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Vectors: definitions and superposition
principle
Vector A is a coordinate-independent (invariant) object
having a magnitude |A| and a direction. Alternative
notation A. Adding/subtracting vectors:

Vector algebra

A

Superposition principle: Linear combination of vectors is
a vector.



Products of vectors

Scalar product of two vectors:
Projection of one vector onto another:

Vector algebra

A-B:= |A||B|cos¢as =B - A,
where ¢ 45 is an included angle between the two.

Vector product of two vectors:

ANB :=isg|A||B|singass=—BAA,

where 745 is a unit vector, |7AB| =1, perpendicular to both
A and B, with the orientation of a right-handed screw
rotated from A toward B.

x is an alternative notation for A .

Distributive properties:
(A+B)-C=A-C+B-C,(A+B)AC=AANC+BAC.



Vectors in Cartesian coordinates

Cartesian coordinates: defined by a right-hand triad of
mutually orthogonal unit vectors forming a basis:

(27 ya 2) = (217 227 )'\(3)7

Vector algebra



Tensor notation and Kronecker delta

(X, y,2) — Xx;, i =1,2,3. Ortho-normality of the basis:
XX =9j,

where §;; is Kronecker delta-symbol, an invariant tensor of
second rank (3 x 3 unit diagonal matrix):

5i— 1, ifi=],
71 0, ifi#].
The components V; of a vector V are given by its
projections on the axes V; = V - X:

3
V= V1)A(1 + Vg)'\(g + V3)A(3 = Z V,)A(,
i=1
Einstein’s convention:
53 . A; B = A; B; (self-repeating index is “dumb”).

Vector algebra



Vector products by Levi-Civita tensor
Formula for the vector product:
xyz
Aq Ay As
B B; B,

AANB=

Tensor notation (with Einstein’s convention):
(A A B)I = EijkAjBka
where

—1, ifjjk = 132,321,213

1, ifjk = 123,231,312
€jjk =
0, otherwise

Magic identity:

€ijk€kim = Oit0jm — dim0jr- (1)

Vector algebra



Scalar, vector, and tensor fields

Any point in space is given by its radius-vector

X=xX+yy+zz e
A field is an object defined at any point of space

(x,y,2) = (X1, X2, x3) at any moment of time ¢, i.e. a

function of x and t.

Different types of fields:

» scalar f(x, t),
» vector v(x,t),
» tensor tj(x, t)

The fields are dependent variables, and x, y,z and t -
independent variables.

Physical examples: scalar fields - temperature, density,
pressure, geopotential, vector fields - velocity, electric and
magnetic fields, tensor fields - stresses, gravitational field.



Differential operations on scalar fields

Partial derivatives:

if P im f(X + AX? .y7 Z) - f(X7 y, Z) scalar and vector fields
OX  Ax—0 Ax ;

and similar for other independent variables. Differential
operator nabla:

Gradient of a scalar field: the vector field

Jof . of _Of
f=Vf=X— — —
grad v xaeryaijzaz
Heuristic meaning: a vector giving direction and rate of
fastest increase of the function f.

Differential operations on



Visualizing gradient in 2D
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From left to right: 2D relief, its contour map, and its
gradient. Graphics by Mathematica®©
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Differential operations with vectors

» Scalar product: divergence

Differential operations on

8 V scalar and vector fields
divv =V - v(x) =
(x) ax
» Vector product: curl
av,
curlv = V A v(x); (curlv), = e,-jk—k
0xj

» Tensor product:

ov

Vovix), (Vev)= Ix
j

Forany v, f: diveurlv =0, curlgrad f = 0,

divgrad f = V?f, V2 = 25 4 85 + 2 - Laplacian.




Visualizing divergence in 2D
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From left to right: vector field v(x, y) =
OVo ovy

and its divergence 5 ‘9"1 + 3 ‘9"2 . The curl 2 (8—)( — 6_y) of

this field is |dent|cally zero. (The field is a gradient of the
previous example.) araphics by Mathematica®
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Visualizing curl in 2D
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From left to right: vector field v(x, y) = (vi(x,y), va(X, y),

and its curl 32 — 1. The divergence 57 + 52 of this

field is |dent|caIIy zero, so the field is a curl of another
vector field. craphics by Mathematica®
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Strain field with non-zero curl and divergence

From left to right: vector field, and its curl and divergence.
Graphics by Mathematica®
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Useful identities

VA(VAV)=V(V V)=V, (2) e
V2
V/\(V/\V):V<2>—(V-V)V, (3)
VI (VAV) = -V (VIAV). (@)

Proofs: using tensor representation (V A v); = €jx0; g,
with shorthand notation 4% = 9;, exploiting the
antisymmetry of ¢, using that §;v; = v;, and applying the
magic formula (1).

Example: proof of (2).

€ikOjekmOVm = (0it0jm — 8imdj1)0;01Vm = 0;0;V; — 0;0;V;.



Integration of a field along a (closed) 1D
contour

Integration in 3D space

|
/ v
x

Summation of the values of the field at the points of the
contour times oriented line element dI = tdl:

?{dl(...),

where t is unit tangent vector, and dl is a length element
along the contour. Positive orientation: anti-clockwise.



Integration of a field over a 2D surface

Summation of the values of the field at the points of the
surface times oriented surface element ds = i ds:

//ds(...)z/sds(...),

where h is unit normal vector. Positive orientation for
closed surfaces: outwards.

Integration in 3D space



Integration of a field over a 3D volume

Summation of the values of the field at the points in the
volume times volume element dV.

///dV(---)E/VdV(..,),
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Linking contour and surface integrations:
Stokes theorem

Integration in 3D space

7{ dl-vix)= [ ds-(V Av(x)). (5)
c Se

Left-hand side: circulation of the vector field over the
contour C. Right-hand side: curl of v integrated over any
surface S¢ having the contour C as a base.



Stokes theorem: the idea of proof

(x.y + dy) Integration in 3D space

Circulation of the vector v = v4 X + voJ over an
elementary contour, with dx — 0, dy — 0, using
first-order Taylor expansions:

vi(X, y)dx + vo(x + dx, y)dy — vi(x,y + dy)dx — vo(x, y)dy
Mg, M
= ox dx dy dy dx dy,

with a z-component of curlv multiplied by the z-oriented
surface element arising in the right-hand side.



Linking surface and volume integrations:
Gauss theorem

Integration in 3D space

ds v(x / dvVV . v(x (6)
Left-hand side: qux of the vector field through the surface
Sy which is a boundary of the volume V. Right-hand
side: volume integral of the divergence of the field.

Important. The theorem is also valid for the scalar field:

ds f(x / dv Vif(x (7)



Gauss theorem: the idea of proof

Vs
‘ Integration in 3D space

Flux of the vector v = v4 X + oy + v32 over a surface of
an elementary volume, taking into account the opposite
orientation of the oriented surface elements:

[V1 (X + dX7y7z) - v1(X7y7 Z)] dydz+
[VZ(va + dy? Z) - VZ(X7y7 Z)] axdz+
[Va(x,y, 2 + d2) = va(x,,2)] dxdly = (% + %2 + %2 ) dx dy.dz



Curvilinear coordinates
A triple of functions X'(x, y, z), i = 1,2,3 < change of
variables (x, y,z) — (X', X2, X3) = (X, Y, Z). Non zero
Jacobian 7J:

axX  ax  ax
Ox o 0z
go|or ov oy OX.Y.2) 4
—|ox 0 oz | = .
bz by bz| 9xYy,Z)
ox o0y 0z

Length element squared (Einstein convention applied):
ds? = dx - dx = dx® + dy? + dz® = g;( X1, Xz, X3)dX'dX/
where the metric tensor
ox 0x oy 9y 0z 0z
9i = axi axi " oxi oxi ~oxi oxi I

N P 8(X,y7z) 2 — 72
o=etor~ (i) =

Volume element:

_ _ 9xy,2)
dV = dxdydz = dedeZ




Vectors in curvilinear coordinates
Coordinate line: two of X; fixed, e.g. i = 2,3, curve

(x =x(X"),y = y(X"), z = 2(X")).
Unit coordinate vectors: unit vectors i; tangent to

respective coordinate lines (not orthogonal, in general).

Any vector F = Friy + Foip + F313

eeeeeeeee



Orthogonal coordinates: scalar and vector
products

Orthogonality of i; < g;j =0, i # j
Scalar product of vectors:

F-G:l:_1é1 +ﬁ2é2+/:_3é3

Orthogonal curvilinear
coordinates

Vector product of vectors:

i i i
FAG= l:_1 /2_2 /A:g .
G G Gs



Orthogonal coordinates: differential
operations

1 8¢i n 1 (9<D’, n 1 acbi
VO OXT T /G 0X2 2 Jgaz X3 2

1 a A g ) a (A g > a <A dg )T
F= L B L)+ 2 (B 9+ 2 (B TE

V9 [8X1 < "V g1 ox2 \' %\ go» ox3 933
\/91 i1 \/92 ip \/93 i3

8X1 8X2 8X3

Fivan Foygez F3v/0s3

V2¢*1 0 \F8<D+6 \F8¢+8 Vg 0o
_\/g ox1 g118X1 0X? Joo OX2 g338X3

Important: axk ;é 0, unlike Cartesian coordinates.

Vo =

1

VAF=—
f




Cylindrical coordinates

0<p<o00,0<p<2m, —00<Z2< 40

Cylindrical Coordinates: Point and Unit Vectors
z Py

z $ p2=x2 +y?
A = \,‘ 2 2
.a!s P(p,$,2z) e Y
P x= pcos( Gyiindrical coordinates
y= psind
i =tan'¥
R . %

Length element:

ds® = dp? + p?d¢? + dz? =

Gp =1, Gos =%, Gz =1 = VG =p.



Spherical coordinates

0<r<oo,0<<m,0<p<2r

Spherical coordinates

Length element:

ds? = dr? + r?d6? + r?sin? 0d¢? =

er:1a 999:r27 g¢¢:r28in297 _>\/§:r28in0‘



Fourier series for periodic functions
Consider f(x) = f(x + 27), a periodic smooth function on
the interval [0, 27]. Fourier series:

(e}

f(x) = [ancos(nx) + bysin(nx)].
n=0

The expansion is unique due to ortogonality of the basis
functions:

Fourier analysis

2 27
dx cos(nx)cos(mx) = dx sin(nx)sin(mx) = wénm,
0 0
2
dx sin(nx)cos(mx) = 0.
0
The coefficients of expansion, thus, are uniquely defined:
1 [em 1 2w

an=— dx f(x) cos(nx), bp=— dx f(x) sin(nx)
™ Jo 7™ Jo



Complex exponential form
™ = cos(nx) + isin(nx) =

cos(nx) = , sin(nx) =

2 2i

Hence

2

f(x) = Z Me’”’( +cc= ZA,,e’”X, A=A,

n=0
Orthogonality:
27 ) )
dX elnxe_lmx — 27T5nm
0
Expression for the complex coefficients
2

Ay = T dx f(x) =™
27T 0

einx + e—inx e,inx _ e—inx

Fourier analysis



Fourier integral

Fourier series on arbitrary interval L: sin(nx), cos(nx) —
sin(27nx), cos(2nx), [Z™ dx — [o dx, normalization

1 1 fi . o0 ]

2= — 1 Inthelimit L — o001 35— 7
Fourier-transformation and its inverse:

= / dk F(k)e*, F(k) = / dx f(x) e
Based on OrthOgonaIity: Fourier analysis
/ dx e e~ = §(k — I),

where §(x) - Dirac’s delta-function, continuous analog of
Kronecker’s d,m, with properties:

/dx5 / dy 5(x — y) F(y) = F(x).



Multiple variables and differentiation
f(x,y,z) = / dk dl dm F(k, I, m) e/(kx+ly+m2),

F(k, 1, m) = / o dy 0z F(x, y, 2) e~ ket +m2).

Physical space (x, y,z) — (k, I, m), Fourier space.
Radius-vector x — k, "wavevector",

Fourier analysis

f(x) = /_ ~ dk F(k) e’k

Main advantage: differentiation in physical space —
multiplication by the corresponding component of the
wavevector in Fourier space 2 — ik:

9 fx) = / ~ dk ik F(k) e*x

ox o ’

and similarly for other variables.



General first-order ODE
Notation:
/ 1 d2 ()
(...) = (...) TR

Typical equation

do..)
d

y'(x)=F(x,y)
Geometric interpretation: field of directions in the x, y
plane determined by their slopes F(x, y)

vy ot

| — e N ]
Yo \ First-order ODE

o

x

Integral curves: ®(x, y, C), where C - integration
constants determined by b.c. at point xp: y(Xo) = Yo.



Linear first-order ODE

General linear inhomogeneous equation:

y'(x) + a(x)y(x) = b(x).

Homogeneous equation <> b(x) = 0.
General solution:

v = o ([ oo+ )

where



Linear second-order ODE

General inhomogeneous equation:

y'(x) + a(x)y’(x) + b(x)y(x) = ¢(x). (8)

General solution: sum of a particular solution of (8) and of
a general solution of the corresponding homogeneous
equation

y"(x) + a(x)y'(x) + b(x)y(x) = 0. 9)
Self-adjoint form of (9):
(P() Y'(x))" + a(x)y(x) =0, (10)

where
p(x) = e/ ¥ g(x) = b(x) p(x). (11)

inear second-order ODE



General solution of homogeneous equation
and boundary conditions

If one solution of (9) y1(x) is known, then general solution
is:

y(x) = y1(x) <c1 + G / dx M) P
1

where Cq » - integration constants.
Can be determined from boundary conditions (b.c.).
TWO typ|Ca| SetS Of bC Linear second-order ODE

» At a given point (initial-value problem):
y(xo) = A, y'(x0) = B,

» At the boundary of the interval (boundary-value
problem): y(x1) = A, y(x2) = B



General solution of homogeneous equation

Fundamental system of solutions of (9): a pair of linearly
independent particular solutions y o(x) with

W(x) = y1(x)ya(x) = y2(x)y1(x) # 0, (13)

where W is Wronskian.
General solution of (8):

X X ond-order ODE
y(x) = Ciy1(x)+Coya(x +}’2/de1 /de2 Q(;?Q‘"

(14)
where Cj » - integration constants.



Sturm-Liouville problem

Linear problem on eigenvalues A and eigenfunctions ¢,:

(p(x) /(X)) + q(x)p(x) = AB(x)¢

on the interval a < x < b, with general homogeneous

ar¢'(a) + fip(a) = 0, azg'(b) + B26(b) = 0,

or periodic b.c.:

Eigenvalues (spectrum) A\, Ay < X\ < ...
» Real
» n = number of zeros of ¢, in [a, b],

» Rank (number of different eigenfunctions per
eigenvalue): 1 for (16), 2 for (17)

(15)

(16)

(17)

Eigenfunctions: orthogonal basis of functions in [a, b].

inear second-order ODE



Bessel equation and Bessel functions

ye e (125 )y —o. (9

Fundamental system of solutions (eigenfunctions with
integer eigenvalues m = 0,1,2, ... in the interval
0 < x < 00): Bessel and Neumann functions Jpy, and Np:

Bessel functions
1

-0.5
-1
-1.5

Hankel functions: Hy2(x) = Jm(x) % iNm(x).




Hypergeometric equations and functions
Gauss’s equation:
x (x=1)y"(x)+[c—(a+b+1)x]y'(x)—aby(x) =0 (19)
Fundamental solution: hypergeometric function given by
the hypergeometric series

y(x) = F(a,b,c; x) = 1+a—b +21| a(atgc)f(f;r 1)x2+...

(20)
Second solution - by the receipt given above.
Kummer’s equation:

xy"(x)+(b—x)y'(x) —ay(x) =0 (21) e
Fundamental solution: confluent hypergeometric function
alm

y(x) = M(a,b; x) = 1+Z O a" = a(a+1)...(a+n—1).

(22)
Second solution U(a, b; x) - by the receipt above.



Example of linear PDE: wave equation

us + cuy = 0. (23)

u(x,t)in —oo < x < +oo,and t: 0 < t < 0o, ¢ = const.

Notation: (...)y = 2=) (L) = &)
Method of solution 1: change of variables:

(Xv t) - (€+7 57) = (X+ Cta X — Ct) . (24)
08+ 08y
ou ou ou ou ou ou
oi=(ae ae) m-ae tar @
ut+<:ux:0—>2c:ﬂ =0 = u=u(). (27)
08+

u determined by initial conditions:

C.l.: Ui—o = Up(X) = u = up(x — ct). (28)

Linear first-order PDE



Spatio-temporal evolution of the initial
localised perturbation
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Solution in the domain —5 < x < 5,0 < t < 5. Initial
Gaussian perturbation propagates along a characteristic
line with a SlOpe C. Graphics by Mathematica®




Solution by Fourier method

Fourier transformation:
u(x, t) /dkdwe(kx “Diy(k,w) +c.c..  (29)
Inverse:

O(k,w) = 217 / dx dte ' =wy(x, t) + c.c..  (30)

Fourier-modes: U(k,w)e(®™=«1) «; - elementary waves.
Ut + cuy =0 = i(kc — w) b(k,w), U(k,w) #0=(31)
General solution:

u(x, t) / dk e =D i(k) + c.c. (32)

(k) - Fourier-transform of u(x, 0).

Linear first-order PDE



Quasi-linear and hyperbolic systems
Quasi-linear system of 1st-order PDE:

o Vi(x,t) + My (V) oxVj(x,t) = Ri(V), i,j=1,2,...N
(@) - |eft eigenvectors, £() - left eigenvalues of M,

a=1,2,..:
1) . M =¢@ @) = (34)

1) (3 V + M- V) = [ (atv + £@p, V) . (35)

Characteristic directions — characteristic curves:

9 — ¢(@), Advection along a characteristic:
.av .
=" _ (@) (@) .y = (o).
= (at+5 ax) V.= 1. V=1 .R (36)

Les PDE became a system of ODE!

Hyperbolic system: if M has N real and different
eigenvalues £(@. If I(*) = const — Riemann variables
(which become invariants if R = 0):

@ =)y, {9 =R (37)

Quasi-linear first-order
systems



(Quasi-) linear second-order PDEs

General linear 2nd order equation:

Plx.Y) 5, O1(X.y) 9%f(x, y)

31176)(2 a2 oxy a2 dy?

= R(x,y)

(38)
aj = ajj(x,y). Quasi-linear equation: R and a; are also
functions of f.

» Hyperbolic: aj1ax — @2, < 0, ¥(x, y)
» Parabolic: ajjape — a3, = 0, V(x, y)
» Elliptic: aj1a0 — a?z >0, V(x,y)

Classification of linear 2nd
order PDE



Second-order 1D wave equation

Uit — C2Uyy = 0. (39)

Same change of independent variables as in the
1st-order equation:

(x, 1) = (&4, &) = (x+ct, x —ct)

U Py =0 542U _o o o)
it XX — 6§+8§, =
General solution:
U=u_(&-)+us(éy), (41)

where u_ + u; - arbitrary functions, to be determined
from initial conditions. (2nd order = 2 initial conditions
required.)

Hyperbolic equations: wave
quation
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1D heat equation

Ut — k2Uxx = 0, k = const.
Solution by Fourier method:

u(x, ) / dk &0k, ). —

(K, t) + K2 k2 U(k,t) =0, x = const. —
(k. t) = e K i(k, 0),
where
a(k, 0) = / dx & Uy(x), Uop(x) = u(x, 0)
Hence

u(x, 1) = / dk dx’ up(x') kX g 1%

2k2

X X/)Z

U(X, t)OC\/?\/dX/UO(X/) _(4&2t



Spatio-temporal evolution of the initial
localised perturbation

-5

Solution in the domain —5 < x < 5, 0 < t < 5. Dispersion
of initial Gaussian perturbation . Graphics by Mathematica®©
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2D Laplace equation
_ Pixy) | PH(x.y)

2 —
Vef(x,y) 2 oz 0. (49)

In polar coordinates (r, ¢):
02f(r,¢) 10f(r, ¢) 1 0%f(r, ¢) _0.  (50)

or? rar 2 9¢?
Separation of variables: f(r, ¢) = 3>.°°_, ¥(r)e™ +c.c., —
() +r " F(r)—mPr2Fr)=0, (..) = d(..)/dr. (51)

General solution of (51): ( Y=Cirm+ Cor ™. Atm#0
singular at 0 and/or co. Solution in a disk r = ry with b.c.

F(r, &) —ry = fo(8) = Yoo fn€™ + c.C.:

oo m
ro)=>Y fn (rr> e +c.c..
m=0 0

Elliptic equations



Method of Green’s functions

General inhomogeneous linear problem:
LoF=R (52)

Here £ is a linear operator acting on (a set of) function(s)
F, the unknowns, R is a known source/forcing term.
Homogeneous problem: R = 0.

Inverse operator £~ - solution of the problem:

Lol =1, (53)

where Z is unity in functional space. General solution of
(52): A
F=LT"oR+ F, (54)

where F; - solution of the homogeneous problem.
PDEs context:
Inverse operator = Green’s function, Z = delta function.



Poisson equation

2 2
(52 * 52 ) F6N =R 9

Solution in terms of Green’s function G(x — x’,y — y'):

F(x.y) = //dxdyg(x X,y —y)R(X,y), (56)

where

82 82 5 / 5 1\ — (5 /

(5 + 2 ) GOX—Xoy=) = Bx=x)iy—) = 8xx'
(57)

Calculation of G in the whole x — y plane: put the origin at
x’, use translational and rotational invariance =
G = G(|x|), and hence VG | x,use V2... =V - (V..),
integrate both sides of (57) over a circle around the origin,
apply Gauss theorem to the left-hand side, and get:

G(x) = 5-log x| (58)




Green’s function for 1D wave equation

) Gx—x,t—t)=6(x—x")o(t—t) (59)

Fourier-transformation

+o00

g(x—x', t—t") = dkdwg ,w) e hkx=x)—w(t=t))

Transformed equation:

<c2k2 . wz) Glk,w)=1,= (60)

, , 1 400 ei(k(x—x’)—w(t—t’))
g(X_X7t_t):(27T)2//OO dkdw C2k2—w2 .
(61)

Integral is singular at wy = +c k - how to proceed?




Calculation in the complex w-plane: general
idea

Integral over the real w- axis [, dw (...) is equal to integral
over the contour C in complex w plane.

idw(...)E/Rdw(...)—i—/Adw(...)

where C = R + A, A: a semi-circle in the complex plane
ending at o0 on R, if [, dw(...) = 0, and situated either
in upper or in lower half-plane.



Calculation in the complex w-plane: residue
theorem

f(z): function of complex variable z, with a simple pole
f oc -1~ inside the contour C .

5r7 .921(2) = iml (2~ Of(2)

Denominator in (61): J% (w%w — ﬁ) - a pair of poles
at w = wq = +ck. In order to apply the theorem, they
should be understood as w4 = lim|__,, (w+ + ie), where
the sign of ¢ is to be determined.



Causality principle

Causality: reaction after the action = Green’s function
# 0only whent—t > 0.

At the semicircle of radius R — oc:

w = Re®, dw = iRd®, where @ is the polar angle. The
denominator of the w- integral in (61) ~ R2. If numerator
is bounded, which depends on the sign of the exponent,
and is true for the lower (upper) semicircle if t —t' > 0
(t — ' < 0), the integral over semicircle oc %], — 0.
Correspondingly, if e < 0 integral # 0 only for t — ' > 0,
and is equal to

G(x—x' t—t') =

i eik((x—x)—c(i—t) _ gik((x—x)+c(t=t)
271'/00 dk 2ck



Further calculation

By symmetry in k — —k (62) becomes:

k =
47 c d

1 [T sin(k[(x — x") — c(t — t')]) — sin (k[(x — x’) + c(t = t))])
1 / .

—0o0

4Lc (sign ([(x — x") + c(t — t')]) — sign ([(x — x") — c(t — ')])),

where sign(A) =1,ifA> 0;,=—1,iffA<0;=0,ifA=0.
The last integral is calculated in the complex k-plane as
eikA

the real part of [*_dk £
The Green’s function is G(x — X', t — ') = 5, if t > t, and
—c(t—t) < (x—x") < c(t—t), and zero otherwise.
Nonzero response only in the part of the (¢, x)- plane
between the characteristics x + ¢t <» no response faster
then the speed of waves c.
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