§ Reduce amount of computations by restricting assimilation
to appropriate subspace

§ Observability (what to observe in order to know what we
want to know ? Data are noisy, system is chaotic !)

§ More accurate identification and quantification of errors
affecting data particularly the assimilating model (will
always require independent hypotheses)

§ Assimilation of images

§ …
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La Fin du Cours … 
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