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Convection parameterisations

Overview

● What is a parameterisation and why using it?

● Fundamentals of convection parameterisations

● A little parameterisation application

● Examples of convection schemes for larger 
scale models

● Differences of convection schemes and 
implications for large scale modelling

Introduction
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Miami

Karlsruhe

(From the Karlsruher Wolkenatlas)

near Karlsruhe

Introduction
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(From Houze, 1993)

Schematic for single cell convection
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Schematic for multi cell convection

(From Houze, 1993)



  

Convection parameterisations Introduction

Processes in a convective cell

Mass-Balance 
Subsidence Down-drafts

Precipitation and 
sedimentation

Ice

Updrafts

Precipitation
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Characteristics of convective clouds

● Relatively small horizontal extensions (10 km), but 
can organise into larger convective systems

● Large vertical extent (whole troposphere)
● Complicated dynamical and transport processes
● Cloud microphysical components
● Both local and large – scale impacts
● Each cloud is different !

Introduction
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Convection – a modellers nightmare

● several 
individual 
different clouds 
in one model 
grid box 
(column)

● all clouds 
influence the 
column 
properties

c
1

c
2

c
3

c
4

total effect of all clouds = effect of c
1
 + effect of c

2
 + effect of c

3
 + effect of c

4

200 km

20
0 

km

Parameterisation Concept
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Convection – parameterising the effects

Parameterisation Concept

● individual clouds within a grid column cannot be 
resolved

● all clouds affect the grid column properties

=> A convection parameterisation should capture 
the effects of all subgrid – scale clouds within 
a grid column.

● not simulating individual subgrid – scale clouds, 
but using a more statistical approach 
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Convection – feedback loop

Parameterisation Concept

Control

Feedback

Moist – Convective 
Processes

Large – Scale 
Processes
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What to use for parameterisations?

Parameterisation Concept

● Linking subgrid scale events (disturbances of the 
grid mean value) to the grid mean value with 
the help of physical and mathematical concepts

● Closure assumptions to find a sufficient small 
number of equations, that govern the statistics of 
the system 
– Closure assumptions must not lose the predictability 

of large – scale fields.

– Closure assumptions must be valid quasi – 
universally.

(Arakawa, 1993)



  

Convection parameterisations

Thermodynamics of convection (I)

Fundamentals of Convection Parameterisations

● 2 main equations:
– one for large – scale potential temperature

– one for the water vapour budget

c p [ ∂∂ t v⋅∇ 
∂

∂ p ]=[ p0

p ]
R /cp

Q1

L [ ∂q∂ t v⋅∇ q
∂q
∂ p ]=−Q2

Q
1
 = apparent heat source

Q
2
 = apparent moisture sink
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Thermodynamics of convection (II)

Fundamentals of Convection Parameterisations

● Q
1
 and Q

2
 contain grid scale and subgrid scale 

processes
● with some simplifications:

Q1C≡Q1−Q R=L C−
∂ ' s '
∂ p

−Q2=−L C−
∂ ' Lq '

∂ p

Q
R

= radiation heating
Q

1C 
= part of Q

1
 due to 

condensation 
and transport 
processes

C = rate of net 
condensation

s = dry static energy
= c

p
T + gz 

h = moist static energy
= s + L qQ1C−Q2=

−∂ ' h '
∂ p
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Thermodynamics of convection (III)

Fundamentals of Convection Parameterisations

● simplifying the effects of the large scale (known):

● 2 equations, 4 unknown quantities:

=> Closure assumptions required!

∂T
∂ t

=∂T∂ t LS
1
c p
Q1

∂q
∂ t

=∂q∂ t LS−
1
L
Q2

∂T∂ t LS=− pp0

R /c p

v⋅∇  
∂

∂ p with:

∂ q∂ t LS=−v⋅∇ q
∂q
∂ p with:

∂T
∂ t
,Q1,

∂q
∂ t
,Q2,
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Closure assumptions (I)

Closures and Examples

● mainly 3 commonly used types: 
(classification after Arakawa (1993))

– type I: coupling net warming and net moistening, constraints 
on the large – scale states

– type II: coupling of Q
1
 and Q

2
, constraints on the moist – 

convective processes

– type IV: coupling of Q
1
 and Q

2
 with the large scale terms, i.e. 

a direct coupling between large – scale and moist – 
convective processes 

∂T
∂ t
,
∂q
∂ t

Q1,Q2,∂T∂ t LS ,
∂ q
∂ t LS

Q1,Q2
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Example1: Large – scale condensation (I)

● example of type I closure:

– if is true, then 

– differentiating in time yields a relation of        and 

∂q∂ t LS∂ qsat∂ t 
LS

=[ c pL  ∂T∂ t LS ]
q−qsat=0∀ t

with:≡Lc p 
∂qsat
∂T 

p

∂q
∂ t

∂qsat
∂ t

Closures and Examples
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● no convective transport, no radiative heating 

=> all changes in temperature due to changes in 
condensation

● example of type II closure:

● using the previous equations and the type I closure:

Q1−Q2=0

Example1: Large – scale condensation (II)

Q1Q2=∂q∂ t LS−c p ∂T∂ t 
LS

Q1=Q2=
1

1 [∂q∂ t LS−c p ∂T∂ t 
LS
]

Closures and Examples
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● resulting equations:

Example1: Large – scale condensation (III)

∂T
∂ t

=
1

1

1
c p 

∂h
∂ t LS

∂q
∂ t

=


1
1
L ∂h∂ t LS

with:∂h∂ t LS≡c p 
∂T
∂ t 

LS

L ∂q∂ t LS

Closures and Examples
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Example2: Moist convective adjustment (I)

● “simplest” convection scheme (still used in GCMs)   
(Manabe et al., 1965)

● applied in conditionally unstable regions (Γ > Γ
m
) 

and super – saturated regions
– controversial, since subgrid scale clouds require 100% RH for grid box mean

● adjusts moisture to saturation and Γ  to the moist 
adiabatic lapse rate (Γ

m
)

● constraint: energy conservation in the whole 
convective reagion:

– type II closure
∫
pT

pB

Q1−Q2dp=0

Closures and Examples
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Example2: Moist convective adjustment (II)

● if the 2 following statements hold:
– a) (as previously):

– b)

● then and

● time derivatives of these 2 equations yield a 
closure of type I

∂ q∂ t LS∂ qsat∂ t 
LS

=[ c pL  ∂T∂ t LS ]
∂
∂ p 

∂ hsat
∂ t 

LS

= ∂
∂ p [ 1

1
c p ∂T∂ t LS ]0

q−qsat=0
∂hsat
∂ p

=0

used: 
∂hsat
∂ p

0asm

Closures and Examples
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Example2: Moist convective adjustment (III)

● energy conservation implying mass conservation 
can be rewritten:

● using similar steps as in Example1 results in:

∫
pT

pB

Q1−Q2dp=0 〚Q1〛−〚Q2〛=0
 denote the vertical mean with respect to mass〚〛

∂T
∂ t

=
1

1

1
c p 〚

∂h
∂ t LS〛

∂q
∂ t

=


1

1
L 〚∂h∂ t LS〛

with :∂h∂ t LS≡c p 
∂T
∂ t 

LS

L∂ q∂ t LS

Closures and Examples
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Example2: Moist convective adjustment (IV)

● Equations as for Example1, but including the 
vertical mean over the convective layer

● 2 conditions (used in the closure assumptions) 
must be fulfilled for convection to occur:

=> Concept of large – scale forcing

∂

∂ p [1c p∂T∂ t 
LS ]0

∂q∂ t LS=−
c p
L ∂T∂ t 

LS

0

Closures and Examples
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Example2: Moist convective adjustment (V)

● can create unrealisitcally high rain rates due to 
the saturation requirement

● some modifications like a weaker adjustment (at 
e.g. 80% RH)

● convection occurs only in a fraction of the grid 
cell

● prototype of a large family of convection 
schemes, including Arakawa – Schubert, Hack, 
Betts – Miller, ......

Closures and Examples
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Example3: Kuo's scheme (I)

Q1=1−b
T c−T

〚T c−T 〛
L〚∂q∂ t LS〛

L ∂q∂ t LS−Q2=b
qc−q

〚qc−q 〛
L〚∂q∂ t LS〛

● used in NWP models (after Kuo, 1974) with 
some modfications

● modified adjustment scheme

T
c

= temperature of 
a model cloud

q
c

= humidity of a 
model cloud

b = moistening 
parameter

= vertical mean 
over the 
convective layer

〚〛

Closures and Examples
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Example3: Kuo's scheme (II)

Q1

c p
=T T c−T 

∂q∂ t LS−
Q2

L
=qqc−q

● derived from the closure assumptions:

● type IV closure

● α
T
 and α

q
 can be determined from 

and are independent of height

−
Q2

L
=q qc−qor

〚Q1〛−〚Q2〛=0

Closures and Examples
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Trends in 
Convection scheme

developments

Trends in Convection Schemes
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Quasi - Equilibrium

Trends in Convection Schemes

● Moist – convective quasi equilibrium as the 
basis for parameterisability (Arakawa, 2004) 

– Agreements:
● Under which conditions are what quantities 

suitable for quasi – equilibrium for the prediction 
of weather and climate ?

● usage of cloud work functions  
(rate of convective kinetic energy per unit cloud – base mass flux)

● usage of CAPE (convective available potential energy)

CAPE=∫
z1

LNB

g
−a


dz

with: z
1
 = LFC 

   (level of free convection) 
             or

 z
1
 = surface

LNB = level of neutral buoyancy
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Quasi - Equilibrium

Trends in Convection Schemes

– Quasi – equilibrium concept implies:
● condensation strongly coupled with the dynamical 

processes => condensational heat is not an 
external heat source to the dynamics

● condensational heat not necessarily produces 
CAPE, since heating and temperature are not 
correlated by default

● cumulus heating = cumulus adjustment 
  = passive response to other processes



  

Convection parameterisations

Closures

Trends in Convection Schemes

● Diagnostic closure schemes
– based on large – scale moisture or mass 

convergence  or vertical advection of moisture at the 
same time(step)

– based on quasi – equilibrium
● relate cumulus effects with large – scale processes at the 

same instant
● explicit definition of moist – convective equilibrium states 

and a sequence of equilibria with the large – scale
– large – scale -> deviations from equilibrium
– cumulus convection -> restoration of equilibrium
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Closures

Trends in Convection Schemes

● (Virtually) Instantaneous Adjustment Schemes
– explicit adjustment towards equilibrium state with 

implicit forcing
● adjustment occurs in the same timestep

● Relaxed and/or triggered Adjustment Schemes
– as above, but:

● adjustment occurs only partially (relaxed) or only if certain 
conditions are fulfilled (triggered)

● with short relaxation times similar to instantaneous 
adjustment schemes 

– more generated disequilibrium -> more convection
● with long relaxation times

– more existing disequilibrium -> more convection
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Closures

Trends in Convection Schemes

● Prognostic closure schemes
– adjustment by time integration of explicitly formulated 

transient processes

● Stochastic closure schemes
– introducing stochastic elements in other closure 

types => increasing variance of precipitation
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Fr
o
m
 T
he

o
ry

 t
o
 p

ra
xi
s

Convection simulation

∂T
∂ t

=
1

1

1
c p 

∂h
∂ t LS

∂q
∂ t

=


1

1
L ∂h∂ t LS

with:∂h∂ t LS≡c p
∂T
∂ t 

LS

L ∂q∂ t LS
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Simulating convection

Convection simulation
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Single column model

Convection simulation

● single column model using a convection 
parameterisation

● Zhang – McFarlane convection scheme (Atmosphere – Ocean,1995)

● driven by external data from a 3D model (more a 
diagnostic calculation of convection)
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Case1: 
Mid – latitude continental convection

Convection simulation
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Case1: 
Mid – latitude continental convection

Convection simulation

● summer conditions over southern Germany
● one month of data

time (days)
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Case1: 
Mid – latitude continental convection

Convection simulation

vertical profiles (30 days time averaged)
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Case1: 
Mid – latitude continental convection

Convection simulation

● 2 completely different periods
● What is responsible for this ?

time (days)
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Case1: 
2 different periods

Convection simulation

● absolute Temperature ?
● Profile and Lapse rate ?
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Case1: 
2 different periods

Convection simulation

● absolute Temperature ?
● Profile and Lapse rate ?

             6.5°C / km                                 7°C / km    
    (typical moist adiabatic lapse rate 6.5°C/km)
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Case1: 
2 different periods

Convection simulation

● absolute Temperature ?
● Profile and Lapse rate ?

             6.5°C / km                                 7°C / km    
    (typical moist adiabatic lapse rate 6.5°C/km)

less 

conditionally 

stable
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Case1: 
2 different periods

Convection simulation

● Moisture?
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Case1: 
2 different periods

Convection simulation

● Moisture?

● substantially enhanced mid and upper 
tropospheric humidity  

(with similar or even higher T, RH is higher because of higher specific humidity)
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Case1: 
2 different periods

Convection simulation

● Moisture?

● substantially enhanced mid and upper 
tropospheric humidity  

(with similar or even higher T, RH is higher because of higher specific humidity)

less 

conditionally 

stable
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Case1: 
2 different periods

Convection simulation

● Both temperature profile (lapse rate) and 
enhanced moisture in the middle and upper 
troposphere destabilise the atmosphere and 
favour convective activity in the 2nd period

● CAPE as a measure for this:
– 1st period: ca.   62 J/kg

– 2nd period: ca. 880 J/kg

● Convective precipitation:
– 1st period: 0.2 mm/day

– 2nd period: 8.2 mm/day



  

Convection parameterisations

Case1: 
2nd period – convective “adjustment”

Convection simulation

● convection peaks at 10 km

● warming of the whole 
troposphere (maximum 
warming at 5 km)

● substantial cooling of the 
surface by precipitation 
and downdrafts
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Case1: 
2nd period – convective “adjustment”

Convection simulation

● drying of the lower and 
middle troposphere by 
production of cloud 
water and precipitation 
and subsidence for dry 
upper tropospheric air
– compensated partly by 

evaporation of falling 
precipitation into sub –  
saturated regions

● slight moistening at 9 
km (upper troposphere)
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Case2: 
Tropical continental convection

Convection simulation
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Case2: 
Tropical continental convection

Convection simulation

● conditions over Central Africa

● daily convective activity of similar strength

● shorter convective events

time (days)
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Case2: 
Differences between Africa and Germany

Convection simulation

● absolute Temperature ?
● Profile and Lapse rate ?
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Case2: 
2 different regions

Convection simulation

● absolute Temperature ?

● Profile and Lapse rate ?

       6.5°C - 7°C / km                     6°C - 6.5°C / km 
● higher tropopause

● warmer lower and middle troposphere
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Case2: 
2 different regions

Convection simulation

● absolute Temperature ?

● Profile and Lapse rate ?

       6.5°C - 7°C / km                     6°C - 6.5°C / km 
● higher tropopause

● warmer lower and middle troposphere

More

conditionally 

stable
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Case2: 
2 different regions

Convection simulation

● Moisture?
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Case2: 
2 different regions

Convection simulation

● Moisture?

● substantially enhanced mid and upper 
tropospheric humidity  

(with substantially higher T, RH is higher because of substantially enhanced  specific humidity)
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Case2: 
2 different regions

Convection simulation

● Moisture?

● substantially enhanced mid and upper 
tropospheric humidity  

(with substantially higher T, RH is higher because of substantially enhanced  specific humidity)

less 

conditionally 

stable
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Case2: 
2 different regions

Convection simulation

● Substantially enhanced moisture in the middle and 
upper troposphere destabilise the atmosphere and 
favour convective activity

● CAPE:

– Germany: ca. 355 J/kg

– Africa: ca. 509 J/kg
● Convective precipitation:

– Germany: 4.4 mm/day

– Africa: 5.5 mm/day
● Germany has more episodic convective activity  

(determined by the stronger large – scale forcing of synoptic weather systems)
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Case3: 
Tropical oceanic convection

Convection simulation
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Case3: 
Tropical oceanic convection

Convection simulation

● conditions over the Pacific warm pool

● daily convection, episodic very strong events

● very short convective peaks, but almost continuous rain 

time (days)
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Case3: 
Differences between land and ocean

Convection simulation

● absolute Temperature ?
● Profile and Lapse rate ?
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Case3: 
land and ocean

Convection simulation

● absolute Temperature ?

● Profile and Lapse rate ?

         6°C - 6.5°C / km                   5.5°C - 6°C / km 
● slightly warmer lower and middle troposphere
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Case3: 
land and ocean

Convection simulation

● absolute Temperature ?

● Profile and Lapse rate ?

         6°C - 6.5°C / km                   5.5°C - 6°C / km 
● slightly warmer lower and middle troposphere

slightly M
ore

conditionally 

stable
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Case3: 
land and ocean

Convection simulation

● Moisture?
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Case3: 
land and ocean

Convection simulation

● Moisture?

● enhanced mid and upper tropospheric humidity  

(with substantially higher T, RH is higher because of substantially enhanced  specific humidity)
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Case3: 
land and ocean

Convection simulation

● Moisture?

● enhanced mid and upper tropospheric humidity  

(with substantially higher T, RH is higher because of substantially enhanced  specific humidity)

less 

conditionally 

stable
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Case3: 
land and ocean

Convection simulation

● Enhanced moisture in the middle and upper troposphere 
destabilise the atmosphere and favour convective activity 
balancing the more stable temperature profile

● CAPE:

– Africa: ca. 509 J/kg

– Warm Pool:ca. 512 J/kg
● Convective precipitation:

– Africa: 5.5 mm/day

– Warm Pool:8.2 mm/day
● higher available moisture causes more precipitation
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One scheme for all regimes

Convection simulation

● A convection parameterisation must be applicable:

– for oceanic and continental convection
– for tropical and mid – latitude convection
– for low and high moisture regimes
– for stable and less stable temperature profiles

   => forcing from the large – scale processes    
● redistributes moisture and energy
● provides “adjusting” tendencies for T and q 

=> feedback to the large – scale processes
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Summary (I)

● Convection is impacted by the large – scale 
and influences the large – scale itself.

● Parameterisations relate the large – scale state 
to the subgrid – scale process by using closure 
assumptions.
– A variety of closure assumptions (different types and 

formulations) is used in present parameterisations.

● Convection schemes “adjust” temperature and 
profile to stabilise the atmosphere and to reach 
a quasi – equilibrium state.

Summary
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Summary (II)

● The forcing for convection can be very different 
dependent on location.

● Single column model shows that there is a 
strong response to the external forcing:
– strong forcing (destabilisation) results in strong 

convection (and therefore stronger adjustment)

– CAPE is a useful quantity for theoretical 
considerations of convection and its strength

● One convection parameterisation has been 
presented, others are different ........

Summary
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Convection 
schemes cannot 
be so different, 

can they ?

Summary

Well, we will see 
in the next part 
of the lecture.....


