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Parent equations

Fluid with constant density ρ0 with a free surface↔ single
isopycnal, simplest stratification. Thin layer→ columnar
motion ≡ horizontal velocity vh = vh(x , y , t).
Hydrostatic equations, v = vh + ẑw :

∂vh

∂t
+ vh ·∇vh + f ẑ ∧ vh = −∇hP

ρ
, ∇h = (∂x , ∂y )

∇ · v = 0, g = −∂zP
ρ
.
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Boundary conditions

Horizontal boundary conditions:
Periodic, decay, or other

Vertical kinematic boundary conditions:

I Free surface z = h(x , y , t):

w |z=h =
dh
dt

= ∂th + vh ·∇hh.

Meaning: material surface made of fluid parcels.
I Flat bottom:

w |z=0 = 0.

Meaning: non-penetration through the boundary.

Vertical dynamic boundary condition:
Continuity of pressure: P|z=h = P0 = const.
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Eliminating P and w

I Integrating hydrostatic equation:

P(x , y , z, t) = −ρ0 g z + P(x , y , t),

P(x , y , t) - integration “constant”. Dynamic boundary
condition: P(x , y , t) = ρ0gh(x , y , t) + P0.

I Integrating continuity equation:

∇hvh(x , y , t) + ∂zw(x , y , z, t) = 0→

w = −z ∇hvh(x , y , t) +W(x , y , t).

W(x , y , t) - integration “constant”. Bottom boundary
condition: W(x , y , t) = 0.

I Kinematic boundary condition at the surface:

w |z=h = −h∇hvh(x , y , t) = ∂th + vh ·∇hh.
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Rotating shallow water (Saint-Venant)
equations

∂tvh + vh · ∇vh + f ẑ ∧ vh + g∇h = 0 , (1)

∂th +∇ · (vhh) = 0 , (2)

Meaning: horizontal motion of columns of fluid of variable
depth.

g f/2
z

h

v

x

y
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Conservation laws and acoustic analogy
Eulerian conservation laws
Equations (1), (2) express the local conservation of the
horizontal momentum and mass.
By direct calculation using (1), (2), for energy density:

e = h
v2

2
+ g

h2

2
(3)

we get

∂te = −∇ ·
(

vh
(

v2

2
+ gh

))
⇒ (4)

total energy, E =
∫

dxdy e = const, for isolated system.

Acoustic analogy
Equation (2) is a continuity equation for “density” h.
Equations. (1) are 2-dimensional Euler equations in a
rotating frame for a barotropic fluid with density h and
pressure P = g h2

2 .



Rotating Shallow
Water (RSW)
model
Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic
approximation and model

Rossby waves and
barotropic instability

Vorticity and Potential vorticity

Only the vertical component of relative vorticity counts in
RSW:

ζ = vx − uy

Relative vorticity: vorticity measured in the rotating frame.
Absolute vorticity: vorticity measured in a fixed frame

ζa = ζ + f

Planetary vorticity f : vorticity due to rotation of the
system.
Potential vorticity (PV):

q =
ζ + f

h
. (5)
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Lagrangian conservation of PV:

dq
dt
≡ (∂t + v · ∇) q = 0, (6)

is obtained by combining equations of vorticity:

d(ζ + f )

dt
+ (ζ + f )∇ · v = 0, (7)

and mass conservation:

dh
dt

+ h∇ · v = 0 : (8)

d
dt
ζ + f

h
=

1
h

d
dt

(ζ + f )− ζ + f
h2

d
dt

h = 0, (9)
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Eulerian expression:
Conservation of PV leads to independence of time of any
integral: ∫

dxdy hF(q), (10)

over the whole flow, with F - arbitrary function.

Qualitative image of the RSW dynamics:

Two-dimensional motion of the fluid columns of variable
depth, each preserving its potential vorticity.
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Spectrum of small perturbations to the state
of rest on the f -plane

Method of small perturbations
State of rest v = 0, h = H0 = const - exact solution.
Consider small perturbations v = (u, v) h = H0 + η, such
that ||u||, ||v ||, ||η|| are all� 1, which allows to neglect
the nonlinear terms→ linearization.

Linearized RSW equations :
Linearized equations in the approximation f = const :

ut − fv + gηx = 0,
vt + fu + gηy = 0, (11)

ηt + H0(ux + vy ) = 0,
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Method of Fourier
Solutions - harmonic waves:

(u, v , η) = (u0, v0, η0)ei(ωt−k ·x) + c.c., (12)

where ω and k are frequency and wavenumber,
respectively⇒
algebraic system for (u0, v0, η0): iω −f −igkx

f iω −igky
−iH0kx −iH0ky iω

 u0
v0
η0

 = 0, (13)
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Dispersion equation

Condition of solvability:

det

 iω −f −igkx
f iω −igky

−iH0kx −iH0ky iω

 = 0, (14)

which gives:

ω
(
ω2 − gH0k2 − f 2

)
= 0. (15)



Rotating Shallow
Water (RSW)
model
Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic
approximation and model

Rossby waves and
barotropic instability

Physical meaning of solutions
3 roots of the equation correspond to

I Stationary solutions ω = 0↔ linearized
PV-conservation equation:

∂t

(
∂xv − ∂yu

H0
− f η

H2
0

)
= 0

I Propagative waves with the dispersion relation:

ω2 − gH0k2 − f 2 = 0. (16)

Inertia-gravity waves.
Dispersion relation (16) is isotropic. No-rotation limit:

ω = ±
√

gH0|k | →

acoustic waves with “speed of sound” c =
√

gH0.



Rotating Shallow
Water (RSW)
model
Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic
approximation and model

Rossby waves and
barotropic instability

Dispersion relation
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Dispersion relation for inertia-gravity waves.
c =

√
gH0 = 1, f = 1 , the part with ω < 0 is not

presented.
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Horizontal motion equations

∂vh

∂t
+ vh ·∇hvh + f ẑ ∧ vh = −g∇hh. (17)

f = f0(1 + βy), H = H0 + η (18)

“Vortex” scaling

I Velocity vh = (u, v), u, v ∼ U
I Unique horizontal spatial scale L,
I Vertical scale H0 << L,
I Time-scale: tirn-over time T ∼ L/U.
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Characteristic parameters

Intrinsic scale of the system: deformation (Rossby)
radius:

Rd =

√
gH0

f0
(19)

I Rossby number: Ro = U
f0L ,

I Burger number: Bu =
R2

d
L2 ,

I Typical amplitude of the free surface elevations =
non-linearity parametre: λ = ∆H/H0, where ∆H is
the typical value of η,

I Non-dimensional meridional gradientof f : β̃ ∼ βL
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Non-dimensional RSW equations

Ro (∂tv + v · ∇v) + (1 + β̃y)ẑ ∧ v = −λBu
Ro
∇η , (20)

λ∂tη +∇ · (v(1 + λη)) = 0 . (21)

Geostrophic equilibrium
Equilibrium between the force of Coriolis and pressure
force→ geostrophic wind:

f ẑ ∧ vg = −g∇h (22)
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Quasi-geostrophic approximation

Conditions of realization of the geostrophic
equilibrium:

I Ro → 0,
I λ Bu ∼ Ro,
I β̃ → 0.

Quasi- geostrophy (QG):

Ro ≡ ε� 1, λ ∼ Ro,⇒ Bu ∼ 1,⇒ L ∼ Rd , β̃ ∼ Ro (23)



Rotating Shallow
Water (RSW)
model
Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic
approximation and model

Rossby waves and
barotropic instability

Potential vorticity in QG approximation
Non-dimensional potential vorticity:

q =
f0
H0

ε(vx − uy ) + (1 + εy)

1 + εη

=
f0
H0

(ε(vx − uy ) + (1 + εy)) (1− εη + ...)

=
f0
H0

[
1 + ε (vx − uy + y − η) +O

(
ε2
)]
. (24)

Non-dimensional geostrophic wind:

v = ηx u = −ηy ⇒ vx − uy = ∇2η (25)

Advection by the geostrophic wind:

∂t ...+ u∂x ...+ v∂y ...→ ∂t ...+ J (η, ...) (26)

J (A,B) = AxBy − AyBx - Jacobian.
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QG equation

∂t

(
∇2η − η

)
+ J (η,∇2η − η) + ∂xη = 0. (27)

Physical meaning: conservation of (non-dimensional)
geostrophic PV qG = ∇2η − η + y . Restitution of
dimensions:

∇2η − η →∇2η − 1
R2

d
η, ∂xη → β∂xη. (28)

Formal linearization:

∂tη −∇2∂tη − ∂xη = 0. (29)

Wave solutions: η ∝ expi(kx+ly−ωt) → dispersion relation:

ω = − k
k2 + l2 + 1

. (30)

Rossby waves: strongly dispersive, with anisotropic
dispersion↔ vorticity waves.
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Dispersion diagram for Rossby waves
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Rossby waves over a mean flow
Zonal flow: (u, v) = (U(y),0). Corresponding
geopotential anomaly:

η = η0(y) = −
∫ y

dy ′U(y ′) ⇒∇2η = −U ′(y). (31)

Linearization of (27) about η0, η → η0 + η:

(∂t + U(y)∂x )
(
∇2η − η

)
+∂xη(−U ′′(y)+U(y))+∂xη = 0.⇒

(32)
PV gradient of the mean flow (−U ′′(y) + U(y)) plays the
same rôle as β (last term in (32)).
If U = const , equation (32) has constant coefficients→
Fourier -transform→ dispersion relation in the limit
k2 + l2 � 1:

ω = Uk − k
k2 + l2

(33)

absolute frequency . ω = − k
k2+l2 - intrinsic frequency .
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Rossby waves over mean flow on the f -plane

Equation (32) on the f -plane, in the limit Rd →∞:

∇2ηt + U(y)∇2ηx − ηxU ′′(y) = 0. (34)

Partial Fourier-transform: η(x , y , t)→ η̂(y)eik(x−ct) ⇒

η̂′′(y)−
[
k2 +

U ′′(y)

U(y)− c

]
η̂(y) = 0. (35)

Boundary conditions: free-slip in the zonal channel
y1 ≤ y ≤ y2

v |y=y1,2
= ηx |y=y1,2

= 0, ⇒ η̂|y=y1,2
= 0



Rotating Shallow
Water (RSW)
model
Derivation

Potential vorticity

Inertia-gravity waves

Quasi-geostrophic
approximation and model

Rossby waves and
barotropic instability

Integral estimate

Integration over y

∫ y2

y1

dy
[
η̂∗(y)

(
η̂′′(y)−

[
k2 +

U ′′(y)

U(y)− c

]
η̂(y)

)]
= 0

(36)
Integration by parts + boundary conditions:∫ y2

y1

dy
(
η̂∗′(y)η̂′(y) +

[
k2 +

U ′′(y)

U(y)− c

]
η̂∗(y)η̂(y)

)
= 0

(37)

Imaginary part:
Only in phase velocity⇒

ci

∫ y2

y1

dy
U ′′(y)

|U(y)− c|2
η̂∗(y)η̂(y) = 0
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Rayleigh criterion of barotropic instability

∫ y2

y1

dy
U ′′(y)

|U(y)− c|2
η̂∗(y)η̂(y) = 0, if ci 6= 0⇒

In the absence of critical levels (U(y)− c 6= 0), if the flow
is unstable, then U(y) has inflexion point
∃y0 : U ′′(y0) = 0.
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Example: barotropic instability of a meridional
jet on the f -plane in RSW
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Dispersion relation and growth rate
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Phase velocity (top) and growth rate (bottom) of two most
unstable modes.
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The most unstable mode
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Nonlinear evolution of the instability (relative
vrticity)
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