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Motivation

Disparity of typical horizontal (L) and vertical (H) scales of
synoptic motions in the atmosphere and meso-scale motions
in the ocean : Example : typical weather system with
L ∼ 1000km, H ∼ 10km → rough description can be
provided by vertical averaging of PE.
Key element : averaging between material (Lagrangian)
surfaces moving with the fluid..
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Material surfaces
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Vertical averaging

I Take horizontal momentum equation in conservative
form :

∂t (ρvh) +∇ · (ρv ⊗ vh) + f ẑ ∧ (ρvh) +∇hπ = 0, (1)

and integrate between a pair of material surfaces z1,2 :

w |zi =
dzi
dt

= ∂tzi + vh ·∇hzi i = 1, 2. (2)

I Use Leibniz formula and get :

∂t

∫ z2

z1

dzρvh + ∇h ·
∫ z2

z1

dz (ρvh ⊗ vh) +

f ẑ ∧
∫ z2

z1

dz (ρvh) = −∇h

∫ z2

z1

dzπ −∇hz1 π|z1 +

∇hz2 π|z2 , (3)
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I Use density advection and incompressibility equations
and similarly get

∂t

∫ z2

z1

dzρ+ ∇h ·
∫ z2

z1

dzρvh = 0, (4)

∂t(z2 − z1) + ∇h ·
∫ z2

z1

dzvh = 0 (5)

I Introduce vertical averages : 〈F 〉 =

∫ z2
z1

dz F

z2−z1 and obtain
averaged equations :

∂t ((z2 − z1)〈vh〉) + ∇h · ((z2 − z1)〈vh ⊗ vh〉) +

f (z2 − z1)f ẑ ∧ 〈vh〉 = −∇h

∫ z2

z1

dzπ −∇hz1 π|z1

+ ∇hz2 π|z2 , (6)

∂t ((z2 − z1)ρ) + ∇h · ((z2 − z1)〈ρvh〉) = 0. (7)

∂t(z2 − z1) + ∇h · ((z2 − z1)〈vh〉) = 0 (8)
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I Introduce mean density ρ̄ := 〈ρ〉, and use hydrostatics
to get,

π(x , y , z , t) ≈ −g ρ̄(z − z1) + π|z1 (x , y , t). (9)

I Use the mean-field (= columnar motion) approximation :

〈vh ⊗ vh〉 ≈ 〈vh〉 ⊗ 〈vh〉, 〈ρvh〉 ≈ 〈ρ〉〈vh〉. (10)

and get Master Equation for the layer :

ρ̄(z2 − z1)(∂tvh + vh · ∇vh + f ẑ ∧ vh) =

− ∇h

(
−g ρ̄(z2 − z1)2

2
+ (z2 − z1) π|z1

)
− ∇hz1 π|z1 +∇hz2 π|z2 . (11)

I Pile up layers, with lowermost boundary fixed by
topography, and uppermost free or fixed.

Standard shallow-water models : ρ̄ = const.
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1-layer RSW : z1 = 0, z2 = h

∂tv + v · ∇v + f ẑ ∧ v + g∇h = 0 , (12)

∂th +∇ · (vh) = 0 . (13)

⇒ 2d barotropic gas dynamics, with h playing the role of
density, and the equation of state P = gh2

2 , in the presence of
the Coriolis force.
In the presence of non-trivial topography b(x , y) : h→ h − b
in the second equation.

g f/2
z

h

v

x

y

Columnar motion.
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2-layer RSW, flat bottom, rigid lid : z1 = 0, z2 = h,
z3 = H = const

∂tvi + vi · ∇vi + f ẑ ∧ vi +
1
ρi
∇πi = 0 , i = 1, 2; (14)

∂th +∇ · (v1h) = 0 , (15)

∂t(H − h) +∇ · (v2(H − h)) = 0 , (16)

π1 = (ρ1 − ρ2)gh + π2 . (17)

g f/2

z

x

h

H

p2

p1

v2

v1 rho1

rho2
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2-layer RSW with a free surface and flat bottom :
z1 = 0, z2 = h1, z3 = h1 + h2

∂tv2 + v2 · ∇v2 + f ẑ ∧ v2 = −g∇(h1 + h2) (18)

∂tv1 + v1 · ∇v1 + f ẑ ∧ v1 = −g∇(rh1 + h2), (19)

∂th1,2 +∇ · (v1,2h1,2) = 0 , (20)

where r = ρ1
ρ2
≤ 1 - density ratio, and h1,2 - thicknesses of

the layers.

g f/2

z

x

h1

v2

v1 rho1

rho2
h2
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Atmospheric vs oceanic models

Standard atmospheric shallow-water models : vertical
averaging of Primitive Equations in pseudo-hight pressure
coordinates, supposing constant mean potential temperature
θ layer-wise. Layers upside-down : static stability ⇒ θ
increasing with height. Constant geopotential at the ground,
and pressure is not ! ⇒ ground = "free surface". Upper layer
bounded by an isobaric surface.
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Two-layer atmospheric RSW model

h2

h1

 

v2

v1

θ2

θ1


∂tv1 + (v1 · ∇)v1 + f ẑ ∧ v1 = −g∇(h1 + h2),

∂tv2 + (v2 · ∇)v2 + f k̂ ∧ v2 = −g∇(h1 + αh2),
∂th1 +∇ · (h1v1) = 0,
∂th2 +∇ · (h2v2) = 0,

(21)

α = θ2
θ1
≥ 1 - stratification parameter.



Mathematics of
the atmosphere
and oceans 2

V. Zeitlin

Averaging of PE

RSW models

RSW from action
principle
Lagrangian RSW
Action for RSW
Action for 2-RSW
Beyond the
standard RSW
Conservation laws

Waves vs
vortices in RSW
Wave-spectrum
Stationary jets
and vortices

Waves vs vortices
in 2-RSW
Wave-spectrum
Stationary jets
and vortices

Instabilities

RSW models as
hyperbolic PDEs
Reminders
1-layer RSW
2-layer RSW

Conclusions

Lagrangian view of 1-layer RSW

RSW : ensemble of fluid columns of variable depth moving in
the plane. Trajectories of columns :

(x , y)→ (X (x , y ; t),Y (x , y ; t))

(x , y) - initial positions.
Velocity of the column :

(
Ẋ , Ẏ

)
= (u(X ,Y ; t), v(X ,Y ; t)).

Volume conservation :

h(X ,Y ; t) dX dY = hI (x , y) dx dy , ⇒ (22)

h is not an independent variable :

h(X ,Y ; t) =
hI (x , y)

J2
, (23)

where J2 = ∂(X ,Y )
∂(x ,y) - Jacobian in 2 dimensions.
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Lagrangian equations of motion
Momentum equations :

Ẍ − f Ẏ = −g∂Xh = − g

J2

∂(h,Y )

(x , y)
,

Ÿ + f Ẋ = −g∂Y h = − g

J2

∂(X , h)

(x , y)
,

(24)

with h(X ,Y ; t) = hI (x ,y)
J2

. To be solved with initial
conditions : Ẋ (x , y , 0) = uI (x , y), Ẏ (x , y , 0) = vI (x , y).
"Straightening" of h by additional change of labels :
hI → H = const in mass-weighted labels (a, b).
Euler-Lagrange equations for the action S =

∫
dt LRSW in

mass-weighted variables :

LRSW =

∫
dadb

[
Ẋ + Ẏ

2
+

f

2

(
XẎ − Y Ẋ

)
− gh(X ,Y )

2

]
,

(25)
with variations calculated with (23) give (24).
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Hydrostatics and columnar motion approximations
in variational principle
Lagrangian for a layer of incompressible fluid with unit density
on the tangent plane to a rotating planet, with gravity :

L =

∫
d3a

[
Ẋ

2
(a, t)

2
+

f

2
(ẑ ∧ X (a, t)) · Ẋ (a, t)

− g ẑ · X (a, t) + P(a, t) (J (X , a)− 1)] , (26)

with a = (a, b, c), X = (X ,Y ,Z ).
I Mass-weighted labels :

∫
d3a =

∫∞
−∞ dadb

∫ H
0 dc

I Hydrostatics : Ż � (Ẋ , Ẏ ) → Ż out.
I Columnar motion : X = X (a, b, t),Y = Y (a, b, t) ⇒

J (X , a) =
∂(X ,Y )

∂(a, b)

∂Z

∂c
⇒ Z = J −1

2 c = h(X ,Y ; t)c/H.

(27)
After (explicit) integration by c , L = LRSW .
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Lagrangian form of 2-layer RSW equations

Ẍ i + f ẑ ∧ Ẋ i = −g∇X i

(
r i−1h1 + h2

)
, i = 1, 2. (28)

X i = (Xi ,Yi ) functions of Lagrangian labels (x , y), and

h(Xi ,Yi ; t) = hIi (x , y)
∂ (x , y)

∂ (Xi ,Yi )
, i = 1, 2. (29)

"Foreign" h in (28) is considered as a function of "native"
X . Lagrangian has three entries L = L1 + L2 + L12, with

Li = ρi

∫
dxdy

(
Ẋ 2
i + Ẏ 2

i

2
− ghi (X ,Y )

2

)
, i = 1, 2, (30)

L12 = ρ1

∫
dx1dy1

∫
dx2dy2 δ (X 1(x1, y1)− X 2(x2, y2)) .

(31)
To vary with respect to e.g. X 1 dx2dy2 → dX2dY2. Jacobian,
and hence h2, emerge via (29). Integration over dX2dY2 is
lifted by delta-function, which makes h2 a function of X1,Y1.
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Thermal rotating shallow water (TRSW) model
Replacing in (26) g → b = g ρ

ρ0
, where

ḃ(X , t) = 0,⇒ b(X , t) = bi (a, b, c)

transforms L into Lagrangian for non-hydrostatic PE. Hydrostatic
and columnar motion approximations, bi = bi (a, b) →

LTRSW =

∫
dadb

[
Ẋ + Ẏ

2
+

f

2

(
XẎ − Y Ẋ

)
− b(Y ,Y ) h(X ,Y )

2

]
,

(32)
Corresponding Eulerian equations can be as well obtained by
ρ̄→ ρ̄(x , y , t) in the master equation (11) : ∂tv + v ·∇v + f ẑ ∧ v = −b∇h − h

2∇b ≡ 1
h∇

bh2

2 ,
∂th + ∇ · (vh) = 0,
∂tb + v · ∇b = 0.

(33)
⇒ dynamics of an ideal gas with density h, entropy b, and

pressure P =
bh2

2
in a rotating frame.
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(Serre-)Green-Naghdi equation for rotating fluid
Inserting results of columnar motion approximation :

Z =
∂(a, b)

∂(X , Y )
c = h(X ,Y ; t)c/H (34)

in the Lagrangian of rotating Euler equations (26), and not
imposing hydrostatics gives :

LGN =

∫
dadb

[
Ẋ + Ẏ

2
+

ḣ(X ,Y )

6
+

f

2

(
XẎ − Y Ẋ

)
− gh(X ,Y )

2

]
,

(35)
where the expression (34) of h in terms of X h = (X , Y ) to
be used while calculating variations, which gives :

Ẍ h + f ẑ ∧ Ẋ h = −g∇hh(X h)− 1
3 h(X h)

∇h ·
(
h2(X h)ḧ(X h)

)
,

(36)
⇔ Green-Naghdi equation with rotation (subscript omitted)

∂tv +v ·∇v + f ẑ ∧v +g∇h+
1
3h

∇
(
h2(∂t + v ·∇)2h

)
= 0.
(37)
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Miyata-Choi-Camassa equations for rotating fluid

Relaxing hydrostatic approximation in the two-layer model
with a rigid lid :

∂tv i + v i ·∇vi + f ẑ ∧ v i +
1
ρi
∇πi +

1
3hi

∇
(
h2
i (∂t + v i ·∇)2hi

)
= 0 , (38)

∂thi +∇ · (vihi ) = 0 , i = 1, 2, (39)

π1 = (ρ1 − ρ2)gh1 + π2 , (40)

with no summation over repeated i .
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Action symmetries ⇒ conservation laws in RSW
I Local mass conservation (embedded) :

∂th +∇ · (hv) = 0 →
∫

dxdy h = const (41)

I Local momentum conservation (symmetry to
translations in the absence of rotation) :

∂t(hv) +∇ ·
(
hv ⊗ v + g

h2

2

)
= −f ẑ ∧ (hv) → (42)∫

dxdy hv = const, if f ≡ 0 (43)

I Local energy conservation (symmetry to time-shifts) :

∂te +∇ ·
(

vh
(

v2

2
+ gh

))
= 0→

∫
dxdy e = const

(44)

e = h
v2

2
+ g

h2

2
(45)
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Lagrangian conservation law in RSW : PV
Potential vorticity :

q =
ζ + f

h
, (46)

ζ = vx − uy - relative vorticity, ζ + f - absolute vorticity.
Lagrangian conservation of PV :

dq

dt
= (∂t + v · ∇) q = 0, (47)

Follows by combining vorticity equation obtained by
cross-differentiation of the equations for two components of
velocity :

d(ζ + f )

dt
+ (ζ + f )∇ · v = 0, (48)

and mass conservation in the form :
dh

dt
+ h∇ · v = 0. (49)

Eulerian expression : time-independence of any integral

CF =

∫
D

dxdy hF(q), (50)

D - flow domain, F - arbitrary function.
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Lagrangian vorticity and PV

Relative vorticity ζ in Lagrangian form :

ζ =
∂Ẏ

∂X
−∂Ẋ
∂Y

=
∂(Ẏ ,Y )

∂ (X ,Y )
− ∂(X , Ẋ )

∂ (X ,Y )
=

1
J2

[
∂(Ẏ ,Y )

∂ (x , y)
− ∂(X , Ẋ )

∂ (x , y)

]
,

(51)
Lagrangian expression for PV :

q =
ζ + f

h
=

1
hI

[
∂(Ẏ ,Y )

∂ (x , y)
− ∂(X , Ẋ )

∂ (x , y)
+ f J2

]
. (52)

Symmetry of LRSW with respect to volume- (⇒ J2− ⇒ h−)
preserving relabeling

δx = −∂yδχ, δy = ∂xδχ ⇒

Lagrangian conservation q̇ = 0.
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Eulerian conservation laws in 2-layer RSW

I Overall momentum (in the absence of the Coriolis force)

M =

∫
dxdy (ρ1h1v1 + ρ2h2v2) ,

I Mass layer-wise

ρi

∫
dxdy hi , i = 1, 2,

I Energy :

E =

∫
dxdy

[(ρ1

2
h1v1

2 +
ρ2

2
h2v2

2
)

+
(ρ1

2
gh2

1 +
ρ2

2
gh2

2

)
+ ρ1gh1h2

]
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Lagrangian conservation laws in 2-layer RSW : PV

Potential vorticities layer-wise :

q1 =
f + ∂xv1 − ∂yu1

h1
, q2 =

f + ∂xv2 − ∂yu2

h2
,

are Lagrangian invariants :

diqi
dt

= 0, i = 1, 2 (53)

where
di
dt

= ∂t = ui∂x + vi∂y
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Energy and PV conservation in Serre - Green -
Naghdi equations

Energy

E =

∫
dxdy

(
h
v2

2
+ g

h2

2
+

h2(∇ · v)2

6

)
= const (54)

Potential vorticity
Volume-preserving parcel relabeling in the action principle ⇒
PV conservation :

q =
ζ + f + 1

3J (∇ · v), h)

h
, (∂t + v ·∇)q = 0, (55)

with relative vorticity ζ = ẑ ·∇ ∧ v .
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Linearized equations on the f - plane, and their
solutions
Small perturbations about the state of rest with
vh = 0, h = H0 = const, f = const :{

∂tvh + f ẑ ∧ vh + g∇hη = 0,
∂η + H0∇h · vh = 0,

(56)

vh = (u, v) - velocity perturbation, η - free-surface
perturbation. Fourier-transformation (solutions : harmonic
waves) (u, v , η) = (u0, v0, η0)e i(ωt−k·x) + c .c ., Solvability
condition of the resulting algebraic system → dispersion
relation between the frequency and wave-number :

ω
(
ω2 − gH0k2 − f 2) = 0. (57)

Roots : 1) stationary solutions ω = 0 ↔ linearized PV
conservation : ∂tqL = 0, qL = vx − uy − f

H0
η ⇒ vortex

motions.
2) propagative waves

ω =
√
gH0k2 + f 2 ≥ f . (58)
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Dispersion diagram in 1-layer RSW

Dispersion relation for inertia-gravity waves. c =
√
gH0 = 1,

f = 1 , ω < 0 not shown. ω = 0 also displayed to illustrate
the spectral gap between wave and vortex motions.
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Linear waves in Green-Naghdi equations on the
f -plane
Linearized GN system

{
∂tvh + f ẑ ∧ vh + ∇h

(
gη + H0

3 ∂
2
ttη
)

= 0,
∂η + H0∇h · vh = 0,

(59)

Dispersion relation

ω

(
ω2 −

(
g − H0

3
ω2
)
H0k2 − f 2

)
= 0⇒ (60)

Vortex motions with ω = 0 and dispersive waves with
frequency bounded from above and below, like in PE :

ω = ±
√

gH0k2 + f 2

1 + H0
3 k2

, f ≤ |ω| ≤
√

3g
H0
. (61)
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Vorticity waves on the β- plane

If v = (u, v) is non-divergent in the RSW model, it is given
by a streamfunction :

u = −∂yψ, v = ∂xψ

and vorticity equation (48) on the β- plane becomes :

(∂t+v ·∇)(∇2ψ+f0+βy) = ∂t∇2ψ+J
(
ψ,∇2ψ

)
+β∂xψ = 0.

(62)
Linearization → ∂t∇2ψ + β∂xψ = 0. S Harmonic wave
solution ψ ∝ e i(ωt−kx−ly) exists, if

ω = −β k

k2 + l2
⇒ (63)

Eastward- (leftward) propagating Rossby waves
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Dispersion relation for Rossby waves

Frequency ω as a function of zonal wavenumber k at a fixed
meridional wavenumber l 6= 0.
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Stationary zonal jets
Stationary solution of the full nonlinear system : 1-
dimensional zonal flow u = U(y), h = H(y), v = 0 in
geostrophic equilibrium :

−f (y)U(y) = gH ′(y) . (64)

Jet : localized U(y) ⇒ localized H ′(y) ⇒ pressure front.
Stationary jet orientation is arbitrary on the f - plane.
Bickley jet on the f - plane :

V = −g∆η

fL
sech2 (x/L) , H = H0 −∆η tanh (x/L) (65)
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1
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d

η/
∆η

−1.5 −1 −0.5 0 0.5 1 1.5

0.95

1
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x/R
d

PV
/f

Span-wise profiles of velocity , upper panel, thickness, middle
panel, and PV, lower panel.
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Axisymmetric vortices in polar coordinates
(x , y)→ (r , θ) ⇒ v = ur̂ + v θ̂, d

dt = ∂t + u∂r + (v/r)∂θ
RSW equations :

du

dt
− v2

r
− fv = −g ∂rh , (66a)

dv

dt
+

uv

r
+ fu = − g

r
∂θh , (66b)

∂th +
1
r
∂r (hru) +

1
r
∂θ(hv) = 0 . (66c)

Exact solution : axisymmetric vortex with
u = 0, v = V (r), h = H(r) in cyclo-geostrophic equilibrium(

V (r)

r
+ f

)
V (r) = g H ′(r) (67)

Analogous solution in TRSW with axisymmetric buoyancy
B(r) - vortex in thermo - cyclo-geostrophic equilibrium :(

V (r)

r
+ f

)
V (r) = B(r)H ′(r) +

H(r)

2
B ′(r). (68)
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Example of localized vortex

Velocity and relative vorticity (upper row), and thickness
(lower row) of localized cyclonic (left column) and
anticyclonic (right column) vortices. Stretched Chebyshev
grid is superimposed in the lower row.
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Artist’s view of shallow vortex dynamics : mean
flow, vortices and waves (and topography)
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Linearized equation of motion
Linearisation about state of rest with thicknesses H1,2 :

∂tv1 + f ẑ ∧ v1 +∇ (η1 + η2) = 0,
∂tη1 + H1∇ · v1 = 0,
∂tv2 + f ẑ ∧ v2 +∇ (rη1 + η2) = 0,
∂tη2 + H2∇ · v2 = 0.

(69)

Below H1 = H2 = H
2 , for simplicity. Barotropic-baroclinic

decomposition v± =
√
rv1 ± v2, η± = 2

(√
rη1 ± η2

)
,→

∂tv+ + f ẑ ∧ v+ + g 1+
√
r

2 ∇η
+ = 0,

∂tη
+ + H∇ · v+ = 0,

∂tv− + f ẑ ∧ v− + g 1−
√
r

2 ∇η
− = 0,

∂tη
− + H∇ · v− = 0.

(70)

Two RSW subsystems with effective gravities 1±
√
r

2 g →

ω2
± = c2

±k
2 + f 2, c± =

√
gH

1±
√
r

2
, (71)

+ two roots ω± = 0 corresponding to PV’s conservation.
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Inertia-gravity waves dispersion in 2-layer RSW

Dispersion relation for inertia-gravity waves in the 2-layer
RSW model. c+ = 1, c− = .3, f = 1 (non-positive values
ω ≤ 0 not shown).
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Stationary 2-layer zonal jets

Stationary solutions : geostrophic equilibria layer-wise for
either ui or vi , i = 1, 2 :

−fUi (y) = g
(
r i−1(H1 + η′1(y)) + H2 + η′2(y)

)
, i = 1, 2,

(72)
r - density ratio.
Example : upper-layer zonal atmospheric Bickley jet on the
f - plane (in non-dimensional terms, α - potential
temperatures ratio) :

U1 = 0, η1 =
1

α− 1
tanh(y),

U2 = sech2(y), η2 =
−1
α− 1

tanh(y). (73)
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Upper atmospheric jet
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Baroclinic upper-layer Bickley jet : Span-wise profiles of :
normalised zonal velocity (upper panel) Ui , thickness anomaly
η̄i (middle panel), PV anomaly (lower layer) of the baroclinic
Bickley jet. Lower (upper) layer : continuos (dashed).
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Stationary 2-layer vortices

{ ∂v i
∂t + v · ∇v i +

(
f + vi

r

)
ẑ ∧ v i + g∇(r i−1h1 + h2) = 0,

∂hi
∂t +∇ · (hiv i ) = 0, i = 1, 2.

(74)
v i = (ui , vi ) - velocity in layer i counted from the top, hi -
thickness of layer i , and density ratio is r = ρ1/ρ2 < 1.
Stationary solutions on the f -plane- cyclo-geostrophic
equilibria layer-wise : ui = 0, vi = Vi (r), hi = Hi (r)

Vi

(
Vi

r
+ f

)
= −g∂r (r i−1H1 + H2) , i = 1, 2. (75)
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Upper-layer atmospheric vortex
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Left : radial profiles of azimuthal velocity of the upper-layer
vortex with at s = 1.37, Right : corresponding radial profiles
of thickness.
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Barotropic instability

Localized jet in RSW (see above) :

ū = 0, v̄ = −V0 sech2 (x/L) , h = H0+η̄ = H0−∆η tanh (x/L) ,

V0 = g∆η
fL - peak velocity, L -jet width, H0 - mean height.

Small perturbations u, v , η : ||u||, ||v ||, ||η|| � 1

u → u, v → v̄ + v , η → η̄ + η

Non-dimensional linearized equations :
Ro (∂tu + v̄∂yu)− v + ∂xη = 0,
Ro (∂tv + u∂x v̄ + v̄∂yv) + u + ∂yη = 0,
Ro (∂tη + ∂x(uη̄) + v̄∂yη + η̄∂yv) + Bu (∂xu + ∂yv) = 0.

(76)
Ro = V0

fL , Bu =
R2
d

L2 = gH0
f 2L2 .
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Reduction to a system of ODEs
Fourier-transform in stream-wise direction

(u, v , η) = (ikû, v̂ , η̂) exp{i(ky − ωt)}+ c.c. →

Eigenproblem for eigenvalues ω and eigenvectors
a = (û, v̂ , η̂) at fixed k :

Ma = c a

with

M =

 v̄ 1
Ro k2 − 1

Ro k2∂x
1
Ro + ∂x v̄ v̄ 1

(∂x η̄ + η̄∂x) + Bu
Ro ∂x η̄ + Bu

Ro v̄

 .

(77)
Solution : reduction to an algebraic eigenproblem by spatial
discretization using Chebyshev collocation method. Complex
eigenvalues ω = ωr + iωi⇒ instability with growth rate |ωi |.
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Long-wave stability diagram and most unstable
mode for a jet with Ro = 0.1, Bu = 10
Left : phase velocity (top) and growth rate (bottom) of
long-wave unstable modes.
Right : Phase portrait (velocity and thickness anomalies) of
the most unstable mode.
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Baroclinic instability
Localized upper-layer jet in 2-layer RSW (see above)

ū1 = 0, η̄1 =
1

α− 1
tanh(y),

ū2 = sech2(y), η̄2 =
−1
α− 1

tanh(y).

Same-approach → long-wave stability diagram and most
unstable mode (upper & lower layers) at Ro = 0.1, Bu = 10 :
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Kelvin-Helmholtz instability in 2-layer RSW
1D (no rotation) 2-layer RSW under a rigid lid :

∂tu1 + u1∂xu1 + ρ−1
1 ∂xπ =0 , (78a)

∂tu2 + u2∂xu2 + ρ−1
2 ∂xπ + g ′∂xη =0 , (78b)

∂t(H1 − η) + ∂x((H1 − η)u1) =0 , (78c)
∂t(H2 + η) + ∂x((H2 + η)u2) =0 , (78d)

H = H1 + H2 = const, g ′ = g(ρ2 − ρ1)/ρ2 ≡ g∆ρ2.
Steady state u1,2 = U1,2, η = 0, π = const. Linearization :

D1u1 + ρ−1
1 ∂xπ =0 , (79a)

D2u2 + ρ−1
2 ∂xπ + g ′∂xη =0 , (79b)
− D1η + H1∂xu1 =0 , (79c)
D2η + H2∂xu2 =0 , (79d)

where D1,2 = ∂t + U1,2∂x .
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Instability criterion

Elimination of variables →
ρ1

H1
D2

1η +
ρ2

H2
D2

2η − g∆ρ∂2
xxη = 0. (80)

Fourier-transform η = η̄e ik(x−ct) + c.c. ⇒ quadratic equation
for phase velocity c with discriminant

D = g∆ρ

(
ρ1

H1
+
ρ2

H2

)
− (U1 − U2)2 ρ1

H1

ρ2

H2
, (81)

which is negative (→ imaginary eigenfrequencies → linear
instability) for strong velocity shears

|U1 − U2| >

√
g∆ρ

(
H1

ρ1
+

H2

ρ2

)
.
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1D quasi-linear systems
Quasi-linear system :

∂tVi (x , t)+
N∑
j=1

Aij

(
~V
)
∂xVj(x , t) = Bi

(
~V
)
, i = 1, 2, ...,N.

(82)
Let ~l (a) - left eigenvectors and ξ(a) - related eigenvalues,
a = 1, 2, ... : ~l (a) · A = ξ(a)~l (a), ⇒

~l (a) ·
(
∂t ~V + A ◦ ∂x ~V

)
= ~l (a) ·

(
∂t ~V + ξ(a)∂x ~V

)
:= ~l (a) · ~̇V →

(83)
Advection along a characteristic :

dx

dt
= ξ(a) ⇒ (84)

~l (a) · ~̇V = ~l (a) · ~B (85)

- ordinary differential equations.
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Hyperbolic systems :

Quasi-linear system is hyperbolic if all of N eigenvalues ξ(a)

real and different .

Riemann invariants :
If ~l (a) = const (or integrating factor exists) - Riemann
variables (invariants if ~B = 0) :

r (a) = ~l (a) · ~V :,
dr (a)

dt
= ~l (a) · ~B (86)

Shocks :
Intersection of characteristics ↔ derivatives of Riemann
invariants become infinite in finite time.
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1D SW model as a hyperbolic system

Quasi - linear form of the SW equations :

∂t

(
u
h

)
+

(
u 1
h u

)
∂x

(
u
h

)
= 0, (87)

Eigenvectors and eigenvalues :

~l± = (±
√
h, 1), ξ± = u ±

√
h. (88)

Riemann invariants :

r± = u ± 2
√
h,

dr±

dt±
= 0,

d

dt±
≡ ∂t + ξ±∂x . (89)
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Breaking in SW model

Equation for derivatives of Riemann invariants :
D± ≡ ∂x r±

dD±

dt±
+ ∂xξ

±D± = 0, ξ± =
3
4
r± +

1
4
r∓, ⇒ (90)

dD±

dt±
+

3
4
(
D±
)2

+
1
4
D±D∓. (91)

Suppose one invariant is zero identically ⇒ Riccati equation
for remaining D along the characteristic :

dD

dt
+

3
4

(D)2 = 0, → D ∝ (DI + t)−1 (92)

⇒ singularity in finite time.
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1.5D RSW in Lagrangian variables
Change of Lagrangian labels x = x(a), "straightening" initial
hI (x)→ H = const. Hence J = ∂X/∂a = H/h(X , t), and
g ∂Xh = ∂aP , where P = gH/(2J2) - Lagrangian pressure.
Non-dimensional Lagrangian equations :

u̇ − v + ∂aP = 0,
v̇ + u = 0,
J̇ − ∂au = 0,

(93)

Quasilinear form v is not an independent variable :

∂av = Q(a)− J (94)

⇒ quasi-linear system :(
u̇

J̇

)
+

(
0 −J−3

−1 0

)
∂a

(
u
J

)
=

(
v
0

)
. (95)
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Eigenvectors and eigenvalues

Left eigenvectors of the advection matrix :(
1 ,±J−

3
2

)
Left eigenvalues :

µ± = ±J−
3
2

Riemann invariants : r± = u ± 2J−
1
2 , obey the following

equations :
ṙ± + µ±∂ar± = v . (96)

Expressions of original variables in terms of r± :

u =
1
2

(r++r−), J =
16

(r+ − r−)2 > 0, µ± = ±
(
r+ − r−

4

)3

.

(97)
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Wave-breaking
Equations for D± = ∂ar±

Ḋ±+µ±∂aD±+
∂µ±
∂r+

D+D±+
∂µ±
∂r−

D−D± = ∂av = Q(α)−J .

(98)
In terms of derivatives along the characteristics :
dD
dt±

= Ḋ + µ±∂aD, as

dD±
dt±

+
∂µ±
∂r+

D+D± +
∂µ±
∂r−

D−D± = Q(α)− J . (99)

Generalized Riccati equations. Qualitative analysis of Riccati
equations :
1. If initial relative vorticity Q − J = ∂av is sufficiently

negative, breaking always takes place whatever initial
conditions,

2. If relative vorticity is positive, as well as the derivatives
of the Riemann invariants at the initial moment,
breaking never takes place.
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Conservation laws and Rankine-Hugoniot
conditions
Conservative form of the one-layer 1.5D RSW equations :

(hu)t + (hu2 + 1
2gh

2)x − fhv = 0,
(hv)t + (huv)x + fhu = 0,
ht + (hu)x = 0.

(100)

Weak solutions : conservation of mass and momentum across
a discontinuity→ Rankine-Hugoniot (RH) conditions

−U [hu] +
[
hu2 + gh2/2

]
= 0,

−U [hv ] + [huv ] = 0,
−U [h] + [hu] = 0,

(101)

U - speed of the discontinuity, [A]- jump of any quantity A
across the discontinuity, following a fluid parcel :
[A] = Afront −Arear . Physically relevant solutions : dissipation
of total energy E across the discontinuity :

− U [E ] +
[
(E + gh2/2)u

]
≤ 0 with E =

h

2
(gh + u2 + v2),

(102)
analog of the gas dynamics entropy condition.
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Curved shocks
Shock in a reference frame formed by normal and tangential
unit vectors (n, s), and moving at the local speed of the
shock n Cn.

Cnn

s

A

B

(S)

V

Velocity and Bernoulli function in the moving frame :

ū =

(
ū(n)

ū(s)

)
loc

=

(
u(n) − Cn

u(s)

)
loc

B̄ = gh + ū2/2

(103)
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Rankine-Hugoniot conditions in the moving frame


−Cn [h] +

[
hu(n)

]
= 0,

−Cn
[
hu(n)

]
+
[
hu(n)2 + 1

2gh
2] = 0,

−Cn
[
hu(s)

]
+
[
hu(n)u(s)

]
= 0.

(104)

Jump in B̄ follows from combining the first and the second
RH conditions (104) :

[
B̄
]

= −g

4
[h]3

hf hr
. (105)

Subscripts : f - front, r - rear.
Relation to PV jump :

hū(n) [q] = −∂s
[
B̄
]
. (106)
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PV generation by shocks
For moving shocks of any shape :

[q] =
g

4hū(n)
∂s

[h]3

hf hr
. (107)

Rate of vorticity change in volume V :
d

dt

∫
V
hq dV = −

∫
(S)

hū [q] dS =
[
B̄
]
front
−
[
B̄
]
rear

. (108)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

y/
R

e

t=6.0

PV production behind a breaking equatorial Kelvin wave.
Positive (negative) PV : continuous (dashed). Arrow : PV
flux.
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Atmospheric 2-layer model in one dimension
without rotation



∂tu1 + u1∂xu1 − fv1 + g∂x(h1 + h2) = 0 ,
∂tv1 + u1(f + ∂xv1) = 0 ,
∂tu2 + u2∂xu2 − fv2 + g∂x(h1 + αh2) = 0 ,
∂tv2 + u2(f + ∂xv2) = 0 ,
∂th1 + ∂x(h1u1) = 0 ,
∂th2 + ∂x(h2u2) = 0 ,

(109)

u1,2, v1,2 - components of velocity in lower (1) and upper (2)
layers, h1,2 - thicknesses, α = θ2

θ1
> 1 - stratification

parameter.
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Quasi-linear form, hyperbolicity, characteristic
equation

System (109) has standard quasi-linear form :

∂tf + A(f )∂x f = b(f ). (110)

where f = (u1, u2, v1, v2, h1, h2),
b = (fv1,−fu1, fv2,−fu2, 0, 0), and 6× 6 matrix A easily
recovered from (109). Hyperbolicity : left eigenvalues of A
real and different. ⇒ propagation velocities along the
characteristics c(x , t).
Characteristic equation det(A− cI) = 0, if "advective"
characteristics c = u1 and c = u2 are discarded :[

(u1 − c)2 − gh1

] [
(u2 − c)2 − αgh2

]
− g2h1h2 = 0, (111)

Complex solutions ⇒ hyperbolicity loss
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Linearized model

Solutions of the system linearized over the state of rest
h1(2) = H1(2) - speeds of linear gravity waves in the system :

c2
± = g(H1 + αH2)

1±
√

∆

2
, (112)

where

∆ = 1− 4H1H2(α− 1)

(H1 + αH2)2 =
(H1 − αH2)2 + 4H1H2

(H1 + αH2)2 . (113)

Stable stratification α > 1, → 0 < ∆ < 1 and c2
± > 0, ⇒ ck

(k = 1, . . . , 4) are real and different ⇒ linearised system is
hyperbolic. Slower solutions c2

− - baroclinic, faster solutions
c2

+ - barotropic waves.
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Geometric proof of possible hyperbolicity loss
Define p = u1−c√

gh1
, r = u2−c√

αgh2
, and rewrite characteristic

equation as
(p2 − 1)(r2 − 1) = 1/α (114)

Solutions : intersections of the curve (114) and straight line

r =
√

d
αp −

u2−u1√
αgh2

, where d = h1
h2
.

Hyperbolicity criterion :

|u2 − u1|√
gh1

≤


√

α−1
d if d ≤ α,√

α−1
α if d ≥ α,

(115)
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Problem with RH conditions in 2 layers
Exchange terms with "foreign" hi in momentum equations ⇒
impossible to write 2-layer RSW equations (109) as pure
conservation laws :

∂t fj +∇ · F j(f ) = dj(f ).

Only h1,2 and the total momentum density u1h1 + u2h2 are
conserved → the system of available RH conditions is
incomplete → some extra ad hoc condition needed.
Usually : condition of energy loss in one of the layers, but no
universal rule.
−U[u1h1 + u2h2] +

[
u2
1h1 + u2

2h2 + g
h2
1
2 + gα

h2
2
2 + gh1h2

]
= 0,

−U[v1h1] + [u1v1h1] = 0,
−U[v2h2] + [u2v2h2] = 0,
−U[h1] + [h1u1] = 0,
−U[h2] + [h2u2] = 0,

(116)
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RSW models :

I obtained either by vertical averaging between material
surfaces or from the Hamilton’s principle, under
approximations of columnar motion and hydrostatics

I both methods allow for “improving” RSW by relaxing the
constraints of

I horizontally uniform density/potential temperature →
TRSW models

I hydrostatics → Green-Naghdi models

I contain a specific Lagrangian invariant, PV
I display both linear waves and vortex solutions, separated

by a spectral gap in the f - plane approximation
I hyperbolic, capture wave-breaking on nonlinear level
I hyperbolicity loss happens in multi-layer models when

velocity shear is too strong → relation to the
Kelvin-Helmholtz instability.
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