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Vectors: definitions and superposition
principle
Vector A is a coordinate-independent (invariant) object
having a magnitude |A| and a direction. Alternative
notation A.
Adding/subtracting vectors:

Vector algebra

A

Superposition principle: Linear combination of vectors is

A vartnr



Products of vectors

Scalar product of two vectors:
Projection of one vector onto another:

Vector algebra

A-B:= |A||B|cos¢as =B - A,
where ¢ 45 is an included angle between the two.

Vector product of two vectors:

ANB :=isg|A||B|singass=—BAA,

where 745 is a unit vector, |7AB| =1, perpendicular to both
A and B, with the orientation of a right-handed screw
rotated from A toward B.

x is an alternative notation for A .

Distributive properties:
(A+B)-C=A-C+B-C,(A+B)AC=AANC+BAC.



Vectors in Cartesian coordinates

Vector algebra

Cartesian coordinates: defined by a right triad of mutually
orthogonal unit vectors forming a basis:

(27 ya 2) = (217 227 )'\(3)7



Tensor notation and Kronecker delta

(X, y,2) — Xx;, i =1,2,3. Ortho-normality of the basis:
XX =9j,

where §;; is Kronecker delta-symbol, an invariant tensor of
second rank (3 x 3 unit diagonal matrix):

5i— 1, ifi=],
71 0, ifi#].
The components V; of a vector V are given by its
projections on the axes V; = V - X:

3
V= V1)A(1 + Vg)'\(g + V3)A(3 = Z V,)A(,
i=1
Einstein’s convention:
53 . A; B = A; B; (self-repeating index is “dumb”).

Vector algebra



Vector products by Levi-Civita tensor
Formula for the vector product:
xyz
Aq Ay As
B B; B,

AANB=

Tensor notation (with Einstein’s convention):
(A A B)I = EijkAjBka
where

—1, ifjjk = 132,321,213

1, ifjk = 123,231,312
€jjk =
0, otherwise

Magic identity:

€ijk€kim = Oit0jm — dim0jr- (1)

Vector algebra



Scalar, vector, and tensor fields

Any point in space is given by its radius-vector

X=xX+yy+zz e
A field is an object defined at any point of space

(x,y,2) = (X1, X2, x3) at any moment of time ¢, i.e. a

function of x and t.

Different types of fields:

» scalar f(x, t),
» vector v(x,t),
» tensor tj(x, t)

The fields are dependent variables, and x, y,z and t -
independent variables.

Physical examples: scalar fields - temperature, density,
pressure, geopotential, vector fields - velocity, electric and
magnetic fields, tensor fields - stresses, gravitational field.



Differential operations on scalar fields

Partial derivatives:

if P im f(X + AX? .y7 Z) - f(X7 y, Z) scalar and vector fields
OX  Ax—0 Ax ;

and similar for other independent variables. Differential
operator nabla:

Gradient of a scalar field: the vector field

Jof . of _Of
f=Vf=X— — —
grad v xaeryaijzaz
Heuristic meaning: a vector giving direction and rate of
fastest increase of the function f.

Differential operations on



Visualizing gradient in 2D
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From left to right: 2D relief, its contour map, and its
gradient. Graphics by Mathematica®©
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Differential operations with vectors

» Scalar product: divergence

Differential operations on

8 V scalar and vector fields
divv =V - v(x) =
(x) ax
» Vector product: curl
av,
curlv = V A v(x); (curlv), = e,-jk—k
0xj

» Tensor product:

ov

Vovix), (Vev)= Ix
j

Forany v, f: diveurlv =0, curlgrad f = 0,

divgrad f = V?f, V2 = 25 4 85 + 2 - Laplacian.




Visualizing divergence in 2D
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From left to right: vector field v(x, y) =
and its divergence 24 + 9
this field is |dent|cally zero. (The field is a gradient of the
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Visualizing curl in 2D
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Strain field with non-zero curl and divergence

B BN

From left to right: vector field, and its curl and divergence.
Graphics by Mathematica®
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Useful identities

VA(VAV)=V(V V)=V, (2) e
V2
V/\(V/\V):V<2>—(V-V)V, (3)
VI (VAV) = -V (VIAV). (@)

Proofs: using tensor representation (V A v); = €jx0; g,
with shorthand notation 4% = 9;, exploiting the
antisymmetry of ¢, using that §;v; = v;, and applying the
magic formula (1).

Example: proof of (2).

€ikOjekmOVm = (0it0jm — 8imdj1)0;01Vm = 0;0;V; — 0;0;V;.



Integration of a field along a (closed) 1D
contour

Integration in 3D space

|
/ v
x

Summation of the values of the field at the points of the
contour times oriented line element dI = tdl:

?{dl(...),

where t is unit tangent vector, and dl is a length element
along the contour. Positive orientation: anti-clockwise.



Integration of a field over a 2D surface

Summation of the values of the field at the points of the
surface times oriented surface element ds = i ds:

//ds(...)z/sds(...),

where h is unit normal vector. Positive orientation for
closed surfaces: outwards.

Integration in 3D space



Integration of a field over a 3D volume

Summation of the values of the field at the points in the
volume times volume element dV.

///dV(---)E/VdV(..,),
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Linking contour and surface integrations:
Stokes theorem

Integration in 3D space

7{ dl-vix)= [ ds-(V Av(x)). (5)
c Se

Left-hand side: circulation of the vector field over the
contour C. Right-hand side: curl of v integrated over any
surface S¢ having the contour C as a base.



Stokes theorem: the idea of proof

(x.y + dy) Integration in 3D space

Circulation of the vector v = v4 X + voJ over an
elementary contour, with dx — 0, dy — 0, using
first-order Taylor expansions:

vi(X, y)dx + vo(x + dx, y)dy — vi(x,y + dy)dx — vo(x, y)dy
Mg, M
= ox dx dy dy dx dy,

with a z-component of curlv multiplied by the z-oriented
surface element arising in the right-hand side.



Linking surface and volume integrations:
Gauss theorem

Integration in 3D space

ds v(x / dvVV . v(x (6)
Left-hand side: qux of the vector field through the surface
Sy which is a boundary of the volume V. Right-hand
side: volume integral of the divergence of the field.

Important. The theorem is also valid for the scalar field:

ds f(x / dv Vif(x (7)



Gauss theorem: the idea of proof

Vs
‘ Integration in 3D space

Flux of the vector v = v4 X + oy + v32 over a surface of
an elementary volume, taking into account the opposite
orientation of the oriented surface elements:

[V1 (X + dX7y7z) - v1(X7y7 Z)] dydz+
[VZ(va + dy? Z) - VZ(X7y7 Z)] axdz+
[Va(x,y, 2 + d2) = va(x,,2)] dxdly = (% + %2 + %2 ) dx dy dz



Fourier series for periodic functions
Consider f(x) = f(x + 27), a periodic smooth function on
the interval [0, 27]. Fourier series:

(e}

f(x) = [ancos(nx) + bysin(nx)].
n=0

The expansion is unique du to ortogonality of the basis
functions:

2 27
dx cos(nx)cos(mx) = dx sin(nx)sin(mx) = wépm,
0 0
2
dx sin(nx)cos(mx) = 0.
0
The coefficients of expansion, thus, are uniquely defined:

1 [em 1 2w

an=— dx f(x) cos(nx), bp=— dx f(x) sin(nx)
™ Jo 7™ Jo



Complex exponential form
™ = cos(nx) + isin(nx) =

cos(nx) = , sin(nx) =

2 2i

Hence

2

f(x) = Z Me’”’( +cc= ZA,,e’”X, A=A,

n=0
Orthogonality:
27 ) )
dX elnxe_lmx — 27T5nm
0
Expression for coefficients
2

Ay = T dx f(x) =™
27T 0

einx + e—inx e,inx _ e—inx

Fourier analysis



Fourier integral

Fourier series on arbitrary interval L: sin(nx), cos(nx) —

sin(27nx), cos(2nx), [Z™ dx — [o dx, normalization
1 1 o . 00 S

== ¢ Inthelimit L — o001 3% — 7
Fourier-transformation and its inverse:

= / dk F(k)e*™, F(k)= / dx f(x) e~
Based on orthogonality:
/ dx e e~ = §(k — I),

where §(x) - Dirac’s delta-function, continuous analog of
Kronecker’s d,m, with properties:

/dx5 /dyéxy()F()



Multiple variables and differentiation

f(x.y.2) = / dk di dm F(k, I, m) ei(kc+ly+m2),

F(k, 1, m) = / o dy 0z F(x, y, 2) e~ ket +m2).

Physical space (x, y,z) — (k, I, m), Fourier space.
Radius-vector x — k, "wavevector",

f(x) = / dk F(k) e'k*
Main advantage: differentiation in physical space —
multiplication by the corresponding component of the
wavevector in Fourier space 2 — ik:

0 _ * ; ik-x
axf(x)_/oodk/kF(k)e ,

and similarly for other variables.



Simplest wave equation

Us + cuy = 0. (8)

u(x, t) - dynamical variable, defined for all x:
—00 < X < 4oo,and t: 0 < t < oo, ¢ = const.
Notation: (...)x = 2=) (1), = 2

Methode of solution 1: change of variables.

Simple-wave equation

(X7 t)—>(€+,§_):(X+Ct,X—Ct). (9)
0 0L
87_1’ W_j:c: = (10)
ou ou ou
% = () .
ou _ ou n ou (12)

ox  0& o



Simplification of the equation

ur+cux=0— 20ﬂ =0 = u=u(&). (13)  Sreevmecamen
&+

Function v determined from initial conditions:

C.l.: U—o = Up(x) = u = ug(x — ct). (14)



Spatio-temporal evolution of a localized initial
perturbation, as follows from (8)




Fourier transform

Methode of solution 2: Fourier- transformation

u(x, 1) /dkdwe(kx “O0K,w + c.c.. (15)

Inverse transformation:

Simple-wave equation

N 1 ;
O(k,w) = 2/ dx dte " =<Dy(x t)+cc..  (16)
T
Transformation x Inverse ransformation = 1, as

/ dk &k—X) — 5(x — x), / duw €01 — §(t — 1),
0 - Dirac’s delta. ‘

Fourier-modes: i(k,w)e'*™~+! «; monochromatic waves.
Amplitude: |i|; Phase: ® = kx — wt + &g, U = |i|e'®.



Superposition principle

Method of Fourier < superposition principle, valid for
linear systems.

Ur + cuy = 0 = i (ke — w) O(k,w), O(k,w) #0= (18)
w = ck,dispersion relation. (19)
General solution:

u(x, t) = 217 / dk e*=ND(k) + c.c. - (20)

superposition (sum or integral) of elementary
Fourier-modes.

Simple-wave equation



Phase velocity

Speed of propagation of the phase of a monochromatic
wave: phase velocity:

. (21)

x| €

Simple-wave equation

Dispersion: dependence ¢ = ¢(k) = simple wave is
non-dispersive: cpn, = ¢ = const.

Groupe velocity:

o %
97 ok
- speed of propagation of modulations = speed of
propagation of information.
Simple wave: ¢y, = ¢4 (like acoustic or electromagnetic
waves).

(22)



Second-order wave equation

Uit — C2Uyy = 0. (23)

Same change of independent variables as in the
1st-order equation:

(X7 t) N (§+7 é‘_) — (X + Ct, X — Ct) Simple-wave equation
5%u
Pl — 2 _
Uy — CUxx = 0 — 4cC D€ OE 0 = (24)
General solution:
u=u_(&-)+ui(&+), (295)

where u_ + u; - arbitrary functions, to be determined
from initial conditions. (2nd order = 2 initial conditions
required.)



Spatio-temporal evolution of the initial
localized perturbation
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Introducing the simplest dispersion

Dispersion - more derivatives.

In the case of unidirectional propagation - only odd-order
derivatives to respect the symmetry of the initial equation
with respect to reflexions. Simplest case:adding 3rd
space derivative:

U+ cuy =0 — U + CUx + alxxx =0 « =const (26)

Corresponds to waves in shallow channels.
Dispersion relation:

w = ck — ak®

Dispersion, non-lineari



Spatio-temporal evolution of a localized initial
perturbation, as follows from (26)
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Non-linearity

Ut + cux =0 — Ut + Uuy + cuy = 0 = (27)

no more superposition principle. Produces steepening
and wave breaking .

Qualitative explanation : ¢ — ¢ + u = the larger the
amplitude the larger the speed: a maximum moves faster
than surrounding and “catches up” with the preceding
part.

Korteweg - deVries equation: mutual compensation
of dispersion and nonlinearity

Dispersion + non-linearity:
Us+cuy =0 — Us + Uly + CUy + alixyxx = 0 (28)

Produces steady solitary waves.

Dispersion, non-lineari



Equations of motion

Eulerian description: in terms of fluid velocity field v(x, t),
and scalar density and pressure fields p(x, t), P(x, t),
defined at each point x of the volume occupied by the
fluid at any time t.

Euler equations

Local conservation of momentum in the presence of
forcing F:

,0<(3‘;—|—V-VV>:—VP+F, (29)

Continuity equation
Local conservation of mass:

g’; LV (pv) = 0. (30)

Governing equations



Equation of state: baroclinic fluid

Fluid: thermodynamical system =- equation of state
relating P and p and closing the system (29), (30) (4
equations for 5 dependent variables).

General equation of state:

P = P(p,s), (31)
s(x, t) is entropy per unit mass =- evolution equation for s
required. Perfect fluid:

0s
EJFV‘VS_O. (32)

overning equations



Equation of state: barotropic fluid

P = P(p) <» s = const, (33)

sufficient to close the system (29), (30).
Particular case: incompressible fluid. Conservation of
volume per unit mass = zero divergence:

V.ov=0 = (34)

P
%+V-Vp:0, and V-(v-Vv)=-V_. <Vp> =

(35)
Pressure entirely determined by density and velocity
distributions.

overning equations



Lagrangian view of the fluid: momentum

balance

Fluid = ensemble of fluid parcels with time-dependent
positions X(Xo, t), X(Xg,0) = X.
Euler - Lagrange duality: continuity of the fluid = any
point in the flow x is, at the same time, a position of some
fluid parcel = Eulerian velocity at the point v(x) =
velocity of the parcel v(X, t) = 9 = X. Lagrangian
(material) derivative in Eulerian terms by chain
differentiation:

d 0 ax 8

= Newton’s second law for the parcel

a2X
a2

< Euler equation (29).

p(X,t)—== = —VxP(X,t) +F, (37)

Euler - Lagrange duality



Lagrangian view of the fluid: mass balance
Mass conservation in Lagrangian terms:

pi(x)d°x = p(X, )d°X, ¢ pi(x) = p(X, t)T (38)

where p; is the initial distribution of density, and d°x and
d®X are initial and current elementary volumes. The
Jacobi determinant (Jacobian) in this formula is defined
as the determinant:

9X  oX oX
j B % gf gj _ 8()(7 )/7 Z) Euler - Lagrange duality
—|ox 0 0z | —
0Z 0Z 09Z 8(X7 Y, Z)
ox oy 0z

Incompressibility in Lagrangian terms: 7 = 1. Taking
Lagrangian time-derivative of this relation, we obtain the
incompressibility condition of zero velocity divergence in
Eulerian terms. Advection of entropy (32) < conservation
of entropy by each fluid parcel s = 0.



1st principle of thermodynamics
Reversible processes in one-phase systems:

Se = Tos — Pov, (39)

e - internal energy per unit mass, v = % - specific
volume.Enthalpy per unit mass: h=¢+ Pv =

5h= T3s + viP. (40)

Energy density: sum of kinetic and internal parts:
2
v

e= p? + pe. (41) o
Local conservation of energy :
oe v2
— . —+h)|=0. 42
8t+v [pv(2+ ﬂ 0 (42)
Barotropic fluid:
cSh:ﬁ :V—P:Vh. (43)



Kelvin theorem
Circulation of velocity around a contour I consisting of
fluid parcels, and moving with the fluid:

fy:/rv-cn:/&(vw)-du (44)

Kelvin theorem states that
» for barotropic fluids

dvy
- = 45
= =0. (45)
» for baroclinic fluids
avy VP
—LY =— | — .4l 4
ot - d (46)

Proof: direct calculation of the time-derivative of the
circulation using the equations of motion, and the
Lagrangian nature of I'.

Kelvin circulation theorem



Perfect vs real fluids

Perfect fluid approximation: macroscopic fluxes of mass,
momentum and energy. Real fluids: corrections to these
fluxes due to molecular transport. Simplest way to include
them: flux-gradient relations following from Le Chatelier
principle: molecular fluxes tend to restore the
thermodynamical equilibrium. For any thermodynamical
variable A

fa=—kaVA,

Real fluids: incorporating
molecular transport

where f, is related molecular flux, and k4 is molecular
transport coefficient.



Viscosity, diffusivity, and thermal conductivity

» Viscosity corrections to the Euler equation in the
incompressible case, giving the Navier - Stokes
equation

g‘:Jrv Vv——V—P+z/V2V, V.-v=0. (47)
P

» Diffusivity corrections to the continuity equation

op

TR (pv) = DV?p. (48)

» Thermal conductivity corrections to the
heat/temperature advection giving the heat equation

oT
ot

v, D, x are kinematic viscosity, diffusivity, and

thermo-conductivity, the molecular transport coefficients

for momentum, mass, and energy, respectively, all with

. . 2
dimension [LT}

+v.-VT =\V?T. (49)

Real flui ds incor| po rating
molecular



Dimensional/scale analysis. Reynolds
number

Molecular transport coefficients: dimensional, value
varies with changes if units. Only non-dimensional
parameters are relevant. Typical space and velocity
scales in the incompressible fluid flow: L, U. Time-scale
T = L/U. Pressure scale: pU2.

Scaled NS equation:

U2 ov Uv 5
L<at+V'VV+VP>:L2V v —  (50)
Non-dimensional NS equation R
ov 1 5
8t+v Vv VP-|—ReV v (51)

Re = % - Reynolds number, the true measure of
viscosity. Similar, Pecklet number for diffusivity.



Motion in a rotating frame
Material point in a frame rotating with angular
velocity €:

mﬂ+2mQA V+mQARQAX)=F, v= ax (52)
dt dt
m- mass, x-current position of the point, F - sum of

forces acting on the point

Euler equations in the rotating frame +gravity:

Fluid under the influence of gravity: m — p,

d _, 0 : :
& — &+ vV, forces: pressure + gravity =

?;+V-Vv+252/\v:—vpp+g* (53)

Effective gravity: gravity + centrifugal acceleration (also
potential)

g =g+Q2QN(2AX) (54)

Hydrodynamics on
a tangent plane to
a rotating planet



Tangent plane approximation

%+V'Vv+f2/\vz—¥+g (55)

f - plane: f = const; 5 - plane: f = f + By; f - Coriolis
parameter: f = 2Q sin ¢, where ¢ - latitude
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Hydrostatics. Stratification

The state of rest v = 0 is solution of (55) if hydrostatic
equilibrium holds:

0=——+g
p

The continuity equation:

dp

v=0
o TPV

is satisfied by time-independent p in a state of rest.
Statically stable states: p = po(2), pp(2) <0 —

Hydrodynamics on
a tangent plane to

P PO / dz g 100 a rotating planet

Dependence of py on z is called stratification. Surfaces of
constant p: isopycnals.



Oceanic stratification

Typical density profile:

Increasing Density (g/em™) —=

1023 1024 1.025 1.026 1.027 1078
B
T T T T

Pycnocline

P(}at):PO+PS(Z)+U(X=Y7Z;t)7 pPo > ps > 0.
Hydrostatic approximation for large-scale motions:

gp+aZP:oa :>P:P0+PS(Z)+7T(Xay7Z;t)7
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Further approximations.

Boussinesq approximation
Deviations of density from pg neglected in the horizontal
_>

aavth-f-V-VVh—i-fé/\Vh:—V:ﬂ—%—thb, (58)

where ¢ = g—o - geopotential.

Incompressibility of water
Continuity equation splits in two:

V.v=0, v=vy+2w. (59)

8[p + V- Vp = 0 (60) Primitive equations: Ocean



Full set of oceanic PE

o .
ﬂ_FV-VVh—FfZ/\Vh:—EE_VhQSa (61)
ot P
Qo + V- Vo + wps(z) = 0. (62)
gpi = =020, Vhp Vp+0:w=0, (63)
0
Remark

Hydrostatic approximation «+» anisotropic scaling proper
for mesoscale motions:
w U
W« U H<L —~—
<Y PA<E T
where L, H and U, W are horizontal and vertical spatial
and velocity scales, respectively.

Primitive equations: Ocean



Vertical boundary conditions

Most often sufficient for our purposes: rigid lid and flat
bottom:
W, o=Ww, =0 (64)

Non-trivial bathymetry : fluid parcels follow the bottom

profile
ab

W’z:b(x,y) = at =Vv-Vb

Free surface: fluid parcels move with the surface:

ah  oh

Wamhyi) = gf = ¢ TV Y

Primitive equations: Ocean



Atmosphere: pressure coordinates

Altitude (km)

Low High
Increasing ——»

Altitude < Pressure = vertical coordinate.
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Thermodynamics of the dry atmosphere
Equation of state - ideal gas:

P=pRT, cpy=T 98 = const, ¢, —c, = R.
’ 9T ) pyv
(65)
Entropy:
s=¢cpInT — RInP + const. (66)
Adiabatic process:
R
dTr dP P\ %
s = const :cp?—l-?? =0,=T=T;g <Ps) .
(67)

Potential temperature :

R
0=T (%) g , §=Cplnd + const. (68)

Equations in pressure

coordinates



Geopotential and hydrostatics

Geopotential variation: work to lift a unit mass against
gravity: 6¢ = giz.

z = z(p) becomes a thermodynamical variable.
Hydrostatic approximation:

5¢p = —gdP = (69)

0p RT 1

= - - 7

oP P p (70)
Useful relation for small variations p, P, 6 with respect to
background pg, Py, o:




Elimination of p in Euler equations
"Triangular" relation :

(.2, ). -
()., (),

Incompressibility in pressure coordinates
Lagrangian volume element in pressure coordinates:

pdxdydz = — ; dxdydP (74)

Mass conservation = Volume conservation in P.




Adiabatic primitive equations

Equations of motion

div(v):Vh-vthapw:O, wzcgj. (75)
aavth-f—V‘VVh-i-ff/\ Vh = —Vho. (76)
o +v-Vo=0. (77)

R

dp  RT  R(P\@
wpplm) e e

Boundary conditions

Bottom: ground = free surface in terms of pressure,
geopotential fixed.

Top: rigid lid = fixed value of pressure, e.g. tropopause.




Boussinesq approximation for atmosphere
Varying background density in atmosphere: pg = po(2).
Boussinesq approximation in x, y, z coordinates, with
p=po(2)+ 75, P=Po(z)+ P, 0 =0p(z) + 0, (...) omitted
below:

0 a
%ﬁ»V'VVh‘FfZ/\ V= —Vho, (79)

with geopotential ¢ = 2. Hydrostatics:
PO

_ 06 _PI0_ P _ g (80)

Equation of state (ideal gas) + (71) —
9¢
~ 3 +b=0, (81)
b = g4 - buoyancy, 32 + v - Vb = 0 for adiabatic
motions.
Continuity equation — anelastic equation:

V- (po(2)v) = 0.
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