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Information:

Need for information:

Main challenges to society require information for an intelligent response, including
making choices on future action - examples: el el
Climate change
*Impact of extreme weather
*Environmental degradation
*Ozone loss —

We can take action according to information obtained:

*Future behaviour of system of interest, future events - prediction
*Test understanding of system & adjust understanding - hypothesis testing
*Understand cause of events, change, mitigate, adjust -

attribute cause & effect



Chain of information processing:
*Gather information
*Test hypotheses based on this information
*Build methods to use information - attribute cause & effect
*Use methods to make predictions
Need two ingredients:
*Means of gathering information - observations (different types)
*Methods to build on information gathered, organize information gathered
- models (conceptual, numerical...)

Observations: roughly direct link with system of interest via measurements

Models: roughly indirect link with system of interest - embody information
received from measurements, experience & theory

Models & observations are sources of information



Sources of information:
Measurements: observations - different time & spatial scales

AircraftLocal coverage - ATOVS Global coverage
i ot R e, -
AMOARS (11318)

0 NOAA-14 TOVS (green), 4374 NOAA-15 ATOVS (red), 7200 NOAA-16 ATOVS (blue)

Total number of observations assimilated: 18418

W 1w W o =w - =i L0 Lo 1= 1500

_ o © Met Office
Understanding: embodied in models. Can be:

Qualitative: e.g. higher velocity, higher KE; quantitative: e.g. KE = (1/2) mv?



Characteristics of information:
Observational errors:

*Random - precision
«Systematic - bias
*Representativeness - e.g. different spatial scales: sonde, satellite

Models also have errors
«Construction of models - incomplete models
«Imperfect simulation of “real world”
Information (observations/models) has errors - need to take this into account
Observations (measurements) are discrete
in space and time - information provided by - —
observations has gaps

We would like to fill in gaps

UARS MLS ozone 10 hPq, 1 Feb 1997




Objective ways of filling in information gaps:
Algorithm attributes:

«Consistent (mathematically, physically,...) rules
*Objective (impartial principles) rules: max/min of a function,...

Algorithm: Model (propagates information in space and time)

sLinear interpolation
Navier-Stokes equations - Can build a hierarchy of models
*Chemistry equations

*Parametrizations -

Mathematics: "What combination of the observation and model information is
optimal?” & estimate of the errors of the "optimal” or "best” estimate ->

"Data assimilation” (Earth Observation data/model fusion): has strong links to
several mathematical disciplines, including control theory & Bayesian statistics



Mathematics:
Combine information from a model & observations plus errors

3D-Variational method (variational, minimize penalty function, J):
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Also ensemble methods, e.g., Ensemble Kalman Filter



Data assimilation - adding value:

DA adds value to both

Red: high ozone
observations and model

Blue: low ozone

Geer et al., QIRMS ,2006
Lahoz et al,ACP, 2007
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Data assimilation and Numerical Weather Prediction, NWP:

Key idea: Confronting models with observations
Progress in NWP has been a combination of:
*Better models: higher resolution, better processes
*Better observations: satellites
*Better use of observations: bias correction, quality-control, radiances
*Better computing power

*Data assimilation: better use of observations and models; use of 4d-variational (4d-
var) approach

This has allowed observations and models to be evaluated and improved

This has allowed improvement in NWP forecasts (e.g. European Centre for
Medium-Range Weather Forecasts, ECMWF)



NWP: success for data assimilation

Anomaly correlation (%) of 500hPa height forecasts
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plotted as annual running means of archived monthly-mean scores for Jan 1980 - Nov 2006.
Values plotted for a particular month are averages over that month & 11 preceding months.
Colour shadings show differences in scores between two hemispheres at the forecast ranges

indicated (After Simmons & Hollingsworth, QJRMS, 2002)

Impact of satellite observations, impact of data assimilation

Towards end of 1999: a more advanced 4D-Var developed & significant changes in the
GOS mainly due to launch of 15t ATOVS instrument onboard NOAA satellites
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Evaluation of observations and models:

We can apply NWP ideas to evaluating observations & models

‘Observations: Do they have Gaussian errors? Are they biased?
Self-consistency
Data assimilation as a transfer standard: estimate bias
*Models:
‘Chemistry models: Chemistry-transport models (CTMs)
*Climate models: General circulation models (GCMs)
*Climate-chemistry models (CCMs)

Can extend ideas to other models: Earth System models (ESMs)



DA: Self-consistency of MIPAS ozone data

Obs quality:
Statistics: 14-28 Sep 2002

Obs (MIPAS) minus short-range Forecast (model), OmF
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Consistent with Gaussian

OmF ~ O in stratosphere
errors in stratosphere

Geer et al. QIRMS (2006) Struthers et al. JGR (2002)



Self-consistency & |

added value

OmF:

Observation minus forecast

u-E o - -5 ] 5

Evaluation of analyses using histograms of OmF differences (normalized by observation error)
averaged for stratosphere, globe & August 2003 for six stratospheric constituents: O, (fop left),
H,O (top right), CH, (middle left), N,O (middle right), HNO; (bottom left) and NO, (bottom right).
Constituent observations rom ESA MIPAS off-line retrievals. Frequency of histograms normalized to
lie between O and 1. Black line is Gaussian fit to histograms; red line is Gaussian fit from model run
without assimilation.

Results support assumption of Gaussian errors in observations & forecast, & show analyses are closer
to observations than simulations from model run without assimilation. Experiments performed at
BIRA-IASB. With permission from Lahoz et al., ACP, 2007



Obs bias: DA: Evaluation of MIPAS ozone using independent data

BASCOE used as "interpolating” analysis
Statistics: 18 Aug - 30 Nov, (Obsl-Analysis) - (Obs2-Analysis):
Geer et al. ACP (2006), Lahoz et al. ACP (2007), QIRMS (2006, 2007)

-90 to -60 -60 to -30 -30 to 30
TTT II|III|III|III TTT IIIIIIII|III|III TTT Iilllllllllllll
1 L L 1 U

30 to 80 50 to 90
I T T
1E B 1 F K J B L J L

|

I

I

I

r\
Cl
Il
\

—v HALOE

\ I
, \

-—

10

Pressure /hPa

Bf :\V Sonde

100

1R K& 1B <7
< ~ N =~

Lol A

0 20 40 60 80-20 0 20 40 60 680-20 0O 20 40 60 &80
Yo Yo % bl %o

Bias in MIPAS ozone generally positive: ~5% - ~10% -> feedback to MIPAS team

11 II|III|III|III 111 IIIIIII|III|III L1 Lt | | | |
-20 0 20 40 60 80-20 0O 20 40 60 80-20




Pressure /hPa

Mid latitude Upper Trop/Lower Strat: Payerne ozonesonde profiles
(Geer et al., ACP, 2006)

Take account of different resolution of matched datasets
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Ozone time series (ppmm) at 68 hPa, South Pole

Impact on chemical model:
Improvement in BASCOE model
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Impact of new chemical observations:
Operational ECEMWF assimilates MIPAS ozone

Geer et al. ACP, 2006,2007
Lahoz et al. ACP, 2007a, b
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Accuracy of combined water vapour (WV)
information (obs/model)

ASSET project

Lahoz et al, ACP, 2007a, b
Thornton et al., ACP, 2009

Main features of stratospheric WV captured:

«  Tropical WV minimum,

«  SH polar vortex WV minimum

«  Brewer-Dobson circulation

*  Mesosphere: analyses wetter than UARS clim
& reflect wet bias of MIPAS obs

Monthly zonal mean specific humidity analyses, Sep 2003:
(a) ECMWF, (b) BASCOE, (c) MIMOSA; (d) UARS clim
MIPAS WYV profiles assimilated in ECMWF, BASCOE &
MIMOSA analyses.

Blue: relatively low specific humidity values

Red: relatively high specific humidity values. Units: ppmv.
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Water vapour analysed fields, 68 hPa, 21 Sep 2003, 1200 UT
Various data assimilation systems
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Fig. 8. Polar stereographic projection of the specific mmidity field (ppmv) for the southern hemisphere on 21 September 2003 12:00UT at
68 hPa, for ECMWT (top left), BASCOE (top nght), MIMOSA (bottom left) and climatology (bottom nght).



Cal-val of water vapour analyses

Comparison with independent data:
HALOE (black triangles)

(1) ECMWF & Met Office (GCM)
ECMWF (Red): humidity control variable
Normalized RH, reducing to normalized
specific humidity in strat

Met Office (Light blue): normalized
specific humidity

(2) BASCOE (Green) & MIMOSA (Dark blue)
(CTM)

Specific humidity control variable
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Fig. 2. Comparison of a HAT.OE profile at a resolution of 30 points
per decade (black line), HAT.OE values (black triangles) and er-
tor bars on commmon grid levels with the four analyses, ECMWTE
(Red). BASCOE (Green), MIMOSA (Dark Blue) and the Met Of-
fice (Light Blue), and the UARS climatology (Yellow) on 2 Septem-
ber 2003 at 04:19. 6 45°E. 65.73° N.



Water vapour analyses

Analyses minus Obs (AmO)
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Fig. 5. Mean of (Analysis—Observations) water vapour mixing ratio, normalised by climatology (in percent) over the intercomparison period,

for ECMWE (Red), BASCOE (Green) and MIMOSA (Blue), for the five different latitude bins. For rows (a) to (d). the analyses are compared
with MIPAS, HALOE. SAGE II and POAM IIT data, respectively. If there are not any satellite profiles available, the graphs are blank.
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Water vapour control variable
Choice:

e  Relative humidity, RH
. Normalized RH
. Normalized specific humidity

Aim:
Control variable with desirable properties:

«  Usable in troposphere & stratosphere

«  Approx Gaussian background errors (B)
«  Temp & humidity increments decoupled
*  Realistic vertical correlations

Tests at Met Office

The Met Office has investigated the impact of varying the
control variable 1n the asstmilation of MIPAS humndity data.

To achieve this. the Met Office have ccmbmed
the 1dg . 2002),
and deﬁned a ucrmahzed relame hul]lldlt}’ Van'{ble The 1m-
pact of the normalization 1s to pmdur:e a COHEIdﬂI"‘lbl’_’y better

quently the e g gon‘r 15 much
faster. The removal of the influence of temperature incre-
ments reduces spurious upper stratospheric increments.
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Fig. 2. Met Office mean (lefi-hand plot) and standard deviation
(right-hand plot) of specific humidity profiles for 25 September
2002 over the 607 520° 5 region. Black: MIPAS observations;
red: analyses using a relative lmmidity (FH) control variable; bhae:
analyses using a normalized RH confrol vaniable; green: analyses
vsing a normalized specific bumidity control variable. Units: ppmv.



Water Vapour control variable: details of Met Office work

(1) What is the control variable (why choice?)
(2) How to calculate background error covariance

A possible way forward 1s to reconsider the way 1n which
the humidity background error covariance matnx 1s calcu-
lated, rather than to scale existing covanances, as we have
attempted here. A recent study by Jackson et al. (2008). has
shown that the 3D-Var analvses on which the NMC covan-
ance calculation was based. suffer from a lack of dynamical
balance between the mass and wind fields. Spurious grav-
ity waves are generated to testore this balance and can be
seen 1n a 24-h forecast and consequently are present in the
NMC error covanance matrx. This may explam the unreal-
1stic vertical correlations in the humidity covanance matrix
reported here. Of course. the presence of a spurious gravity
wave signal in the error covariances may have an adverse ef-
fect on all analysis variables, but this effect may be greatest
for humidity because of the lack of suitable stratosphernic hu-
midity observations to constran the analyses on which the
WNMC method 1s based.

Solutions to this problem include the use of better-
balanced analyses m the NMC calculation For example,
at the Met Office, 3D-Var analyses have recently been su-
perseded by 4D-Var analyses. which are in much better dy-
namical balance and give rise to NMC covariances which
contain a reduced spurious gravity wave signal. Other tech-
miques of calculating error covariances may also be more
effective at rtemoving spurious gravity waves. Such tech-
mques include the method descnbed by Polavarapu et al
(2005b) (the so-called Canadian Quick covariances) and the
use of ensembles. Ensembles are used to calculate back-
ground error covariances at ECMWEF. This may explain why
the ECMWTF stratosphenic hunudity analyses presented here
are much meore accurate than the corresponding Met Office
analyses, even though the hunudity control variable used at
both institutes 15 very similar It 15 not easy to apply the
ECMWTE covariances to the Met Office DA scheme. due to
the different model formulations. however the use of ensem-
bles to generate covariances is being further developed at the
Met Office.



Climate models:

Recent NWP-based ideas to evaluate climate models:

CAPT initiative - improve parametrizations in GCMs (Phillips et al.
2004) - requires accurate NWP analyses; systematic error can be
largely attributed to parametrization deficiencies

Seamless prediction - fundamental physical/dynamical processes
common to both weather & seasonal forecasts, & climate-change
timescales (Palmer et al. , BAMS, 2008)

=  Proposal: probabilistic validation of models at timescales where
validation data exist (e.g. daily, seasonal,...) can be used fto
calibrate climate-change probabilities at longer timescales.

=  Need for calibration reflects a need for model improvement

«  Estimating climate model parameters (e.g. gravity wave drag; early
days)

«  Uncertainty analyses & ensemble experiments (early days)

Observations must constrain parameters of interest



Overview

*Helpful o regard observations & models as sources of information
-Data assimilation invaluable for studying polar stratosphere:

-Fills gaps between observations (need a model)

-Allows use of heterogeneous measurements

‘Makes sense of observations (multiple, heterogeneous)

‘Data assimilation can add value to observations & models, compared to
information that each can supply on their own

‘Data assimilation allows evaluation of models/observations

Data assimilation underpins evaluation of impact of current observation
types using OSEs (observing system experiments), and the future global
observing system wusing OSSEs (observing system simulation
experiments)

Crucial for setting up Global Observing System (GOS)

- see observations lecture 14
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