Waves at the surface of the deep water

Waves at the interface and Kelvin-Helmholtz instability

Surface and Interface Waves. Kelvin-Helmholtz Instability

V. Zeitlin

M1 MOCIS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Infinitely deep water: equations of motion

Two-dimensional (homogeneous in *y*) motions of incompressible fluid with density $\rho_0 = \text{const.}$ Small scales \Rightarrow rotation negligible, non-hydrostatic:

$$\frac{du}{dt} = -\frac{P_x}{\rho_0}$$
(1)
$$\frac{dw}{dt} + g = -\frac{P_z}{\rho_0},$$
(2)
$$u_x + w_z = 0.$$
(3)

Waves at the surface of the deep water

Waves at the interface and Kelvin-Helmholtz instability

Here $\frac{d}{dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + w \frac{\partial}{\partial z}$ Boundary conditions at the free surface situated at $z = \eta(x, t)$:

- Kinematic condition : $\frac{d\eta}{dt} = \eta_t + u\eta_x = w(z = \eta)$,
- ► Dynamic condition : P(z = η) = P₀, P₀ = const pressure over the surface.
- ▶ Bottom condition at $z \to -\infty$: decay of all perturbations

Linearisation about the state of rest

State of rest in hydrostatic equilibrium $P = P(z) = -\rho_0 gz + P_0$ - exact solution. Linearisinf about this state:

$$u_{t} = -\frac{\rho_{x}}{\rho_{0}}, \qquad (4)$$

$$w_{t} = -\frac{\rho_{z}}{\rho_{0}}, \qquad (5)$$

$$u_{x} + w_{z} = 0. \qquad (6)$$

Small perturbations sought in the form of harmonic waves propagating in the *x*- direction with a vertical structure to be determined:

$$(u, w, p, \eta) = (\hat{u}(z), \hat{w}(z), \hat{p}(z), \hat{\eta}) e^{i(kx - \omega t)} + c.c.$$
 (7)

Waves at the surface of the deep water

Waves at the interface and Kelvin-Helmholtz instability

・ロト・四ト・ヨト・ヨー もくの

Wave solutions

Elimination of u, w by respective differentiations of (4) and (5) and use of (6):

$$p_{xx} + p_{zz} = 0, \Rightarrow \hat{p}''(z) - k^2 \hat{p}(z) = 0.$$
 (8)

Solution obeying the bottom decay condition at $z \to -\infty$: $\hat{p}(z) = \hat{p}_0 e^{kz}$.

Linearised dynamic boundary condition at the surface:

$$-\rho_0 g\hat{\eta} + \hat{\rho}_0 = 0 \tag{9}$$

Using (5) at z = 0: $-\omega \hat{w} = -\frac{k}{\rho_0} \hat{p}_0 = -gk\hat{\eta}$, taking into account (9).

Linearised kinematic boundary condition : $-i\omega\hat{\eta} = \hat{w} \Rightarrow$ dispersion relation for surface waves in very deep water:

$$\omega^2 = gk. \tag{10}$$

Exercise:

Obtain polarisation relation for these waves and analyse them.

Waves at the surface of the deep water

Finite depth

Decay condition \rightarrow condition of non-penetration at the (flat) bottom situated at z = -H: w(-H) = 0. For wave solutions this means that $P_z(-H) = 0$, cf. (5). Equations for perturbations are the same, solution for $\hat{p}(z)$ with the modified b.c. becomes:

$$\hat{p}(z) = Ae^{kH} \left(e^{k(z-H)} + e^{-k(z-H)} \right),$$
 (11)

where A - amplitude to be determined from the continuity of pressure at the surface.. The same procedure as before gives the dispersion relation de:

$$\omega^2 = gk \tanh kH. \tag{12}$$

Exercise:

Determine the phase and the group velocities of the surface waves.

Waves at the surface of the deep water

Kelvin -Helmholtz (KH) instability

The model: Non-hydrostatic Euler equations for two layers of incompressible fluid with $\rho_i = \text{const}, i = 1, 2$ without rotation ($Ro \rightarrow \infty$) in the vertical plane x, z.

Equations of motion:

$$u_{t}^{(i)} + u^{(i)}u_{x}^{(i)} + w^{(i)}u_{z}^{(i)} = -\frac{1}{\rho_{i}}P_{x}^{(i)},$$

$$w_{t}^{(i)} + u^{(i)}w_{x}^{(i)} + w^{(i)}w_{z}^{(i)} + g = -\frac{1}{\rho_{i}}P_{z}^{(i)},$$

$$u_{x}^{(i)} + w_{z}^{(i)} = 0.$$
 (13)

No summation over repeating indices.

Waves at the surface of the deep water

Boundary conditions:

Dynamic b.c.:

$$P^{(1)}\Big|_{z=\eta} = P^{(2)}\Big|_{z=\eta},$$
 (14)

$$\eta_t + u^{(i)}\eta_x = w^{(i)}\Big|_{z=\eta}, \quad i = 1, 2.$$
 (15)

where $\eta(x, t)$ - position of the interface between the layers 1 (superior) and 2 (inferior).

Stationary solution: velocity shear across the interface

$$w^{(i)} = 0; \ u^{(i)} = U_i = \text{const}; \ \eta = 0; \ P_z^{(i)} = -g\rho_i, \ i = 1, 2.$$
 (16)

Waves at the surface of the deep water

Linearisation about this solution:

Equations for perturbations:

$$u_t^{(i)} + U_i u_x^{(i)} = -\frac{1}{\rho_i} p_x^{(i)},$$

$$w_t^{(i)} + U_i w_x^{(i)} = -\frac{1}{\rho_i} p_z^{(i)},$$

$$u_x^{(i)} + w_z^{(i)} = 0 \Rightarrow \nabla^2 p^{(i)} = 0.$$
 (17)

Boundary conditions:

$$p^{1}\Big|_{z=0} - p^{2}\Big|_{z=0} = g(\rho_{1} - \rho_{2})\eta.$$
 (18)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Waves at the surface of the deep water

Solution of the Laplace equation:

$$p^{(1)} = \bar{p}_1 e^{-kz} e^{i(kx-\omega t)}, \ p^{(2)} = \bar{p}_2 e^{+kz} e^{i(kx-\omega t)}$$
 (19)

Separation of variables in $w^{(i)}$:

$$w^{(i)} = \bar{w}_i(z)e^{i(kx-\omega t)} \Rightarrow$$
 (20)

$$\bar{w}_1 = -i \frac{k\bar{p}_1 e^{-kz}}{\rho_1(kU_1 - \omega)}, \ \bar{w}_2 = i \frac{k\bar{p}_2 e^{kz}}{\rho_2(kU_2 - \omega)}.$$
 (21)

Kinematic b.c.:

$$\eta = \bar{\eta} e^{i(kx-\omega t)} \Rightarrow -i(\omega - kU_i)\bar{\eta} = \bar{w}_i|_{z=0}, \Rightarrow$$
(22)
$$\bar{p}_1 = -\frac{\bar{\eta}}{k} \rho_1 (\omega - kU_1)^2, \quad \bar{p}_2 = +\frac{\bar{\eta}}{k} \rho_2 (\omega - kU_2)^2$$
(23)

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Waves at the surface of the deep water

Dynamic b.c.:

Waves at the surface of the deep water

Dispersion relation:

$$(\rho_1 + \rho_2)\omega^2 - 2k(U_1\rho_1 + U_2\rho_2)\omega + \left[k^2(\rho_1U_1^2 + \rho_2U_2^2) - kg\Delta\rho\right] = 0.$$
(25)

Solution in the moving frame $U_2 = 0, U_1 = U$:

$$c = \frac{\omega}{k} = \frac{U\rho_1 \pm \sqrt{(\rho_1 + \rho_2)\frac{g\Delta\rho}{k} - \rho_1\rho_2 U^2}}{\rho_1 + \rho_2}$$
(26)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Instability of short waves:

$$k > \frac{g\Delta\rho}{U^2}\left(\frac{1}{\rho_1}+\frac{1}{\rho_2}\right).$$

(27)

Waves at the surface of the deep water

Waves at the interface and Kelvin-Helmholtz instability

Shear instability in homogeneous fluid Particular case $\Delta \rho = 0$:

$$c = \frac{\omega}{k} = U \frac{\rho_1 \pm i \sqrt{\rho_1 \rho_2}}{\rho_1 + \rho_2} \Rightarrow$$
(28)

always unstable

Exercise:

In the limit $U \rightarrow 0$ stable waves on the interface result. Compare their properties with those of surface waves.

Example of KH instability

Waves at the surface of the deep water

Waves at the interface and Kelvin-Helmholtz instability

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで