
Mathematics of
the atmosphere
and oceans 1

V. Zeitlin

Introduction
What is GFD?
Vortices, jets, and
waves

Hydrodynamics,
a refresher
Equations of the
perfect fluid
Geometric view of
the perfect fluid
Dissipation

Primitive
equations (PE)
Rotation,
sphericity, tangent
plane
approximation
PE : Ocean
PE : Atmosphere

Vortices, jets,
and waves in PE
Conservation of
potential vorticity
(PV)
Stationary jets
and vortices
Linear waves
What we lose
imposing
hydrostatics

First conclusions.

1. Modeling large-scale atmospheric and
oceanic motions: Primitive equations in

Geophysical Fluid Dynamics

V. Zeitlin

Laboratory of Dynamical Meteorology,
Sorbonne University & École Normale Supérieure,

Paris, France

Mathematics of the atmosphere and oceans,
SUSTECH, 2023



Mathematics of
the atmosphere
and oceans 1

V. Zeitlin

Introduction
What is GFD?
Vortices, jets, and
waves

Hydrodynamics,
a refresher
Equations of the
perfect fluid
Geometric view of
the perfect fluid
Dissipation

Primitive
equations (PE)
Rotation,
sphericity, tangent
plane
approximation
PE : Ocean
PE : Atmosphere

Vortices, jets,
and waves in PE
Conservation of
potential vorticity
(PV)
Stationary jets
and vortices
Linear waves
What we lose
imposing
hydrostatics

First conclusions.

Plan
Introduction

What is GFD ?
Vortices, jets, and waves

Hydrodynamics, a refresher
Equations of the perfect fluid
Geometric view of the perfect fluid
Dissipation

Primitive equations (PE)
Rotation, sphericity, tangent plane approximation
PE : Ocean
PE : Atmosphere

Vortices, jets, and waves in PE
Conservation of potential vorticity (PV)
Stationary jets and vortices
Linear waves
What we lose imposing hydrostatics

First conclusions.



Mathematics of
the atmosphere
and oceans 1

V. Zeitlin

Introduction
What is GFD?
Vortices, jets, and
waves

Hydrodynamics,
a refresher
Equations of the
perfect fluid
Geometric view of
the perfect fluid
Dissipation

Primitive
equations (PE)
Rotation,
sphericity, tangent
plane
approximation
PE : Ocean
PE : Atmosphere

Vortices, jets,
and waves in PE
Conservation of
potential vorticity
(PV)
Stationary jets
and vortices
Linear waves
What we lose
imposing
hydrostatics

First conclusions.

Geophysical Fluid Dynamics : space view
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GFD : what’s that ?

Hydrodynamics in all its complexity plus :

I Rotating frame
I Variable temperature/density effects
I Spherical geometry (large- and meso-scales)
I Fluid in the complex domains (coasts,

topography/bathymetry)
I Multi-phase fluid (water vapor, ice)

But !
Some of these additional effects, like fast rotation, allow to
simplify the analysis
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Scales :

Horizontal scales
I Large : planetary 104 km
I Medium : atmosphere - synoptic, 103 km ; ocean -

meso-scale 10− 102 km
I Small : atmosphere - meso-scale 1− 10 km ; ocean -

sub-meso scale 1 km
I Very small : meters

Scales of interest : large and medium.

Vertical scales
Synoptic motions in the atmosphere : whole troposphere, or
its significant part, O(10km).
Meso-scale motions in the ocean : whole oceanic depth, or its
significant part, O(1km).
⇒ Strong disparity between horizontal and vertical scales.
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Atmospheric vortices in data
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Atmospheric vortices : satellite view
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Atmospheric jet in data
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Oceanic vortices in satellite data
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Oceanic vortices : satellite view of plankton
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Atmospheric waves
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Where the governing equations come from :

I Mechanical system ⇒ Newton’s 2nd law ↔ momentum
conservation.

I Continuous medium ⇒ local mass conservation
I Thermodynamical system ⇒ 1st and 2nd laws of

thermodynamics, equation of state
I Dissipative effects ⇒ flux-gradient relations.
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Dynamics of the perfect fluid : Lagrange’s view
Description in terms of positions of fluid parcels X (a, t),
along their trajectories, where a = (a, b, c) are initial
positions (Lagrangian labels) and v(X , t) = dX

dt ≡ Ẋ is their
velocity.
Newton’s 2nd law :

ρ(X , t)
d2X
dt2

= −∂P(X , t)

∂X
≡ −∇XP(X , t), (1)

where ρ and P are density and pressure in the fluid. Mass
conservation :

ρi (a)d3a = ρ(X , t)d3X ,↔ ρi (x) = ρ(X , t)J (X , a) (2)

where ρi is initial distribution of density, J (X , a) = ∂(X ,Y ,Z)
∂(a,b,c)

is the Jacobi determinant (Jacobian). dJ
dt = ρi

ρ∇X · Ẋ
No heat exchange between parcels :

ds

dt
= 0, (3)

where s(X , t) is the entropy of the parcel.
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Dynamics of the perfect fluid : Euler’s view
Description in terms of velocity, density and pressure fields at
a fixed point of space : v(x , t), ρ(x , t), P(x , t).
Euler-Lagrange duality : ∀ x , t ∃ X (t) = x . Chain
differentiation →

d

dt
=

∂

∂t
+ v ·∇. (4)

Newton’s 2nd law :

ρ

(
∂v
∂t

+ v ·∇v
)

= −∇P. (5)

Continuity (mass conservation) equation :

∂ρ

∂t
+ ∇ · (ρv) = 0↔ d

dt
(ρJ ) =

dρ

dt
J + ρ

dJ
dt

=
dρi
dt

= 0
(6)

Momentum conservation :
∂ρv
∂t

+ ∇ · (ρv ⊗ v + P1) = 0 (7)
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Adding thermodynamics : equation of state

General equation of state

P = P(ρ, s), (8)

where s - entropy per unit mass ;

I Barotropic (isentropic) fluid :

s = const ⇒ P = P(ρ), (9)

I Baroclinic fluid :
P = P(ρ, s), (10)

I Incompressible - particular case of barotropic- fluid :

J = 1↔∇ · v = 0⇒ dρ

dt
=
∂ρ

∂t
+ v ·∇ρ = 0. (11)

⇒ pressure is not independent variable.
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Thermodynamics : reminder
1st principle, "dry" thermodynamics

dε = Tds − Pdv , (12)

where ε - internal energy and v = 1
ρ - volume per unit mass.

Enthalpy per unit mass : h = ε+ Pv :

dh = Tds + vdP. (13)

Energy density of the fluid :

e =
ρv2

2
+ ρε. (14)

Local conservation of energy :

∂e

∂t
+ ∇ ·

[
ρv
(

v2

2
+ h

)]
= 0. (15)

Barotropic fluid :

δh =
δP

ρ
↔ ∇P

ρ
= ∇h. (16)
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Volume-preserving diffeomorphisms

Flow of the incompressible fluid in the domain D in the
absence of singularities → bijective mapping a 7→ X (a, t),
a,X ∈ D of D onto itself : volume-preserving diffeomorphism
belonging to infinite-dimensional Lie group. Lagrangian
equations of motion : Euler-Lagrange equations

d

dt

δL
δẊ
− δL
δX

= 0 (17)

for variational (Hamilton’s) principle with action

S =

∫
dt

∫
d3aL; L = ρi (a)

Ẋ
2
(a, t)

2
+P(a, t) (J (X , a)− 1) ,→

(18)
geodesic equations on the group manifold, after relabeling
a → ã : ρi (a)d3a = d3ã (mass-weighted labels). P -
Lagrange multiplier to the incompressibility constraint.



Mathematics of
the atmosphere
and oceans 1

V. Zeitlin

Introduction
What is GFD?
Vortices, jets, and
waves

Hydrodynamics,
a refresher
Equations of the
perfect fluid
Geometric view of
the perfect fluid
Dissipation

Primitive
equations (PE)
Rotation,
sphericity, tangent
plane
approximation
PE : Ocean
PE : Atmosphere

Vortices, jets,
and waves in PE
Conservation of
potential vorticity
(PV)
Stationary jets
and vortices
Linear waves
What we lose
imposing
hydrostatics

First conclusions.

Dissipative phenomena as molecular fluxes

Perfect fluid : local conservation laws with macroscopic fluxes
of related quantities. Dissipation : correction of the
macroscopic fluxes of

I momentum
I mass
I internal energy (heat)

by corresponding molecular fluxes, calculated from the flux -
gradient relations (LeChatelier principle) :

f A = −kA∇A, (19)

A - a thermodynamical variable, f A - corresponding
molecular flux, kA - transport coefficient.
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Introducing viscosity
Stress tensor in momentum conservation corrected by viscous
stresses - (density of) molecular momentum flux :

ρv ⊗ v → ρv ⊗ v − µ∇⊗ v (20)

µ = ρν, µ - dynamic, ν - kinematic viscosities

Incompressible case : Navier -Stokes (NS) equation

∂v
∂t

+ v ·∇v = −∇P

ρ
+ ν∇2v , ∇ · v = 0. (21)

Reynolds’ number
Dimensionless form of the NS equation :

∂v
∂t

+ v ·∇v = −∇P

ρ
+

1
Re

∇2v , (22)

where Re = UL/ν, U, L -typical scales of velocity and length.
Synoptic motions far from the boundaries : Re →∞.
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Diffusivity, thermal conductivity

Molecular fluxes of mass and heat :

−D∇ρ, −κ∇T (23)

Corrected continuity equation :

∂ρ

∂t
+ ∇ · (ρv) = D∇2ρ. (24)

Equation of heat/temperature

∂T

∂t
+ v ·∇T = χ∇2T . (25)

Non-dimensional form → Péclet numbers
Pe = UL/D, Pe = UL/χ, small for synoptic motions far from
the boundaries.
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Motion in the rotating frame

Material point in the rotating frame :

m
dv
dt

+ 2mΩ ∧ v + mΩ ∧ (Ω ∧ x) = F , (26)

where v = dx
dt , and F is a sum of external forces.

Euler equations with rotation
Replacements m→ ρ, d

dt →
∂
∂t + v ·∇, F → −∇P :

∂v
∂t

+ v ·∇v + 2Ω ∧ v + Ω ∧ (Ω ∧ x) = −∇P

ρ
, (27)

Including rotation in the variational principle

L → L+ R · Ẋ ; R : ∇X ∧R = 2Ω. (28)
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Euler and continuity equations

dvr
dt
−

v2
λ + v2

φ

r
− 2Ω cosφvλ + g = −1

ρ
∂rP,

dvλ
dt

+
vrvλ − vφvλ tanφ

r
+ 2Ω (− sinφvφ + cosφvr )

= − 1
ρr cosφ

∂λP,

dvφ
dt

+
vrvφ + v2

λ tanφ
r

+ 2Ω sinφvλ = − 1
ρr
∂φP,

dρ

dt
+ ρ

[
1
r2
∂(r2vr )

∂r
+

1
r cosφ

(
∂(cosφvφ)

∂φ
+
∂vλ
∂λ

)]
,

d

dt
=

∂

∂t
+ vr∂r +

vφ
r
∂φ +

vλ
r cosφ

∂φ

Traditional approximation : green + red → out,
r → R = const, centrifugal acceleration neglected.
Non-traditional approximation : green → out.
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Tangent plane approximation (traditional)

R

g

Ω

y

x

z

∂v
∂t

+ v ·∇v + f ẑ ∧ v = −∇P

ρ
+ g∗ (29)

Coriolis parameter f = 2Ω sinφ, ẑ - unit z, effective gravity :

g∗ = g + Ω ∧ (Ω ∧ x) (30)

"Traditional" : g∗ ≈ g (correction several %). f - plane :
f = const ; β - plane : f = f + βy ;
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Hydrostatics. Stratification

State of rest v = (u, v ,w) ≡ 0 solution of (29) if hydrostatic
equilibrium holds :

0 = −∇P

ρ
+ g

Continuity equation : satisfied by time-independent ρ in a
state of rest.

dρ

dt
+ ρ∇ · v = 0

Statically stable states : ρ = ρ0(z), ρ′0(z) ≤ 0.
Dependence of ρ0 on z : stratification.
Hydrostatic approximation : vertical accelerations small -
valid for large scales ⇔ large masses.

dw

dt
� g . (31)
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Ocean : observations and approximations
Typical averaged density profile :

ρ(x , t) = ρ0+ρs(z)+σ(x , y , z ; t), ρ0 � ||ρs || � ||σ||. (32)

Temperature (T) and salinity (S) : density variations
δρ ∝ (δT , δS).
Hydrostatics :

P = P0 + Ps(z) + π(x , y , z ; t), (33)
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Equations of motion
Incompressibility and hydrostatics :

∇ · v = 0, gρ+ ∂zP = 0, (34)

Euler equations in Boussinesq approximation :

∂vh

∂t
+ v ·∇vh + f ẑ ∧ vh = −∇hπ

ρ
≈ −∇hφ. (35)

φ = π
ρ0

- geopotential, v = vh + ẑw ≡ ux̂ + v ŷ + w ẑ .
Mass conservation :

dρ

dt
≡ ∂tρ+ v ·∇ρ = 0. (36)

Boundary conditions :
Rigid lid and flat bottom : w |z=0 = w |z=H = 0.
Non-trivial bathymetry b(x , y) and/or free-surface :
h(x , y , t) :

w |z=b =
db

dt
, w |z=h =

dh

dt
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Atmosphere : pressure coordinatees

One-to-one correspondence between altitude and pressure →
pressure as vertical coordinate.
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Thermodynamics of the dry atmosphere
Equation of state - ideal gas :

P = ρRT , cp,v = T

(
∂s

∂T

)
P,V

= const, cp − cv = R.

(37)
Entropy :

s = cp lnT − R lnP + const. (38)

Adiabatic process :

s = const ⇒ cp
dT

T
− R

dP

P
= 0,⇒ T = Ts

(
P

Ps

) R
cp

. (39)

Potential temperature :

θ = T

(
Ps

P

) R
cp

, s = cp ln θ + const. (40)
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Geopotential
dφ = gdz , where z = z(P) via hydrostatics, and thus
becomes a thermodynamical variable.

Hydrostatics

dφ = −RT

P
dP →

∂φ

∂P
= −RT

P
= −1

ρ
→ (41)

∂φ

∂P
= −R

P

(
P

Ps

) R
cp

θ (42)
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Elimination of ρ in Euler equations
"Triangular" relation :(

∂P

∂x

)
z

(
∂x

∂z

)
P

(
∂z

∂P

)
x

= −1 ⇒ (43)

(
∂P

∂x

)
z

= −
(
∂P

∂z

)
x

(
∂z

∂x

)
P

= ρ

(
∂φ

∂x

)
P

. (44)

Incompressibility in pressure coordinates
Lagrangian view : mass element → volume element in
pressure coordinates in hydrostatic approximation :

ρdxdydz = − 1
g
dxdydP (45)

Mass conservation ⇒ volume conservation with pressure as
vertical coordinate ⇒ divergence-less velocity.
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Adiabatic equations of motion

div(v) = ∇h · vh + ∂pω = 0, ω ≡ dP

dt
. (46)

∂vh

∂t
+ v ·∇vh + f ẑ ∧ vh = −∇hφ. (47)

∂tθ + v ·∇θ = 0. (48)

∂φ

∂P
= −RT

P
= −R

P

(
P

Ps

) R
cp

θ. (49)

Remark : Coordinates (x , y ,P) curvilinear, but curvature
terms are neglected in divergence and material derivative ↔
weak curvature of the isobars, mostly valid for synoptic
motions.
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"Pseudo-height" coordinate

New vertical coordinate :

z̄ = z0

(
1−

(
P

Ps

) R
cp

)
≡ z0

(
1−

(
P

Ps

) γ−1
γ

)
, (50)

z0 =
γ

γ − 1
Ps

gρs
≈ 28km. (51)

Pseudo- density :

r : rdz̄ = ρdz = − 1
g
dP. (52)
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Mass conservation :

dxdydP = −gr(z̄)dxdydz̄ ⇒ (53)

r

(
∇h · vh +

∂w̄

∂z̄

)
+ w̄

∂r

∂z̄
= 0, v = (vh, w̄ =

dz̄

dt
). (54)

Approximation z̄ � z0 :

∇h · vh +
∂w̄

∂z̄
= − w̄

r

∂r

∂z̄
=

w̄

(γ − 1)z0
(
1− z̄

z0

) ≈ 0. (55)
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Equations of motion

∂vh

∂t
+ v ·∇vh + f ẑ ∧ vh = −∇hφ, (56)

−g θ
θ0

+
∂φ

∂z̄
= 0, (57)

∂θ

∂t
+ v ·∇θ = 0; ∇ · v = 0. (58)

Identical to oceanic PE with the exchange σ → −θ.
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Conservation of PV in the PE model

Absolute vorticity :

ζa = ζ + ẑf , ζ = ∇ ∧ v , ∇ · ζa = 0, (59)

Application of ∇∧ to PE + "hydrodynamic identity" :

v ·∇v =
1
2
∇v2 − v ∧ (∇ ∧ v) (60)

→ equation for ζa :

dζa
dt

= ζa ·∇v +
g

ρ0
ẑ ∧∇ρ. (61)

Baroclinic torque
Last term in the r.h.s. : creation of horizontal vorticity by
density gradients.
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Conservation of potential vorticity (PV)

PV ≡ q = ζa ·∇ρ,
dq

dt
= 0. (62)

PV anomaly (zero at the rest state) : PVA = q − f ρ′s(z).

Proof by direct calculation :

∂t (ζa ·∇ρ) = (∂tζa) ·∇ρ+ ζa ·∇(∂tρ)

= ∇ρ · (∇ ∧ (v ∧ ζa))− ζa ·∇ (v ·∇ρ)

= −∇ · (∇ρ ∧ (v ∧ ζa))− ζa ·∇ (v · ∇ρ)

= −∇ · (v (ζa ·∇ρ)) + ∇ · (ζa (v ·∇ρ))

− ζa ·∇ (v · ∇ρ) = −v ·∇ (ζa ·∇ρ) . (63)

using

∇ · v = ∇ · ζa = 0, ∇A · (∇ ∧ B) = −∇ · (∇A ∧ B)

A ∧ (B ∧ C ) = B (A · C )− C (A · B)
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Symmetry with respect to Lagrangian relabeling
Volume -preserving parcel relabeling in the action principle :

a → a′ = a + δa(a, t),
∂(a′, b′, c ′)

∂(a, b, c)
= 1⇒

∇a · δa = 0⇒ δa = ∇a ∧ δα(a, t). (64)

Chain differentiation :

Ẋ
∣∣∣
a′

= Ẋ
∣∣∣
a

+ (∇a ⊗ X ) · ȧ|a′ ⇒ δẊ = − (∇a ⊗ X ) · ˙δa.

Invariance of action (mass-weighted labels) :

δS =

∫
dt

∫
d3a Ẋ ·δẊ = −

∫
dt

∫
d3a ˙δa ·ν = 0, (65)

where ν = (∇a ⊗ X ) · Ẋ ≡ (∇a ⊗ X ) · v , with duality :

ν = (∇a ⊗ X ) · v ⇔ v = (∇X ⊗ a) · ν. (66)

Integration by parts in space and time →∫
dt

∫
d3a

d

dt
(∇a ∧ ν) · δα = 0⇒ d

dt
(∇a ∧ ν) = 0.

(67)
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Lagrangian meaning of PV conservation

PV in terms of ν and Lagrangian variables, using (66) :

PV := (∇X ∧ v) ·∇ρ = (∇X ∧ [ν · (∇X ⊗ a)]) ·∇ρ

Right-hand side is equivalent to
∑

i
∂(νi ,ai ,ρ)
∂(X ,Y ,Z) ≡

∂(ν,a,ρ)
∂(X ,Y ,Z) ,

where i = 1, 2, 3 indicates the x , y , z- components of a
vector. Using ∂(a,b,c)

∂(X ,Y ,Z) = ρi (a) :

PV = ρi (a)
∂(ν, a, ρ)

(a, b, c)
= ρi (a) [(∇a ∧ ν) ·∇aρ] ,

and from (67) and ρ̇ = 0, PV is Lagrangian invariant :

d

dt
[(∇ ∧ v) · ρ] = 0 (68)
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Stationary solutions, jets

I Trivial stationary solution : a state of rest in hydrostatic
equilibrium.

I Non-trivial stationary solutions :
I β- plane : zonal flows u = U(y , z) in geostrophic and

hydrostatic equilibrium

−f (y)U(y , z) = −∂yΦ(y , z), v = w = σ = 0, (69)

g
ρs(y , z)

ρ0
= −∂zΦ(y , z) (70)

I f - plane : arbitrary oriented (zonal or meridional) flows.

Jets : localized U(y , z) → nonzero PV anomaly
(−∂yU)(∂zρs) 6= 0.
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Polar coordinates

(x , y , z)→ (r , θ, z)

Horizontal velocity :

vh = (ur̂ + v θ̂)

Horizontal divergence :

∇h · vh =
1
r

(∂r (ru) + ∂θv))

Lagrangian derivative :

d

dt
= ∂t + u∂r +

v

r
∂θ + w∂z
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Stationary solutions : vortices
Primitive equations for horizontal motion

dvh

dt
+
(
f +

v

r

)
ẑ ∧ vh + ∇hφ = 0, (71)

(72)

Vortex solutions
Stationary axisymmetric solution on the f - plane :
cyclo-geostrophic + hydrostatic equilibria :
u = w = σ = 0, v = V (r , z)(

f +
V (r , z)

r

)
V (r , z) = ∂rΦ(r , z) (73)

g
ρs(r , z)

ρ0
= −∂zΦ(r , z) (74)
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Small perturbations over the state of rest on the
f - plane

Linearized equations :
Perturbations about the state of rest : v = 0, with linear
stratification on the f - plane, f = const. Linearized
equations :

ut − fv + φx = 0,
vt + fu + φy = 0, (75)

φz +
g

ρ0
σ = 0, σt + wρ′s = 0,

ux + vy + wz = 0, (76)

where u, v , w - three components of velocity perturbation, φ
- geopotential perturbation, σ - perturbation of density, ρs -
background density ρ′s = const.
Notation : (...)x := ∂x(...) etc.
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Dispersion relation for Fourier-mode solutions
Elimination of σ and w :

ut − fv + φx = 0,
vt + fu + φy = 0, (77)

ux + vy − N−2φzzt = 0,

a system of PDEs with constant coefficients. N2 = −gρ′s
ρ0

-
Brunt - Väisälä frequency.
Fourier-transform↔ harmonic waves :

(u, v , φ) = (u0, v0, φ0)e i(ωt−k·x) + c.c.,⇒ (78)

System of homogeneous algebraic equations for (u0, v0, φ0),
with solvability condition giving dispersion equation

ω

(
ω2 −

(
N2 k

2
x + k2

y

k2
z

+ f 2

))
= 0. (79)
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Physical meaning of solutions

Three roots of this equation provide :
I Stationary solutions ω = 0 ;

correspond to linearized PV conservation equation :

∂tqL = 0, qL = −(vx − uy )
ρ0

g
N2 + f σz , (80)

and hence to vortex motions.
I Propagative waves with dispersion relation :

ω = ±

√
N2

k2
x + k2

y

k2
z

+ f 2 (81)

and two senses of propagation, internal inertia-gravity
waves (IGW). They are supra-inertial : |ω| ≥ f .



Mathematics of
the atmosphere
and oceans 1

V. Zeitlin

Introduction
What is GFD?
Vortices, jets, and
waves

Hydrodynamics,
a refresher
Equations of the
perfect fluid
Geometric view of
the perfect fluid
Dissipation

Primitive
equations (PE)
Rotation,
sphericity, tangent
plane
approximation
PE : Ocean
PE : Atmosphere

Vortices, jets,
and waves in PE
Conservation of
potential vorticity
(PV)
Stationary jets
and vortices
Linear waves
What we lose
imposing
hydrostatics

First conclusions.

Waves on the background of a jet

Linearized equations :
Perturbations about a stationary jet :
u = U(y , z), v = w = 0, with stratification ρs(z). Linearized
equations :

ut + Uux + vUy + wUz − fv + φx = 0,
vt + Uvx + fu + φy = 0, (82)

φz +
g

ρ0
σ = 0, σt + Uσx + wρ′s = 0,

ux + vy + wz = 0, (83)

Fourier-transformation → waves propagating along the jet :

(u, v , φ) = (u0, v0, φ0)(y , z)e i(ωt−k x) + c.c., (84)

In general, complex eigen-frequencies ω ⇒ growing
eigen-modes → instability of the jet.
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Full linearized non-hydrostatic equations

g
σ

ρ0
= −φz → wt + g

σ

ρ0
= −φz . (85)

Elimination of buoyancy b = g σ
ρ0

and vertical velocity w :

b = −φz −wt , −
(
∂tt + N2) (ux + vy ) +φzzt = 0⇒ (86)

ut − fv = −φx , (87)
vt + fu = −φy , (88)(

∂tt + N2) (ux + vy )− φzzt = 0, (89)

Dispersion relation :

ω

[
ω2 −

(
N2 k2 + l2

k2 + l2 + m2 + f 2 m2

k2 + l2 + m2

)]
= 0 (90)

Typically in the atmosphere and ocean

N2 > f 2 ⇒ f 2 ≤ ω2 ≤ N2 (91)
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Hydrostatic vs non-hydrostatic dispersion curves

Frequency as a function of the modulus of horizontal
wavenumber k at fixed vertical wavenumber m = 1, and
N = 4, f = 1 as given by hydrostatic (DispH) vs
non-hydrostatic (Disp) dispersion relations.
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I Large-scale atmospheric and oceanic motions : same set
of PE, modulo changes of variables

I Crucial property of PE : Lagrangian conservation of PV.
I Main dynamical entities in PE : vortices, jets, and waves
I Vortices : slow motions carrying non-zero PV anomaly,

have zero frequency in linear approximation,
I Jets : particular case of vortex motions.
I Inertia-gravity waves : fast motions bearing no PV

anomaly
I Frequencies of wave and vortices are separated by a

spectral gap [0, f ], frequencies of the waves bounded
from below by f .

I Non-hydrostatic effects, if included, impose an upper
boundary to the wave spectrum.
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