Mathematics/Hydrodynamics/Geophysical Fluid Dynamics Refresher Course

V. Zeitlin

M1 MOCIS

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dvnamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Beal fluids: incorropration

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

.

Vectors: definitions and superposition principle

Vector \boldsymbol{A} is a coordinate-independent (invariant) object having a magnitude $|\boldsymbol{A}|$ and a direction. Alternative notation \vec{A} .

Adding/subtracting vectors:

Superposition principle: Linear combination of vectors is a vector

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Products of vectors

Scalar product of two vectors:

Projection of one vector onto another:

 $\boldsymbol{A} \cdot \boldsymbol{B} := |\boldsymbol{A}| |\boldsymbol{B}| \cos \phi_{\boldsymbol{A}\boldsymbol{B}} \equiv \boldsymbol{B} \cdot \boldsymbol{A},$

where ϕ_{AB} is an included angle between the two.

Vector product of two vectors:

$$oldsymbol{A}\wedgeoldsymbol{B}:=oldsymbol{\hat{i}}_{AB}\left|oldsymbol{A}
ight|\left|oldsymbol{B}
ight|\sin\phi_{AB}=-oldsymbol{B}\wedgeoldsymbol{A},$$

where \hat{i}_{AB} is a unit vector, $|\hat{i}_{AB}| = 1$, perpendicular to both A and B, with the orientation of a right-handed screw rotated from A toward B. \times is an alternative notation for \wedge .

Distributive properties:

$$(\mathbf{A} + \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}, (\mathbf{A} + \mathbf{B}) \wedge \mathbf{C} = \mathbf{A} \wedge \mathbf{C} + \mathbf{B} \wedge \mathbf{C}.$$

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields integration in 3D space Fourier analysis

Basic notions of wave dvnamics

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Vectors in Cartesian coordinates

Cartesian coordinates: defined by a right triad of mutually orthogonal unit vectors forming a basis:

$$(\hat{\boldsymbol{x}},\,\hat{\boldsymbol{y}},\,\hat{\boldsymbol{z}})\equiv(\hat{\boldsymbol{x}}_1,\,\hat{\boldsymbol{x}}_2,\,\hat{\boldsymbol{x}}_3),$$

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields ntegration in 3D space Fourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Tensor notation and Kronecker delta

 $(\hat{\pmb{x}}, \, \hat{\pmb{y}}, \, \hat{\pmb{z}})
ightarrow \hat{\pmb{x}}_i, \, i = 1, 2, 3.$ Ortho-normality of the basis:

$$\hat{\boldsymbol{x}}_i \cdot \hat{\boldsymbol{x}}_j = \delta_{ij},$$

where δ_{ij} is Kronecker delta-symbol, an invariant tensor of second rank (3 × 3 unit diagonal matrix):

$$\delta_{ij} = \begin{cases} 1, \text{ if } i = j, \\ 0, \text{ if } i \neq j. \end{cases}$$

The components V_i of a vector V are given by its *projections* on the axes $V_i = V \cdot \hat{x}$:

$$V = V_1 \hat{x}_1 + V_2 \hat{x}_2 + V_3 \hat{x}_3 \equiv \sum_{i=1}^3 V_i \hat{x}_i$$

Einstein's convention:

 $\sum_{i=1}^{3} A_i B_i \equiv A_i B_i$ (self-repeating index is "dumb").

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of

Simple-wave equation Dispersion, non-linearity

A crash course in luid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Vector products by Levi-Civita tensor

Formula for the vector product:

$$oldsymbol{A} \wedge oldsymbol{B} = \left| egin{array}{ccc} \hat{oldsymbol{x}} & \hat{oldsymbol{y}} & \hat{oldsymbol{z}} \ A_1 A_2 A_3 \ B_1 B_2 B_3 \end{array}
ight|$$

Tensor notation (with Einstein's convention):

$$(\mathbf{A} \wedge \mathbf{B})_i = \epsilon_{ijk} A_j B_k$$

where

$$\epsilon_{ijk} = \begin{cases} 1, \text{ if } ijk = 123, 231, 312\\ -1, \text{ if } ijk = 132, 321, 213\\ 0, \text{ otherwise} \end{cases}$$

Magic identity:

$$\epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}.$$

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dvnamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

(1)

Scalar, vector, and tensor fields

Any point in space is given by its radius-vector $\mathbf{x} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$. A field is an object defined at any point of space $(x, y, z) \equiv (x_1, x_2, x_3)$ at any moment of time *t*, i.e. a function of \mathbf{x} and *t*.

Different types of fields:

- scalar $f(\mathbf{x}, t)$,
- vector v(x, t),
- tensor $t_{ij}(\boldsymbol{x}, t)$

The fields are dependent variables, and x, y, z and t - independent variables.

Physical examples: scalar fields - temperature, density, pressure, geopotential, vector fields - velocity, electric and magnetic fields, tensor fields - stresses, gravitational field.

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Differential operations on scalar fields

Partial derivatives:

$$\frac{\partial f}{\partial x} := \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y, z) - f(x, y, z)}{\Delta x},$$

and similar for other independent variables. Differential operator nabla:

$$\boldsymbol{\nabla} := \hat{\boldsymbol{x}} \frac{\partial}{\partial x} + \hat{\boldsymbol{y}} \frac{\partial}{\partial y} + \hat{\boldsymbol{z}} \frac{\partial}{\partial z}$$

Gradient of a scalar field: the vector field

grad
$$f \equiv \nabla f = \hat{x} \frac{\partial f}{\partial x} + \hat{y} \frac{\partial f}{\partial y} + \hat{z} \frac{\partial f}{\partial z}$$

Heuristic meaning: a vector giving direction and rate of fastest increase of the function *f*.

Necessary nathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to

a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Visualizing gradient in 2D

From left to right: 2D relief, its contour map, and its gradient. Graphics by Mathematica®

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations or the ocean and he atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Differential operations with vectors

Scalar product: divergence

div
$$oldsymbol{v}\equivoldsymbol{
abla}\cdotoldsymbol{v}(oldsymbol{x})=rac{\partialoldsymbol{v}_i}{\partialoldsymbol{x}_i}$$

Vector product: curl

$$\mathsf{curl}\, oldsymbol{v} \equiv oldsymbol{
abla} \wedge oldsymbol{v}(oldsymbol{x}); \quad (\mathsf{curl}\,oldsymbol{v})_i = \epsilon_{ijk} rac{\partial v_k}{\partial x_j}$$

Tensor product:

$$\boldsymbol{
abla}\otimes \boldsymbol{v}(\boldsymbol{x}); \quad (\boldsymbol{
abla}\otimes \boldsymbol{v})_{ij}=rac{\partial v_i}{\partial x_j}$$

For any \mathbf{v} , f: div curl $\mathbf{v} \equiv 0$, curl grad $f \equiv 0$, div grad $f = \nabla^2 f$, $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ - Laplacian.

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

Visualizing divergence in 2D

From left to right: vector field $\mathbf{v}(x, y) = (v_1(x, y), v_2(x, y))$, and its divergence $\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y}$. The curl $\hat{\mathbf{z}} \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \right)$ of this field is identically zero. (The field is a gradient of the previous example.) Graphics by Mathematica®

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Visualizing curl in 2D

From left to right: vector field $\mathbf{v}(x, y) = (v_1(x, y), v_2(x, y))$, and its curl $\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}$. The divergence $\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y}$ of this field is identically zero, so the field is a curl of another vector field. Graphics by Mathematica[®]

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations or the ocean and he atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

. . . .

Strain field with non-zero curl and divergence

From left to right: vector field, and its curl and divergence. ${}_{\!\! Graphics \ by \ Mathematica } {}^{\scriptscriptstyle (\! G}$

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

Useful identities

$$\nabla \wedge (\nabla \wedge \mathbf{v}) = \nabla (\nabla \cdot \mathbf{v}) - \nabla^2 \mathbf{v},$$
 (2)

$$\boldsymbol{v} \wedge (\boldsymbol{\nabla} \wedge \boldsymbol{v}) = \boldsymbol{\nabla} \left(\frac{\boldsymbol{v}^2}{2} \right) - (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \, \boldsymbol{v},$$
 (3)

$$\boldsymbol{\nabla} f \cdot (\boldsymbol{\nabla} \wedge \boldsymbol{\nu}) = -\boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} f \wedge \boldsymbol{\nu}). \tag{4}$$

<u>Proofs</u>: using tensor representation $(\nabla \wedge \mathbf{v})_i = \epsilon_{ijk}\partial_j v_k$, with shorthand notation $\frac{\partial}{\partial x_i} \equiv \partial_i$, exploiting the antisymmetry of ϵ_{ijk} , using that $\delta_{ij}v_j = v_i$, and applying the magic formula (1).

Example: proof of (2).

$$\epsilon_{ijk}\partial_j\epsilon_{klm}\partial_l\mathbf{v}_m = (\delta_{il}\delta_{jm} - \delta_{im}\delta_{jl})\partial_j\partial_l\mathbf{v}_m = \partial_i\partial_j\mathbf{v}_j - \partial_j\partial_j\mathbf{v}_i.$$

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics Simple-wave equation

ispersion, non-linearity

A crash course in luid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

.

Integration of a field along a (closed) 1D contour

Summation of the values of the field at the points of the contour times oriented line element $dI = \hat{t} dl$:

where \hat{t} is unit tangent vector, and *dl* is a length element along the contour. Positive orientation: anti-clockwise.

Necessary

Vector algebra Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

.....

Integration of a field over a 2D surface

Summation of the values of the field at the points of the surface times oriented surface element $ds = \hat{n} ds$:

$$\int \int d\boldsymbol{s}(...) \equiv \int_{\mathcal{S}} d\boldsymbol{s}(...),$$

where \hat{n} is unit normal vector. Positive orientation for closed surfaces: outwards.

Necessary nathematics

Vector algebra Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

.

Integration of a field over a 3D volume

Summation of the values of the field at the points in the volume times volume element dV.

$$\int \int \int dV(...) \equiv \int_V dV(...).$$

Necessary

Vector algebra Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Linking contour and surface integrations: Stokes theorem

$$\oint_C d\boldsymbol{l} \cdot \boldsymbol{v}(\boldsymbol{x}) = \int_{\mathcal{S}_C} d\boldsymbol{s} \cdot (\boldsymbol{\nabla} \wedge \boldsymbol{v}(\boldsymbol{x})).$$

Left-hand side: circulation of the vector field over the contour *C*. Right-hand side: curl of \boldsymbol{v} integrated over any surface S_C having the contour *C* as a base.

Necessary

Vector algebra Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporation

Hydrodynamics on a tangent plane to

rotating plane to

(5)

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Stokes theorem: the idea of proof

Circulation of the vector $\mathbf{v} = v_1 \hat{\mathbf{x}} + v_2 \hat{\mathbf{y}}$ over an elementary contour, with $dx \rightarrow 0$, $dy \rightarrow 0$, using first-order Taylor expansions:

$$v_1(x,y)dx + v_2(x+dx,y)dy - v_1(x,y+dy)dx - v_2(x,y)dy$$
$$= \frac{\partial v_2}{\partial x}dx \, dy - \frac{\partial v_1}{\partial y}dx \, dy,$$

with a *z*-component of curl \boldsymbol{v} multiplied by the *z*-oriented surface element arising in the right-hand side.

Necessary

Vector algebra Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Reat fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Linking surface and volume integrations: Gauss theorem

$$\oint_{S_V} d\boldsymbol{s} \cdot \boldsymbol{v}(\boldsymbol{x}) = \int_V dV \, \boldsymbol{\nabla} \cdot \boldsymbol{v}(\boldsymbol{x}). \tag{6}$$

Left-hand side: flux of the vector field through the surface S_V which is a boundary of the volume V. Right-hand side: volume integral of the divergence of the field.

Important. The theorem is also valid for the scalar field:

$$\oint_{S_V} d\boldsymbol{s} \cdot f(\boldsymbol{x}) = \int_V dV \, \boldsymbol{\nabla} f(\boldsymbol{x}). \tag{7}$$

lecessary

Vector algebra Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

Basic notions of wave dynamics Simple-wave equation Dispersion, non-linearity

A crash course in luid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Gauss theorem: the idea of proof

Flux of the vector $\mathbf{v} = v_1 \hat{\mathbf{x}} + v_2 \hat{\mathbf{y}} + v_3 \hat{\mathbf{z}}$ over a surface of an elementary volume, taking into account the opposite orientation of the oriented surface elements:

$$\begin{bmatrix} v_1(x + dx, y, z) - v_1(x, y, z) \end{bmatrix} dydz + \\ \begin{bmatrix} v_2(x, y + dy, z) - v_2(x, y, z) \end{bmatrix} dxdz + \\ \begin{bmatrix} v_3(x, y, z + dz) - v_3(x, y, z) \end{bmatrix} dxdy = \left(\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}\right) a$$

Necessary

Vector algebra Differential operations on scalar and vector fields

Integration in 3D space Fourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Atmosphere

Fourier series for periodic functions Consider $f(x) = f(x + 2\pi)$, a periodic smooth function on the interval $[0, 2\pi]$. Fourier series:

$$f(x) = \sum_{n=0}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right].$$

The expansion is unique du to ortogonality of the basis functions:

$$\int_0^{2\pi} dx \, \cos(nx) \cos(mx) = \int_0^{2\pi} dx \, \sin(nx) \sin(mx) = \pi \delta_{nm},$$
$$\int_0^{2\pi} dx \, \sin(nx) \cos(mx) \equiv 0.$$

The coefficients of expansion, thus, are uniquely defined:

$$a_n = \frac{1}{\pi} \int_0^{2\pi} dx \, f(x) \, \cos(nx), \quad b_n = \frac{1}{\pi} \int_0^{2\pi} dx \, f(x) \, \sin(nx)$$

Necessary

Vector algebra Differential operations on scalar and vector fields Integration in 3D space

Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

crash course in uid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

rimitive equations: tmosphere

Complex exponential form

$$e^{inx} = \cos(nx) + i\sin(nx) \Rightarrow$$
$$\cos(nx) = \frac{e^{inx} + e^{-inx}}{2}, \ \sin(nx) = \frac{e^{inx} - e^{-inx}}{2i}$$

Hence

$$f(x) = \sum_{n=0}^{\infty} \frac{(a_n - ib_n)}{2} e^{inx} + c.c \equiv \sum_{-\infty}^{\infty} A_n e^{inx}, A_n^* = A_{-n}$$

Orthogonality:

$$\int_{0}^{2\pi} dx \, e^{inx} e^{-imx} = 2\pi \delta_{nm}$$

Expression for coefficients

$$A_n = rac{1}{2\pi} \int_0^{2\pi} dx \, f(x) \, e^{-inx}$$

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space

Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in luid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

.

Fourier integral

Fourier series on arbitrary interval *L*: sin(nx), $cos(nx) \rightarrow sin(\frac{2\pi}{L}nx)$, $cos(\frac{2\pi}{L}nx)$, $\int_{0}^{2\pi} dx \rightarrow \int_{0}^{L} dx$, normalization $\frac{1}{\pi} \rightarrow \frac{1}{L}$. In the limit $L \rightarrow \infty$: $\sum_{-\infty}^{\infty} \rightarrow \int_{-\infty}^{\infty}$. Fourier-transformation and its inverse:

$$f(x) = \int_{-\infty}^{\infty} dk F(k) e^{ikx}, \quad F(k) = \int_{-\infty}^{\infty} dx f(x) e^{-ikx}.$$

Based on orthogonality:

$$\int_{-\infty}^{\infty} dx \, e^{ikx} e^{-ilx} = \delta(k-l),$$

where $\delta(x)$ - Dirac's delta-function, continuous analog of Kronecker's δ_{nm} , with properties:

$$\int_{-\infty}^{\infty} dx \, \delta(x) = 1, \quad \int_{-\infty}^{\infty} dy \, \delta(x-y) \, F(y) = F(x).$$

Necessary nathematics

Vector algebra

Differential operations on scalar and vector fields integration in 3D space

Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Multiple variables and differentiation

$$f(x, y, z) = \int_{-\infty}^{\infty} dk \, dl \, dm \, F(k, l, m) \, e^{i(kx+ly+mz)},$$
$$F(k, l, m) = \int_{-\infty}^{\infty} dx \, dy \, dz \, f(x, y, z) \, e^{-i(kx+ly+mz)}$$

Physical space $(x, y, z) \rightarrow (k, l, m)$, Fourier space. Radius-vector $\mathbf{x} \rightarrow \mathbf{k}$, "wavevector",

$$f(\boldsymbol{x}) = \int_{-\infty}^{\infty} d\boldsymbol{k} \, F(\boldsymbol{k}) \, \boldsymbol{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}}$$

Main advantage: differentiation in physical space \rightarrow multiplication by the corresponding component of the wavevector in Fourier space $\frac{\partial}{\partial x} \rightarrow ik$:

$$\frac{\partial}{\partial x}f(\mathbf{x}) = \int_{-\infty}^{\infty} d\mathbf{k} \, i\mathbf{k} \, F(\mathbf{k}) \, e^{i\mathbf{k}\cdot\mathbf{x}}$$

and similarly for other variables.

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields Integration in 3D space

Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

nolecular transport

a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Simplest wave equation

$$u_t + cu_x = 0$$

u(x, t) - dynamical variable, defined for all x: $-\infty < x < +\infty$, and t: $0 \le t < \infty$, c = const.Notation: $(...)_x = \frac{\partial(...)}{\partial x}$, $(...)_t = \frac{\partial(...)}{\partial t}$ Methode of solution 1: change of variables.

$$(x, t) \to (\xi_+, \xi_-) = (x + ct, x - ct).$$
 (9)

$$\frac{\partial \xi_{\pm}}{\partial x} = 1, \quad \frac{\partial \xi_{\pm}}{\partial t} = \pm c \Rightarrow$$
(10)

$$\frac{\partial u}{\partial t} = c \left(\frac{\partial u}{\partial \xi_{+}} - \frac{\partial u}{\partial \xi_{-}} \right),$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi_{+}} + \frac{\partial u}{\partial \xi_{-}}$$

(8)

(11)

(12)

lecessary nathematics

lector algebra

Differential operations on calar and vector fields ntegration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in luid dynamics

Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem ieal fluids: incorporating polecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

.

Simplification of the equation

$$u_t + cu_x = 0 \rightarrow 2c \frac{\partial u}{\partial \xi_+} = 0 \Rightarrow u = u(\xi_-).$$
 (13)

Function *u* determined from initial conditions:

c.l.:
$$u_{t=0} = u_0(x) \Rightarrow u = u_0(x - ct).$$
 (14)

Necessary

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Spatio-temporal evolution of a localized initial perturbation, as follows from (8)

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields ntegration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Fourier transform

Methode of solution 2: Fourier- transformation

$$u(x,t) = \frac{1}{2\pi} \int dk \, d\omega \, e^{i(kx-\omega t)} \hat{u}k, \omega + c.c..$$
(15)

Inverse transformation:

$$\hat{u}(k,\omega) = \frac{1}{2\pi} \int dx \, dt \, e^{-i(kx-\omega t)} u(x,t) + c.c.. \quad (16)$$

Transformation \times Inverse ransformation = 1, as

$$\int_{-\infty}^{\infty} dk \, e^{ik(x-x')} = \delta(x-x'), \ \int_{-\infty}^{\infty} d\omega \, e^{i\omega(t-t')} = \delta(t-t'),$$
(17)

δ - Dirac's delta. Fourier-modes: $\hat{u}(k, ω)e^{i(kx-ωt)}$ ↔ monochromatic waves. Amplitude: $|\hat{u}|$; Phase: $Φ = kx - ωt + Φ_0$, $\hat{u} = |\hat{u}|e^{iΦ}$.

Necessary mathematics

Vector algebra Differential operation scalar and vector fiel

itegration in 3D space ourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

crash course in uid dynamics

Every and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular teasport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Superposition principle

Method of Fourier \Leftrightarrow superposition principle, valid for linear systems.

$$u_t + cu_x = 0 \Rightarrow i(kc - \omega) \hat{u}(k, \omega), \ \hat{u}(k, \omega) \neq 0 \Rightarrow$$
(18)
$$\omega = c \, k, \text{dispersion relation.}$$
(19)

General solution:

$$u(x,t) = \frac{1}{2\pi} \int dk \ e^{ik(x-ct)} \hat{u}(k) + c.c. \rightarrow$$
 (20)

superposition (sum or integral) of elementary Fourier-modes.

Necessary mathematics

Vector algebra Differential operation: scalar and vector field

ntegration in 3D space ourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in luid dynamics The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Phase velocity

Speed of propagation of the phase of a monochromatic wave: phase velocity:

$$c_{ph} = rac{\omega}{k}$$

Dispersion: dependence $c = c(k) \Rightarrow$ simple wave is non-dispersive: $c_{ph} = c = \text{const.}$

Groupe velocity:

$$c_g = \frac{\partial \omega}{\partial k}$$

- speed of propagation of modulations = speed of propagation of information.

Simple wave: $c_{ph} = c_g$ (like acoustic or electromagnetic waves).

Necessary nathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics

(21)

(22

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Second-order wave equation

$$u_{tt}-c^2u_{xx}=0$$

Same change of independent variables as in the 1st-order equation:

$$(x, t) \rightarrow (\xi_+, \xi_-) = (x + ct, x - ct)$$

$$u_{tt} - c^2 u_{xx} = 0 \rightarrow 4c^2 \frac{\partial^2 u}{\partial \xi_+ \partial \xi_-} = 0 \Rightarrow$$
 (24)

General solution:

$$u = u_{-}(\xi_{-}) + u_{+}(\xi_{+}),$$

where $u_{-} + u_{+}$ - arbitrary functions, to be determined from initial conditions. (2nd order \Rightarrow 2 initial conditions required.)

(23)

(25

lecessary nathematics

Vector algebra

Differential operations on scalar and vector fields ntegration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Spatio-temporal evolution of the initial localized perturbation

Solution in the domain -5 < x < 5, 0 < t < 5. Initial Gaussian perturbation propagates along a pair of characteristic lines with slopes $\pm c$. Graphics by Mathematica[®]

Necessary mathematics

Vector algebra Differential operation:

ntegration in 3D space ourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theoren

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

.....

Introducing the simplest dispersion

Dispersion - more derivatives.

In the case of unidirectional propagation - only odd-order derivatives to respect the symmetry of the initial equation with respect to reflexions. Simplest case:adding 3rd space derivative:

$$u_t + cu_x = 0 \rightarrow u_t + cu_x + \alpha u_{xxx} = 0$$
 $\alpha = \text{const}$ (26)

Corresponds to waves in shallow channels. Dispersion relation:

$$\omega = \mathbf{c}\mathbf{k} - \alpha\mathbf{k}^3$$

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Spatio-temporal evolution of a localized initial perturbation, as follows from (26)

Necessary mathematics

Vector algebra

calar and vector fields ntegration in 3D space Fourier analysis

Basic notions of wave dynamics Simple-wave equation

Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

. . .

Non-linearity

$$u_t + cu_x = 0 \rightarrow u_t + uu_x + cu_x = 0 \Rightarrow$$
 (27)

no more superposition principle. Produces steepening and wave breaking .

Qualitative explanation : $c \rightarrow c + u \Rightarrow$ the larger the amplitude the larger the speed: a maximum moves faster than surrounding and "catches up" with the preceding part.

Korteweg - deVries equation: mutual compensation of dispersion and nonlinearity

Dispersion + non-linearity:

$$u_t + cu_x = 0 \rightarrow u_t + uu_x + cu_x + \alpha u_{xxx} = 0$$

Produces steady solitary waves.

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics Simple-wave equation Dispersion, non-linearity

A crash course in luid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating melowide treesonet

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

(28)

Primitive equations: Ocean

Primitive equations: Atmosphere

Equations of motion

Eulerian description: in terms of fluid velocity field $\mathbf{v}(\mathbf{x}, t)$, and scalar density and pressure fields $\rho(\mathbf{x}, t)$, $P(\mathbf{x}, t)$, defined at each point \mathbf{x} of the volume occupied by the fluid at any time *t*.

Euler equations

Local conservation of momentum in the presence of forcing **F**:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla \mathbf{P} + \mathbf{F},$$

Continuity equation

Local conservation of mass:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{\nu}) = \boldsymbol{0}.$$

Necessary mathematics

Vector algebra

Differential operations on calar and vector fields ntegration in 3D space Fourier analysis

Basic notions of vave dvnamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid

(29

(30

Governing equations

Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

.

Equation of state: baroclinic fluid

Fluid: thermodynamical system \Rightarrow equation of state relating *P* and ρ and closing the system (29), (30) (4 equations for 5 dependent variables). General equation of state:

$$\mathbf{P} = \mathbf{P}(
ho, \mathbf{s}),$$

 $s(\mathbf{x}, t)$ is entropy per unit mass \Rightarrow evolution equation for s required. Perfect fluid:

$$\frac{\partial \boldsymbol{s}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{s} = \boldsymbol{0}.$$

(32)

(31)

Necessary nathematics

Vector algebra Differential operations o scalar and vector fields Integration in 3D space

Fourier analysis

Basic notions of wave dynamics Simple-wave equation

A crash course in fluid dynamics

Governing equations

Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

.

Equation of state: barotropic fluid

$$P = P(\rho) \leftrightarrow s = \text{const},$$

sufficient to close the system (29), (30). Particular case: incompressible fluid. Conservation of volume per unit mass \Rightarrow zero divergence:

$$\boldsymbol{\nabla}\cdot\boldsymbol{v}=\mathbf{0},\,\Rightarrow$$
 (34)

$$\frac{\partial \rho}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \rho = \boldsymbol{0}, \text{ and } \boldsymbol{\nabla} \cdot (\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}) = -\boldsymbol{\nabla} \cdot \left(\frac{\boldsymbol{\nabla} \boldsymbol{P}}{\rho}\right) \Rightarrow$$
(35)

Pressure entirely determined by density and velocity distributions.

mathematic

(33`

Differential operations on icalar and vector fields ntegration in 3D space Fourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid

Governing equations

Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Lagrangian view of the fluid: momentum balance

Fluid \equiv ensemble of fluid parcels with time-dependent positions $\mathbf{X}(\mathbf{x}_0, t), \mathbf{X}(\mathbf{x}_0, 0) = \mathbf{x}.$

Euler - Lagrange duality: continuity of the fluid \Rightarrow any point in the flow **x** is, at the same time, a position of some fluid parcel \Rightarrow Eulerian velocity at the point $\mathbf{v}(\mathbf{x}) =$ velocity of the parcel $\mathbf{v}(\mathbf{X}, t) = \frac{d\mathbf{X}}{dt} \equiv \dot{\mathbf{X}}$. Lagrangian (material) derivative in Eulerian terms by chain differentiation:

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \frac{\partial \mathbf{x}}{\partial t} \cdot \boldsymbol{\nabla} \equiv \frac{\partial}{\partial t} + \boldsymbol{\nu} \cdot \boldsymbol{\nabla}.$$

 \Rightarrow Newton's second law for the parcel

$$\rho(\mathbf{X},t)\frac{d^{2}\mathbf{X}}{dt^{2}} = -\nabla_{\mathbf{X}}P(\mathbf{X},t) + \mathbf{F},$$

 \Leftrightarrow Euler equation (29).

Necessary nathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid

Governing equations

Euler - Lagrange duality

Energy and thermodynamics

(36)

(37

Kelvin circulation theorem

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Lagrangian view of the fluid: mass balance

Mass conservation in Lagrangian terms:

$$\rho_i(\mathbf{x})d^3\mathbf{x} = \rho(\mathbf{X}, t)d^3\mathbf{X}, \leftrightarrow \rho_i(\mathbf{x}) = \rho(\mathbf{X}, t)\mathcal{J}$$
(38)

where ρ_i is the initial distribution of density, and $d^3\mathbf{x}$ and $d^3\mathbf{X}$ are initial and current elementary volumes. The Jacobi determinant (Jacobian) in this formula is defined as the determinant:

$$\mathcal{J} = \begin{vmatrix} \frac{\partial X}{\partial x} & \frac{\partial X}{\partial y} & \frac{\partial X}{\partial z} \\ \frac{\partial Y}{\partial x} & \frac{\partial Y}{\partial y} & \frac{\partial Y}{\partial z} \\ \frac{\partial Z}{\partial x} & \frac{\partial Z}{\partial y} & \frac{\partial Z}{\partial z} \end{vmatrix} \equiv \frac{\partial(X, Y, Z)}{\partial(x, y, z)}$$

Incompressibility in Lagrangian terms: $\mathcal{J} = 1$. Taking Lagrangian time-derivative of this relation, we obtain the incompressibility condition of zero velocity divergence in Eulerian terms. Advection of entropy (32) \Leftrightarrow conservation of entropy by each fluid parcel $\dot{s} = 0$.

lecessary nathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations

Euler - Lagrange duality

Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

1st principle of thermodynamics

Reversible processes in one-phase systems:

$$\delta \epsilon = T \delta s - P \delta v,$$

 ϵ - internal energy per unit mass, $v = \frac{1}{\rho}$ - specific volume.Enthalpy per unit mass: $h = \epsilon + Pv \Rightarrow$

$$\delta h = T \delta s + v \delta P. \tag{40}$$

Energy density: sum of kinetic and internal parts:

$$m{e} = rac{
ho m{v}^2}{2} +
ho \epsilon.$$

Local conservation of energy :

$$\frac{\partial \boldsymbol{e}}{\partial t} + \boldsymbol{\nabla} \cdot \left[\rho \boldsymbol{v} \left(\frac{\boldsymbol{v}^2}{2} + h \right) \right] = 0. \tag{42}$$

Barotropic fluid:

$$\delta h = \frac{\delta P}{\rho} \Rightarrow \frac{\nabla P}{\rho} = \nabla h.$$

(39)

(41)

43

Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics Simple-wave equation

A crash course in luid dynamics

The perfect fluid

Governing equations

Energy and thermodynamics

Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Kelvin theorem

Circulation of velocity around a contour Γ consisting of fluid parcels, and moving with the fluid:

$$\gamma = \int_{\Gamma} \boldsymbol{\nu} \cdot \boldsymbol{d} \mathbf{I} = \int_{\mathcal{S}_{\Gamma}} (\boldsymbol{\nabla} \wedge \boldsymbol{\nu}) \cdot \boldsymbol{d} \mathbf{I}, \qquad (44)$$

Kelvin theorem states that

for barotropic fluids

$$\frac{d\gamma}{dt} = 0,$$

for baroclinic fluids

$$rac{d\gamma}{dt} = -\int_{\Gamma} rac{
abla P}{
ho} \cdot d\mathbf{I}.$$

Proof: direct calculation of the time-derivative of the circulation using the equations of motion, and the Lagrangian nature of Γ .

Necessary nathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of

Simple-wave equation Dispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics

(45)

(46)

Kelvin circulation theorem

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

.

Perfect vs real fluids

Perfect fluid approximation: macroscopic fluxes of mass, momentum and energy. Real fluids: corrections to these fluxes due to molecular transport. Simplest way to include them: flux-gradient relations following from Le Chatelier principle: molecular fluxes tend to restore the thermodynamical equilibrium. For any thermodynamical variable *A*

$$\mathbf{f}_{\mathcal{A}}=-k_{\mathcal{A}}\boldsymbol{\nabla}\mathcal{A},$$

where \mathbf{f}_A is related molecular flux, and k_A is molecular transport coefficient.

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics Simple-wave equation Dispersion, non-linearity

A crash course in luid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Viscosity, diffusivity, and thermal conductivity

 Viscosity corrections to the Euler equation in the incompressible case, giving the Navier - Stokes equation

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{\nabla P}{\rho} + \nu \nabla^2 \mathbf{v}, \ \nabla \cdot \mathbf{v} = 0.$$
(47)

Diffusivity corrections to the continuity equation

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{\nu}) = D \boldsymbol{\nabla}^2 \rho.$$
(48)

 Thermal conductivity corrections to the heat/temperature advection giving the heat equation

$$\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} T = \chi \boldsymbol{\nabla}^2 T.$$
(49)

 ν, D, χ are kinematic viscosity, diffusivity, and thermo-conductivity, the molecular transport coefficients for momentum, mass, and energy, respectively, all with dimension $\left[\frac{L^2}{T}\right]$

Necessary nathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics

Simple-wave equation Dispersion, non-linearity

crash course in uid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Dimensional/scale analysis. Reynolds number

Molecular transport coefficients: dimensional, value varies with changes if units. Only *non-dimensional parameters* are relevant. Typical space and velocity scales in the incompressible fluid flow: *L*, *U*. Time-scale T = L/U. Pressure scale: ρU^2 . Scaled NS equation:

$$\frac{U^2}{L} \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla P \right) = \frac{U \nu}{L^2} \nabla^2 \mathbf{v} \rightarrow \qquad (50)$$

Non-dimensional NS equation

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \frac{1}{Re} \nabla^2 \mathbf{v}$$
 (51)

 $Re = \frac{UL}{\nu}$ - Reynolds number, the true measure of viscosity. Similar, Pecklet number for diffusivity.

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dvnamics

Simple-wave equation Dispersion, non-linearity

A crash course in luid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Motion in a rotating frame Material point in a frame rotating with angular velocity Ω :

$$mrac{doldsymbol{v}}{dt}+2moldsymbol{\Omega}\wedgeoldsymbol{v}+moldsymbol{\Omega}\wedge(oldsymbol{\Omega}\wedgeoldsymbol{x})=oldsymbol{F},\ oldsymbol{v}=rac{doldsymbol{x}}{dt}$$
 (52)

m- mass, \boldsymbol{x} -current position of the point, \boldsymbol{F} - sum of forces acting on the point

Euler equations in the rotating frame +gravity:

Fluid under the influence of gravity: $m \rightarrow \rho$, $\frac{d}{dt} \rightarrow \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$, forces: pressure + gravity \Rightarrow

$$\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v} + 2\boldsymbol{\Omega} \wedge \boldsymbol{v} = -\frac{\boldsymbol{\nabla} \boldsymbol{P}}{\rho} + \boldsymbol{g}^* \qquad (53)$$

Effective gravity: gravity + centrifugal acceleration (also potential)

$$oldsymbol{g}^* = oldsymbol{g} + oldsymbol{\Omega} \wedge (oldsymbol{\Omega} \wedge oldsymbol{x})$$

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics

imple-wave equation Dispersion, non-linearity

A crash course in luid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

54

- quations in pressure oordinates
- -----

Tangent plane approximation

$$rac{\partial oldsymbol{v}}{\partial t} + oldsymbol{v} \cdot oldsymbol{
abla} oldsymbol{v} + f\hat{z} \wedge oldsymbol{v} = -rac{oldsymbol{
abla} P}{
ho} + oldsymbol{g}$$

f - plane: f = const; β - plane: $f = f + \beta y$; *f* - Coriolis parameter: $f = 2\Omega \sin \phi$, where ϕ - latitude

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

(55)

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

.

Hydrostatics. Stratification

The state of rest $\mathbf{v} \equiv 0$ is solution of (55) if hydrostatic equilibrium holds:

$$\mathsf{0}=-rac{oldsymbol{
abla} \mathsf{P}}{
ho}+oldsymbol{g}$$

The continuity equation:

$$rac{d
ho}{dt} +
ho oldsymbol{
abla} \cdot oldsymbol{v} = oldsymbol{0}$$

is satisfied by time-independent ρ in a state of rest. Statically stable states: $\rho = \rho_0(z), \rho'_0(z) \le 0 \rightarrow$

$$P=P_0(z)=-\int dz\,g\,\rho_0(z)$$

Dependence of ρ_0 on *z* is called stratification. Surfaces of constant ρ : isopycnals.

Necessary nathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporation

Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

Devenie en en en en el entre tiere tiere

Oceanic stratification

Typical density profile:

$\rho(\vec{x},t) = \rho_0 + \rho_s(z) + \sigma(x,y,z;t), \quad \rho_0 \gg \rho_s \gg \sigma.$ (56)

Hydrostatic approximation for large-scale motions:

$$g\rho + \partial_z P = 0, \Rightarrow P = P_0 + P_s(z) + \pi(x, y, z; t),$$
 (57)

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating maleguids: traceport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Further approximations.

Boussinesq approximation

Deviations of density from ρ_0 neglected in the horizontal \rightarrow

$$\frac{\partial \boldsymbol{v}_h}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}_h + f \hat{\boldsymbol{z}} \wedge \boldsymbol{v}_h = -\frac{\boldsymbol{\nabla}_h \pi}{\rho} \approx -\boldsymbol{\nabla}_h \phi, \qquad (58)$$

where $\phi = \frac{\pi}{\rho_0}$ - geopotential.

Incompressibility of water

Continuity equation splits in two:

1

$$oldsymbol{
abla}\cdotoldsymbol{v}=oldsymbol{0},\quadoldsymbol{v}=oldsymbol{v}_h+oldsymbol{\hat{z}}oldsymbol{w}.$$

$$\partial_t \rho + \mathbf{v} \cdot \nabla \rho = \mathbf{0}.$$

Necessary mathematics

Vector algebra

Differential operations on scalar and vector fields ntegration in 3D space Fourier analysis

Basic notions of wave dynamics

imple-wave equation ispersion, non-linearity

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

(59)

(60

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Full set of oceanic PE

$$\frac{\partial \boldsymbol{v}_h}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}_h + f \hat{\boldsymbol{z}} \wedge \boldsymbol{v}_h = -\frac{\boldsymbol{\nabla}_h \pi}{\rho} \equiv -\boldsymbol{\nabla}_h \phi, \qquad (61)$$

$$\partial_t \sigma + \boldsymbol{v} \cdot \boldsymbol{\nabla} \sigma + \boldsymbol{w} \rho'_{\boldsymbol{s}}(\boldsymbol{z}) = \boldsymbol{0}.$$
 (62)

$$g\frac{\sigma}{\rho_0} = -\partial_z \phi, \quad \nabla_h \cdot \mathbf{v}_h + \partial_z \mathbf{w} = \mathbf{0},$$
 (63)

Remark

Hydrostatic approximation \leftrightarrow anisotropic scaling proper for mesoscale motions:

$$W \ll U, \quad H \ll L, \quad \frac{W}{H} \sim \frac{U}{L}$$

where L, H and U, W are horizontal and vertical spatial and velocity scales, respectively.

Necessary nathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics Simple-wave equation

crash course in uid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incoroorating

Heal fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Vertical boundary conditions

Most often sufficient for our purposes: rigid lid and flat bottom:

$$w|_{z=0} = w|_{z=H} = 0$$
 (64)

Non-trivial bathymetry : fluid parcels follow the bottom profile

$$w|_{z=b(x,y)}=rac{db}{dt}=oldsymbol{v}\cdot oldsymbol{
abc} b$$

Free surface: fluid parcels move with the surface:

$$w|_{z=h(x,y;t)} = \frac{dh}{dt} = \frac{\partial h}{\partial t} + \mathbf{v} \cdot \nabla h$$

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics Simple-wave equation

A crash course in Iuid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

molecular transport Hydrodynamics on

a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

Atmosphere: pressure coordinates

Altitude \leftrightarrow Pressure \Rightarrow vertical coordinate.

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

A crash course in fluid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

second and a second second

Thermodynamics of the dry atmosphere Equation of state - ideal gas:

$$P = \rho RT, \ c_{P,V} = T\left(\frac{\partial s}{\partial T}\right)_{P,V} = const, \ c_{p} - c_{v} = R.$$
(65)

Entropy:

$$s = c_p \ln T - R \ln P + const.$$

Adiabatic process:

$$s = \text{const} \Rightarrow c_{\rho} \frac{dT}{T} - R \frac{dP}{P} = 0, \Rightarrow T = T_{s} \left(\frac{P}{P_{s}}\right)^{\frac{R}{c_{\rho}}}.$$
(67)

Potential temperature :

$$heta = T\left(rac{P_{s}}{P}
ight)^{rac{R}{c_{
ho}}}, \, s = c_{
ho}\ln heta + ext{const.}$$

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics Simple-wave equation

crash course in

(66)

(68)

luid dynamics The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

a constant a second sec

Geopotential and hydrostatics

Geopotential variation: work to lift a unit mass against gravity: $\delta \phi = g \delta z$. z = z(p) becomes a thermodynamical variable. Hydrostatic approximation:

$$\delta\phi = -\frac{RT}{P}\delta P \Rightarrow$$
(69)
$$\frac{\partial\phi}{\partial P} = -\frac{RT}{P} = -\frac{1}{\rho}.$$
(70)

Useful relation for small variations ρ , P, θ with respect to background ρ_0 , P_0 , θ_0 :

$$\theta = \theta_0 \left[\frac{\left(1 - \frac{R}{c_p}\right)P}{P_0} - \frac{\rho}{\rho_0} \right]$$

(71)

Necessary nathematics

Vector algebra Differential operations or scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dvnamics

Simple-wave equation Dispersion, non-linearity

A crash course in luid dynamics

he perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem

Real fluids: incorporating nolecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

a constant a series and a series of the seri

Elimination of ρ in Euler equations

"Triangular" relation :

$$\left(\frac{\partial P}{\partial x}\right)_{z} \left(\frac{\partial x}{\partial z}\right)_{P} \left(\frac{\partial z}{\partial P}\right)_{x} = -1 \Rightarrow \qquad (72)$$

$$\left(\frac{\partial P}{\partial x}\right)_{z} = -\left(\frac{\partial P}{\partial z}\right)_{x} \left(\frac{\partial z}{\partial x}\right)_{P} = \rho\left(\frac{\partial \phi}{\partial x}\right)_{P}.$$
 (73)

Incompressibility in pressure coordinates Lagrangian volume element in pressure coordinates:

$$ho$$
dxdydz = $-rac{1}{g}$ dxdydP

Mass conservation \Rightarrow Volume conservation in *P*.

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics

Simple-wave equation Dispersion, non-linearity

crash course in uid dynamics

The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating

Hydrodynamics on a tangent plane to a rotating planet

(74)

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

second and a second second

Adiabatic primitive equations

Equations of motion

$$di\boldsymbol{v}(\boldsymbol{v}) = \boldsymbol{\nabla}_{h} \cdot \boldsymbol{v}_{h} + \partial_{p}\omega = 0, \quad \omega = \frac{dP}{dt}.$$
(75)
$$\frac{\partial \boldsymbol{v}_{h}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}_{h} + f\hat{\boldsymbol{z}} \wedge \boldsymbol{v}_{h} = -\boldsymbol{\nabla}_{h}\phi.$$
(76)
$$\partial_{t}\theta + \boldsymbol{v} \cdot \boldsymbol{\nabla}\theta = 0.$$
(77)
$$\frac{\partial \phi}{\partial P} = -\frac{RT}{P} = -\frac{R}{P} \left(\frac{P}{P_{s}}\right)^{\frac{R}{c_{p}}} \theta.$$
(78)

Boundary conditions

Bottom: ground \equiv free surface in terms of pressure, geopotential fixed.

Top: rigid lid \equiv fixed value of pressure, e.g. tropopause.

Necessary mathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of wave dynamics Simple-wave equation Dispersion, non-linearity

A crash course in luid dynamics

Euler - Lagrange duality Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem eal fluids: incorporating relocutes troesport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

rimitive equations: Ocean

Primitive equations: Atmosphere

Equations in pressure coordinates

a constant a series and a series of the set of the set

Boussinesq approximation for atmosphere Varying background density in atmosphere: $\rho_0 = \rho_0(z)$. Boussinesq approximation in x, y, z coordinates, with $\rho = \rho_0(z) + \tilde{\rho}, P = P_0(z) + \tilde{\rho}, \theta = \theta_0(z) + \tilde{\theta}, (...)$ omitted below:

$$\frac{\partial \boldsymbol{v}_h}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}_h + f \hat{\boldsymbol{z}} \wedge \boldsymbol{v}_h = -\boldsymbol{\nabla}_h \phi, \qquad (79)$$

with geopotential $\phi = \frac{p}{\rho_0}$. Hydrostatics:

$$-\frac{\partial\phi}{\partial z} - \frac{p}{\rho_0^2}\frac{\partial\rho_0}{\partial z} - g\frac{\rho}{\rho_0} = 0.$$
 (80)

Equation of state (ideal gas) + (71) \rightarrow

$$-\frac{\partial\phi}{\partial z}+b=0, \tag{81}$$

 $b = g \frac{\theta}{\theta_0}$ - buoyancy, $\frac{\partial b}{\partial t} + \mathbf{v} \cdot \nabla b = 0$ for adiabatic motions.

Continuity equation \rightarrow anelastic equation:

$${oldsymbol
abla} \cdot (
ho_0(z) {oldsymbol v}) = 0$$

Necessary nathematics

Vector algebra Differential operations on scalar and vector fields Integration in 3D space Fourier analysis

Basic notions of vave dynamics Simple-wave equation

A crash course in luid dynamics The perfect fluid Governing equations Euler - Lagrange duality Energy and thermodynamics Kelvin circulation theorem Real fluids: incorporating molecular transport

Hydrodynamics on a tangent plane to a rotating planet

Primitive equations for the ocean and the atmosphere

Primitive equations: Ocean

Primitive equations: Atmosphere

coordinates