Wave and Vortex Motions and Instabilities in Rotating Shallow Water Model

V. Zeitlin

M1 MOCIS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Rotating Shallow Water (RSW) model

Derivation Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and mod

Parent equations

Fluid with constant density ρ_0 with a free surface \leftrightarrow single isopycnal, simplest stratification. Thin layer \rightarrow columnar motion \equiv horizontal velocity $\mathbf{v}_h = \mathbf{v}_h(x, y, t)$. Hydrostatic equations, $\mathbf{v} = \mathbf{v}_h + \mathbf{\hat{z}}w$:

$$\frac{\partial \mathbf{v}_h}{\partial t} + \mathbf{v}_h \cdot \nabla \mathbf{v}_h + f\hat{z} \wedge \mathbf{v}_h = -\frac{\nabla_h P}{\rho}, \quad \nabla_h = (\partial_x, \partial_y)$$

$$oldsymbol{
abla}\cdotoldsymbol{v}=0,\quad oldsymbol{g}=-rac{\partial_{Z}oldsymbol{arphi}}{
ho}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model Rossby waves and barotropic instability

Boundary conditions

Horizontal boundary conditions: Periodic, decay, or other

Vertical kinematic boundary conditions:

Free surface
$$z = h(x, y, t)$$
:

$$|w|_{z=h} = \frac{dh}{dt} = \partial_t h + \mathbf{v}_h \cdot \nabla_h h.$$

Meaning: material surface made of fluid parcels.

Flat bottom:

$$w|_{z=0}=0.$$

Meaning: non-penetration through the boundary.

Vertical dynamic boundary condition: Continuity of pressure: $P|_{z=h} = P_0 = \text{const.}$

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model Rossby waves and

Eliminating *P* and *w*

Integrating hydrostatic equation:

$$P(\mathbf{x},\mathbf{y},\mathbf{z},t) = -\rho_0 \, \mathbf{g} \, \mathbf{z} + \mathcal{P}(\mathbf{x},\mathbf{y},t),$$

 $\mathcal{P}(x, y, t)$ - integration "constant". Dynamic boundary condition: $\mathcal{P}(x, y, t) = \rho_0 gh(x, y, t) + P_0$.

Integrating continuity equation:

$$abla_h oldsymbol{v}_h(x,y,t) + \partial_z oldsymbol{w}(x,y,z,t) = \mathbf{0}
ightarrow$$

$$\boldsymbol{w} = -\boldsymbol{z} \, \boldsymbol{\nabla}_h \boldsymbol{v}_h(\boldsymbol{x}, \boldsymbol{y}, t) + \mathcal{W}(\boldsymbol{x}, \boldsymbol{y}, t).$$

W(x, y, t) - integration "constant". Bottom boundary condition: W(x, y, t) = 0.

Kinematic boundary condition at the surface:

$$w|_{z=h} = -h \nabla_h \boldsymbol{v}_h(x, y, t) = \partial_t h + \boldsymbol{v}_h \cdot \nabla_h h.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model Rossby waves and barotropic instability

Rotating shallow water (Saint-Venant) equations

$$\partial_t \mathbf{v}_h + \mathbf{v}_h \cdot \nabla \mathbf{v}_h + f \hat{\mathbf{z}} \wedge \mathbf{v}_h + g \nabla h = 0, \qquad (1)$$

$$\partial_t h + \nabla \cdot (\mathbf{v}_h h) = 0, \qquad (2)$$

Meaning: horizontal motion of columns of fluid of variable depth.

Rotating Shallow Water (RSW) model

Derivation

Inertia-gravity waves Quasi-geostrophic approximation and model Rossby waves and bactropic instability

Conservation laws and acoustic analogy

Eulerian conservation laws

Equations (1), (2) express the local conservation of the horizontal momentum and mass.

By direct calculation using (1), (2), for energy density:

$$e = h \frac{\mathbf{v}^2}{2} + g \frac{h^2}{2} \tag{3}$$

we get

$$\partial_t \boldsymbol{e} = -\nabla \cdot \left(\boldsymbol{v} h \left(\frac{\boldsymbol{v}^2}{2} + g h \right) \right) \Rightarrow$$
 (4)

total energy, $E = \int dx dy e = \text{const}$, for isolated system.

Acoustic analogy

Equation (2) is a continuity equation for "density" *h*. Equations. (1) are 2-dimensional Euler equations in a rotating frame for a barotropic fluid with density *h* and pressure $P = \frac{g h^2}{2}$.

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model Rossby waves and barotropic instability

Vorticity and Potential vorticity

Only the vertical component of relative vorticity counts in RSW:

$$\zeta = \mathbf{v}_{\mathbf{x}} - \mathbf{u}_{\mathbf{y}}$$

Relative vorticity: vorticity measured in the rotating frame. Absolute vorticity: vorticity measured in a fixed frame

$$\zeta_{a} = \zeta + f$$

Planetary vorticity *f*: vorticity due to rotation of the system. Potential vorticity (PV):

$$q=rac{\zeta+f}{h}.$$

Rotating Shallow Water (RSW) model

Potential vorticity

Inertia-gravity waves Quasi-geostrophic approximation and model Rossby waves and barotropic instability

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

(5)

Lagrangian conservation of PV:

$$rac{dq}{dt} \equiv \left(\partial_t + oldsymbol{v} \cdot
abla
ight) q = 0,$$

is obtained by combining equations of vorticity:

$$\frac{d(\zeta+f)}{dt} + (\zeta+f)\nabla\cdot \mathbf{v} = 0, \tag{7}$$

and mass conservation:

$$\frac{dh}{dt} + h\nabla \cdot \boldsymbol{v} = 0 : \qquad (8)$$

$$\frac{d}{dt}\frac{\zeta+f}{h} = \frac{1}{h}\frac{d}{dt}(\zeta+f) - \frac{\zeta+f}{h^2}\frac{d}{dt}h = 0,$$
(9)

Rotating Shallow Water (RSW) model

Derivatio

(6)

Potential vorticity

nertia-gravity waves

approximation and model Rossby waves and barotropic instability

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Eulerian expression:

Conservation of PV leads to independence of time of any integral:

$$\int dxdy \, h\mathcal{F}(q), \tag{10}$$

over the whole flow, with \mathcal{F} - arbitrary function.

Qualitative image of the RSW dynamics:

Two-dimensional motion of the fluid columns of variable depth, each preserving its potential vorticity.

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

nertia-gravity waves Quasi-geostrophic approximation and model Rossby waves and

Spectrum of small perturbations to the state of rest on the *f*-plane

Method of small perturbations

State of rest $\mathbf{v} = 0$, $h = H_0 = const$ - exact solution. Consider small perturbations $\mathbf{v} = (u, v) h = H_0 + \eta$, such that ||u||, ||v||, $||\eta||$ are all $\ll 1$, which allows to neglect the nonlinear terms \rightarrow linearization.

Linearized RSW equations :

Linearized equations in the approximation f = const:

$$u_{t} - fv + g\eta_{x} = 0,$$

$$v_{t} + fu + g\eta_{y} = 0,$$

$$\eta_{t} + H_{0}(u_{x} + v_{y}) = 0,$$

(11)

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic pproximation and model Rossby waves and varotropic instability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Method of Fourier Solutions - harmonic waves:

$$(\boldsymbol{u},\boldsymbol{v},\eta) = (\boldsymbol{u}_0,\boldsymbol{v}_0,\eta_0)\boldsymbol{e}^{\boldsymbol{i}(\omega t - \boldsymbol{k}\cdot\boldsymbol{x})} + \text{c.c.}, \quad (12)$$

where ω and **k** are frequency and wavenumber, respectively \Rightarrow algebraic system for (u_0 , v_0 , η_0):

$$\begin{pmatrix} i\omega & -f & -igk_{x} \\ f & i\omega & -igk_{y} \\ -iH_{0}k_{x} & -iH_{0}k_{y} & i\omega \end{pmatrix} \begin{pmatrix} u_{0} \\ v_{0} \\ \eta_{0} \end{pmatrix} = 0, \quad (13)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model Rossby waves and parotropic instability

Dispersion equation

Condition of solvability:

$$det \begin{pmatrix} i\omega & -f & -igk_x \\ f & i\omega & -igk_y \\ -iH_0k_x & -iH_0k_y & i\omega \end{pmatrix} = 0, \quad (14)$$

which gives:

$$\omega \left(\omega^2 - g H_0 \boldsymbol{k}^2 - f^2 \right) = 0. \tag{15}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model Rossby waves and barotropic instability

Physical meaning of solutions

3 roots of the equation correspond to

Stationary solutions ω = 0 ↔ linearized PV-conservation equation:

$$\partial_t \left(\frac{\partial_x v - \partial_y u}{H_0} - \frac{f \eta}{H_0^2} \right) = 0$$

Propagative waves with the dispersion relation:

$$\omega^2 - gH_0 k^2 - f^2 = 0.$$
 (16)

Inertia-gravity waves.

Dispersion relation (16) is isotropic. No-rotation limit:

$$\omega=\pm\sqrt{gH_0}|m{k}|
ightarrow$$

acoustic waves with "speed of sound" $c = \sqrt{gH_0}$.

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model Rossby waves and barotropic instability

< □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の < ⊙

Dispersion relation

Dispersion relation for inertia-gravity waves. $c = \sqrt{gH_0} = 1$, f = 1, the part with $\omega < 0$ is not presented.

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model Rossby waves and barotropic instability

Horizontal motion equations

$$\frac{\partial \mathbf{v}_h}{\partial t} + \mathbf{v}_h \cdot \nabla_h \mathbf{v}_h + f\hat{z} \wedge \mathbf{v}_h = -g\nabla_h h.$$
(17)
$$f = f_0(1 + \beta y), \quad H = H_0 + \eta$$
(18)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

"Vortex" scaling

- Velocity $\boldsymbol{v}_h = (u, v), \ u, v \sim U$
- Unique horizontal spatial scale L,
- Vertical scale $H_0 << L$,
- Time-scale: tirn-over time $T \sim L/U$.

Rotating Shallow Water (RSW) model Derivation

Potential vorticity

nertia-gravity waves

Quasi-geostrophic approximation and model

Characteristic parameters

Intrinsic scale of the system: deformation (Rossby) radius:

$$R_d = \frac{\sqrt{gH_0}}{f_0}$$

- Rossby number: $Ro = \frac{U}{f_0L}$,
- Burger number: $Bu = \frac{R_d^2}{L^2}$,
- Typical amplitude of the free surface elevations = non-linearity parametre: λ = ΔH/H₀, where ΔH is the typical value of η,
- ► Non-dimensional meridional gradientof $f: \tilde{\beta} \sim \beta L$

Rotating Shallow Water (RSW)

Derivation

(19)

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Non-dimensional RSW equations

$$Ro\left(\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v}\right) + (1 + \tilde{\beta} \boldsymbol{y}) \hat{\boldsymbol{z}} \wedge \boldsymbol{v} = -\frac{\lambda B u}{Ro} \nabla \eta, \quad (20)$$

$$\lambda \partial_t \eta + \nabla \cdot (\mathbf{v}(1 + \lambda \eta)) = \mathbf{0}.$$
(21)

Geostrophic equilibrium

Equilibrium between the force of Coriolis and pressure force \rightarrow geostrophic wind:

$$f\hat{\mathbf{z}} \wedge \mathbf{v}_g = -g \nabla h$$
 (22)

Rotating Shallow Water (RSW)

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Quasi-geostrophic approximation

Conditions of realization of the geostrophic equilibrium:

- *Ro* → 0,
- $\lambda Bu \sim Ro$,
- $\blacktriangleright \ \tilde{\beta} \to \mathbf{0}.$

Quasi- geostrophy (QG):

$$Ro \equiv \epsilon \ll 1, \lambda \sim Ro, \Rightarrow Bu \sim 1, \Rightarrow L \sim R_d, \ \tilde{eta} \sim Ro$$
 (23)

Rotating Shallow Water (RSW)

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

・ロト・日本・日本・日本・日本・日本

Potential vorticity in QG approximation

Non-dimensional potential vorticity:

(

$$q = \frac{f_0}{H_0} \frac{\epsilon(v_x - u_y) + (1 + \epsilon y)}{1 + \epsilon \eta}$$

= $\frac{f_0}{H_0} (\epsilon(v_x - u_y) + (1 + \epsilon y)) (1 - \epsilon \eta + ...)$
= $\frac{f_0}{H_0} \left[1 + \epsilon (v_x - u_y + y - \eta) + \mathcal{O}\left(\epsilon^2\right) \right].$ (24)

Non-dimensional geostrophic wind:

$$\mathbf{v} = \eta_{\mathbf{x}} \quad \mathbf{u} = -\eta_{\mathbf{y}} \Rightarrow \mathbf{v}_{\mathbf{x}} - \mathbf{u}_{\mathbf{y}} = \nabla^2 \eta$$
 (25)

Advection by the geostrophic wind:

$$\partial_t \dots + u \partial_x \dots + v \partial_y \dots \to \partial_t \dots + \mathcal{J}(\eta, \dots)$$
 (26)

 $\mathcal{J}(A, B) = A_x B_y - A_y B_x$ - Jacobian.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Rotating Shallow Water (RSW)

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

QG equation

$$\partial_t \left(\nabla^2 \eta - \eta \right) + \mathcal{J}(\eta, \nabla^2 \eta - \eta) + \partial_x \eta = 0.$$
 (27)

Physical meaning: conservation of (non-dimensional) geostrophic PV $q_G = \nabla^2 \eta - \eta + y$. Restitution of dimensions:

$$\nabla^2 \eta - \eta \to \nabla^2 \eta - \frac{1}{R_d^2} \eta, \ \partial_x \eta \to \beta \partial_x \eta.$$
 (28)

Formal linearization:

$$\partial_t \eta - \nabla^2 \partial_t \eta - \partial_x \eta = 0.$$
 (29)

Wave solutions: $\eta \propto exp^{i(kx+ly-\omega t)} \rightarrow \text{dispersion relation}$:

$$\omega = -\frac{k}{k^2 + l^2 + 1}.$$
 (30)

Rossby waves: strongly dispersive, with anisotropic dispersion ↔ vorticity waves.

Rotating Shallow Vater (RSW) nodel

Derivation Potential vorticity Inertia-gravity waves Quasi-geostrophic approximation and model

Dispersion diagram for Rossby waves

Rotating Shallow Nater (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

・ロト・日本・日本・日本・日本・日本

Rossby waves over a mean flow Zonal flow: (u, v) = (U(y), 0). Corresponding geopotential anomaly:

$$\eta = \eta_0(\mathbf{y}) = -\int^{\mathbf{y}} d\mathbf{y}' U(\mathbf{y}') \Rightarrow \nabla^2 \eta = -U'(\mathbf{y}).$$
(31)

Linearization of (27) about η_0 , $\eta \rightarrow \eta_0 + \eta$:

$$(\partial_t + U(y)\partial_x) \left(\nabla^2 \eta - \eta\right) + \partial_x \eta (-U''(y) + U(y)) + \partial_x \eta = 0. \Rightarrow$$
(32)

PV gradient of the mean flow (-U''(y) + U(y)) plays the same rôle as β (last term in (32)). If U = const, equation (32) has constant coefficients \rightarrow Fourier -transform \rightarrow dispersion relation in the limit $k^2 + l^2 \gg 1$:

$$\omega = Uk - \frac{k}{k^2 + l^2} \tag{33}$$

absolute frequency . $\omega = -\frac{k}{k^2 + l^2}$ - intrinsic frequency .

Rotating Shallow Nater (RSW) nodel

Potential vorticity Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves over mean flow on the *f*-plane

Equation (32) on the *f*-plane, in the limit $R_d \rightarrow \infty$:

$$\boldsymbol{\nabla}^2 \eta_t + \boldsymbol{U}(\boldsymbol{y}) \boldsymbol{\nabla}^2 \eta_x - \eta_x \boldsymbol{U}''(\boldsymbol{y}) = \boldsymbol{0}. \tag{34}$$

Partial Fourier-transform: $\eta(x, y, t) \rightarrow \hat{\eta}(y)e^{ik(x-ct)} \Rightarrow$

$$\hat{\eta}''(y) - \left[k^2 + \frac{U''(y)}{U(y) - c}\right]\hat{\eta}(y) = 0.$$
 (35)

Boundary conditions: free-slip in the zonal channel $y_1 \le y \le y_2$

$$|v|_{y=y_{1,2}} = \eta_x|_{y=y_{1,2}} = 0, \Rightarrow \hat{\eta}|_{y=y_{1,2}} = 0$$

Rotating Shallow Water (RSW) nodel Derivation

Potential vorticity Inertia-gravity waves Quasi-geostrophic

Rossby waves and barotropic instability

・ロト・日本・日本・日本・日本・日本

Integral estimate

Integration over y

$$\int_{y_1}^{y_2} dy \, \left[\hat{\eta}^*(y) \left(\hat{\eta}''(y) - \left[k^2 + \frac{U''(y)}{U(y) - c} \right] \hat{\eta}(y) \right) \right] = 0$$
(36)

Integration by parts + boundary conditions:

$$\int_{y_1}^{y_2} dy \, \left(\hat{\eta}^{*\prime}(y) \hat{\eta}'(y) + \left[k^2 + \frac{U''(y)}{U(y) - c} \right] \hat{\eta}^{*}(y) \hat{\eta}(y) \right) = 0$$
(37)

Imaginary part:

Only in phase velocity \Rightarrow

$$c_i \int_{y_1}^{y_2} dy \, \frac{U''(y)}{|U(y) - c|^2} \hat{\eta}^*(y) \hat{\eta}(y) = 0$$

Rotating Sha Water (RSW) model

> Derivation Potential vorticity Inertia-gravity waves Quasi-geostrophic

Rossby waves and barotropic instability

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Rayleigh criterion of barotropic instability

$$\int_{y_1}^{y_2} dy \, rac{U''(y)}{|U(y)-c|^2} \hat{\eta}^*(y) \hat{\eta}(y) = 0, \quad ext{if} \ \ c_i
eq 0 \Rightarrow$$

In the absence of critical levels $(U(y) - c \neq 0)$, if the flow is unstable, then U(y) has inflexion point $\exists y_0 : U''(y_0) = 0.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Rotating Shallow Water (RSW) nodel

Derivation Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Example: barotropic instability of a meridional jet on the *f*-plane in RSW

Rotating Shallow Water (RSW)

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

Jet in geostrophic equilibrium. From top to bottom: meridional velocity, geopotential, and PV,

Dispersion relation and growth rate

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

Phase velocity (top) and growth rate (bottom) of two most unstable modes.

The most unstable mode

Rotating Shallow Water (RSW) model

Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic approximation and model

Rossby waves and barotropic instability

Pressure and velocity anomalies of the most unstable mode.

Nonlinear evolution of the instability (relative vrticity)

40T. 140T 0.5 0.5 e" 0 0 0 -0.5 -0.5 x/R_d x/R_d 240T, 340T, 0.5 0.5 ¢ 0 0 o -0.5 0.5 x/R . -1 x/B 1 440T. 0.5 0.5 540T.

Rossby waves and barotropic instability

e°°

Ę

Ť

0

-1

0

-1

0

人口 医水理 医水理 医水理 医小