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RSW in a right half f -plane
Linearized RSW equations with a straight "coast" at x = 0 :

ut − fv + gηx = 0,
vt + fu + gηy = 0,
ηt + H0(ux + vy ) = 0,
u|x=0 = 0.

(1)

Substituting (u, v , η) =
∫

dldω (ū0, v̄0, η̄0)e i(ly−ωt) + c .c . in
(1) and eliminating ū0, v̄0 → ODE for η̄0 :

η̄′′0 + (ω2 − f 2 − gH0l2)η̄0 = 0. (2)

As

ū0 = i
l η̄0 − ωη̄′0
ω2 − f 2 , (3)

boundary condition for η̄0(x) is

fl η̄0 − ωη̄′0
∣∣
x=0 = 0. (4)
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RSW waves in the half-plane
Solutions of two types :

I Free inertia-gravity waves :

ω2 − f 2 − gH0l2 ≡ k2 > 0, (5)

η̄0 ∝ e±ikx , ⇒ ω2 = f 2 + gH0(k2 + l2). (6)

I Trapped boundary Kelvin waves :

ω2 − f 2 − gH0l2 ≡ −κ2 < 0, (7)

η̄0 ∝ e−κx , ⇒ κ > 0. (8)

Boundary condition :

fl η̄0 − ωη̄′0
∣∣
x=0 = 0 ⇒ κ = −fl

ω
,

ω2 − f 2 − gH0l2 + gH0
f 2l2

ω2 = 0 ω2 = gH0l2, no dispersion.

κ > 0 ⇒ ω = −
√

gH0l − unidirectional propagation.
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Dispersion diagram of the 2-layer RSW with a
lateral boundary
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Dispersion relation for internal-gravity and Kelvin waves in
the 2-layer RSW model. Baroclinic Kelvin waves are not
shown. Upper surface : barotropic inertia-gravity waves, lower
surface : baroclinic inertia-gravity waves, plane : barotropic
Kelvin waves.
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Reflexion of inertia-gravity waves

Scaling with time in units of f −1, and distances - in units of
Rd =

√
gH0
f , the deformation radius.

Any "free" wave is a sum of incident and reflected waves :

(u, v , η) = (ui , vi , ηi ) + (ur , vr , ηr )

(ui , vi , ηi ) = Ai

(
kω + il

ω2 − 1
,

lω − ik

ω2 − 1
, 1
)

e i(kx+ly−ωt) + c.c.,

(ur , vr , ηr ) = Ar

(−kω + il

ω2 − 1
,

lω + ik

ω2 − 1
, 1
)

e i(−kx+ly−ωt) + c.c..

Boundary condition :

ui + ur |x=0 = 0, ⇒ Ar = Ai
kω + il

kω − il
, ω2 = 1+ k2 + l2. (9)

Snell’s law.
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Shallow-water model with a shelf.
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Linearized non-dimensional equations in the presence of
topography :

ut − v + ηx = 0,
vt + u + ηy = 0,

ηt + (Hu)x + (Hv)y = 0. (10)

H - unperturbed depth of the fluid.

I Abrupt shelf : typical scale L << Rd ↔ L
Rd

= ε.
I Gentle-slope shelf : typical scale L ∼ Rd

Fourier-transform and reduction to a single equation :
(u, v , η) = (ū0(x), v̄0(x), η̄0(x))e i(ly−ωt) + c.c. →

(
H η̄′0

)′
+ (ω2 − 1− l2H − l

ω
H ′)η̄0 = 0. (11)
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Abrupt shelf

Asymptotic analysis in ε :
I "Open-sea" domain :

η̄
(h)
0
′′ + (ω2 − 1− l2)η̄

(h)
0 = 0. (12)

Solution - trapped wave : η̄(h)
0 = Ae−κx , κ > 0

κ2 = l2 + 1− ω2. (13)

Suppose : κ = κ0 + εκ1 + ..., ω = ω0 + εω1 + ....
I "Coastal" domain :

1
ε2

(
H(ξ)η̄

(c)
0 (ξ)′

)′
+

(
ω2 − 1− l2H(ξ)− 1

ε

l

ω
H ′(ξ)

)
η̄

(c)
0 = 0.

(14)
η̄

(c)
0 (ξ) = η̄(0)(ξ) + εη̄(1)(ξ) + ..., ξ =

x

ε
(15)



Mathematics of
the atmosphere
and oceans 3

V. Zeitlin

Coastal
waveguide
Kelvin waves in
RSW with an
idealized coast
Waves in RSW
with an idealized
coast and a shelf
Waves on the
coastal current

Topographic
waveguides
Topographic
waves

Equatorial
waveguide
Equatorial waves
in RSW model
Barotropic vs
baroclinic
equatorial waves

Conclusions

Hierarchy of equations for η̄(n), n = 0, 1, ... :

(
H(ξ)η̄(0)(ξ)′

)′
= 0,(

H(ξ)η̄(1)(ξ)′
)′
− l

ω0
H ′(ξ))η̄(0)(ξ) = 0,

.................................... (16)

Order zero

H(ξ)η̄(0)(ξ)′ = C = const. (17)

C 6= 0,⇒ singularity at x = 0, ⇒ η̄(0) = const.
Matching with the domain (h) à x = εξ :

h̄
(h)
0 = A

(
1− κ0εξ +

1
2
κ2

0(εξ)2 − ε2κ1ξ + ....

)
, ⇒ (18)

η̄(0) = A.
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Order 1(
H(ξ)η̄(1)(ξ)′

)′
− l

ω0
H ′(ξ))A = C1 = const. (19)

Solution regular for ū0, v̄0 C1 = 0⇒

η̄(1) =
l

ω0
Aξ + const. (20)

Matching of η̄(0) + εη̄(1) with h̄
(h)
0 à x = εξ

⇒ l
ω0

= −κ0, const = 0.
Since κ2 = l2 + 1− ω2, ω2 6= 1 ⇒ κ0 = 1. →
Kelvin wave in the leading order.
Higher orders → corrections to the dispersion relation.
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Shelf with a gentle slope : Ball’s model

Ball’s model : H(x) = H0(1− e−ax).
Change of variables(trapped solutions) x → s = e−ax ,
h̄0 → sph̃0, where p is defined by

ω2 − 1− l2 = −p2 < 0, ⇒ (21)

Hypergeometric equation :

s(1− s)h̃′′0 + [γ − (α + β + 1)] h̃′0 − αβh̃0 = 0, (22)

solutions F (α, β, γ, s) - hypergeometric functions,

γ = 2p+1, α = p+
1
2
−
√

l2 − l

ω
+

1
4
, β = p+

1
2

+

√
l2 − l

ω
+

1
4
.

(23)
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Trapped wave solutions
A regular at x = 0 and decaying at x →∞ solution ⇒
α = −n, n = 0, 1, . . . .. In this case

h̄0 = spF (−n, β, γ, s), n = 0, 1, . . . , (24)

where

F (−n, β, γ, s) =
n∑

m=0

(−n)m(β)m
(γ)mm!

sm, (a)m := a(a+1) . . . (a+m−1)

(25)
α = −n → dispersion relation :

p +
1
2

+ n =

√
l2 − l

ω
+

1
4
, n = 0, 1, . . . . (26)
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Free wave solutions
Solution for propagating (incident and reflected) Poincaré
waves : p → ik in the above-displayed formulas. Solution is
then given in terms of hypergeomeric functions :

h̄0 = A
[
e−ikxF (α∗, β∗, γ∗, s)− re ikxF (α, β, γ∗, s)

]
, (27)

A is the amplitude of the wave, * means complex
conjugation, r is reflection coefficient :

r =
Γ(α)Γ(β)Γ(α∗ + β∗)

Γ(α∗)Γ(β∗)Γ(α + β)
, Γ− gamma-function. (28)
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Dispersion relation for the coastal waves (n -
number of nodes in the cross-coast direction
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General properties of the coastal waves :

I Unique Kelvin wave,
I Discrete spectrum of sub-inertial trapped waves with
ω < f (shelf waves) with unique sense of propagation
(coast at their right)

I Discrete spectrum of supra-inertial trapped waves with
ω > f (edge waves) with double sense of propagation

I Continuous spectrum of incident/reflected supra-inertial
inertia-gravity (Poincaré) waves
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Outcropping coastal density current

y = 0

y = −L

ρ1

ρ2

f
2

y

H(y) U(y)

Outcropping ⇒ non-trivial profile of the layer thickness H in
a steady state ⇒ non-zero mean velocity via the geostrophic
balance

U(y) = −g

f
Hy (y) (29)
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LInearization and boundary conditions
ut + Uux + vUy − v = − hx ,
vt + Uvx + u = − hy ,
ht + Uhx = −(Hux + (Hv)y ).

(30)

Free-slip boundary condition at the coast : v(−1) = 0. The
outcropping line is a material line ⇒ :

H(y) + h(x , y , t)|y=Y0
= 0,

dY0

dt
= v

∣∣∣∣
y=Y0

. (31)

y = 0 - location of the free streamline of the mean flow,
Y0(x , t) - position of the perturbed free streamline, d

dt -
Lagrangian derivative. Linearised boundary conditions :

Y0 = − h

Hy

∣∣∣∣
y=0

, (32)

and continuity equation evaluated at y = 0 ⇒ the only
constraint to impose on the solutions of (30) is regularity at
y = 0.
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Constant PV flows
PV of the mean flow in non-dimensional terms :

Q(y) =
1− Uy

H(y)
, U(y) = −Hy (y), ⇒ (33)

Hyy (y)− Q(y)H(y) + 1 = 0, H(0) = 0, Hy (0) = −U0,
(34)

U(0) = U0 is the mean flow velocity at the outcropping.
Flows with constant : Q(y) = Q0 6= 0 :{

H(y) = 1
Q0

[1− U0
√

Q0 sinh(
√

Q0y)− cosh(
√

Q0y)],

U(y) = U0 cosh(
√

Q0y) + 1√
Q0

sinh(
√

Q0y).

(35)

Advantage : for (u, v , h) = (ū(y), v̄(y), h̄(y))e ik(x−ct) + c.c.,
the wave equation does not have singularity, which is
otherwise the case, at critical levels yc : U(yc)− c = 0.
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Examples of constant PV flows
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Dispersion diagram

0 1 2 3 4 5 6 7 8 9 10

0

1

c

k

K

F

P
n

P
n

Dispersion diagram for waves in the flow with Q0 = 1. K -
coastal Kelvin wave, F - frontal wave, Pn - Poincaré
(inertia-gravity) wave, n - number of nodes of the mode in
the span-wise direction.
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Phase portraits of Kelvin and Frontal waves

y

x
−1

0

Pressure (contours) and velocity (arrows) anomalies of Kelvin
(bottom) and frontal (top) waves propagating over a uniform
PV flow flow with Q0 = 1.

Remark :
At small enough current velocities Kelvin and Frontal wave
can couple and form an unstable mode.
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Escarpment topography
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Wave spectrum over escarpment

Wave equation :(
gHh̄′0

)′
+ (ω2 − f 2 − l2gH − l

ω
gH ′)h̄0 = 0. (36)

At x → ±∞ depth is constant, albeit different :
H = H± = const. Asymptotics of h̄0± :

gH±h̄0
′′
± + (ω2 − f 2 − l2gH±)h̄0± = 0. (37)

Two kinds of solutions, depending on the signs of
p2
± = ω2 − f 2 − l2gH±.
I p2

± > 0 → a wave propagating to or out of escarpment,
I p2

± < 0 → trapped at the escarpment wave.
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Linear escarpment
Dimensionless wave equation at the escarpment :(

(Hm + x)h̄′0
)′

+ (ω2 − f 2 − l2(Hm + x)− fl

ω
)h̄0 = 0, (38)

where Hm - mean depth. May be explicitly solved in terms of
confluent hypergeometric functions M and U :

h̄0[x) = C1U

(
−−fl − f 2ω − lω + ω3

2lω
, 1, 4l + 2lx

)
+ C2M

(−fl − f 2ω − lω + ω3

2lω
, 1, 4l + 2lx

)
,(39)

where C1,2 = const.

To be matched to the asymptotics h̄0(x) = C±e∓
√
−p2
± .

Continuity of h̄0 and h̄′0 at x = ±1 - four homogeneous linear
algebraic equations for the constants C±, C1,2, solvability
condition → dispersion relation ω = ω(l).
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Dispersion curves for topographic waves trapped
by the linear escarpment

Two lowest modes shown (respectively, zero- and one-node.
Resemblance with Rossby waves ↔ same origin : gradient of
background PV.
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Phase portrait of the n = 0 mode

Isolines of h for the gravest topographic wave with maximal
frequency over the escarpment region (x ∈ (−1, 1). Trapped
waves can propagate only in the negative direction along the
escarpment, i.e. leaving the shallower region on their right.
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RSW model on the equatorial tangent plane
Equator ⇒ rotation of the planet is parallel to the tangent
plane ⇒ no f0 :{

∂tv + v · ∇v + βy ẑ ∧ v + g∇h = 0 ,
∂th +∇ · (vh) = 0 .

(40)

Decay boundary conditions in y (confinement in the
equatorial region).

Scaling

Spatial scale - equatorial deformation radius : L ∼
(√

gH
β

) 1
2 ,

Time-scale - T ∼ (βL)−1, Velocity scale - U ∼ g ′∆H
βL2 , ⇒ -

Rossby number ε = ∆H
H .

Linearized non-dimensional equations - explicit
y -dependence : 

ut − y v + hx = 0,
vt + y u + hy = 0,
ht + ux + vy = 0.

(41)
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Gauss - Hermite basis
Change of dependent variables

f =
1
2

(u + h); g =
1
2

(u − h). (42)
ft + fx + 1

2(vy − yv) = 0,
gt − gx − 1

2(vy + yv) = 0,
vt + y(f + g) + (f − g)y = 0,

(43)

appearance of operators ∂y ± y . ∃ a set of orthonormal
functions with decay boundary conditions such that :

φ′n + yφn =
√
2nφn−1, φ′n− yφn = −

√
(2n + 1)φn+1. (44)

Gauss-Hermite functions, Hn - Hermite polynomials

φn(y) =
Hn(y)e−

y2
2√

2nn!
√
π
, (45)

φ′′n(y) + (2n + 1− y2)φn(y) = 0. (46)
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Special solutions : Kelvin wave
Particular solution with v ≡ 0 :

ft + fx = 0, gt−gx = 0, ⇒ f = F (x−t, y), g = G (x +t, y),

y(f + g) + (f − g)y = 0, ⇒ F ∝ e−
y2
2 , G ∝ e+ y2

2 .

Decay boundary conditions impose G ≡ 0 ⇒

u = F0(x − t)e−
y2
2 ; h = F0(x − t)e−

y2
2 ; v = 0. (47)

Equatorial Kelvin wave with unique sense of propagation,
eastwards, and no dispersion.
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	Kelvin		n=−1	 k=1

Pressure (contours) and velocity (arrows) distribution in the
equatorial Kelvin wave.
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Special solutions : Yanai waves
Another particular solution with g = 0, f 6= 0, v 6= 0 ⇒

ft + fx + 1
2(vy − yv) = 0,

vy + yv = 0,
vt + yf + fy = 0,

(48)

Separation of variables :

v = v0(x , t)φ0(y), f = F1(x , t)φ1(y) ⇒ (49)

equations with constant coefficients for F1(x , t), v0(x , t) :

F1t + F1x −
1√
2

v0 = 0, v0t +
√
2F1 = 0. (50)

Looking for wave solutions ∝ e i(ωt−kx) we get the dispersion
relation :

ω =
k

2
±
√

k2

4
+ 1. (51)
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Phase portraits of Yanai waves
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	EYW		n=0	 k=1
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	WYW		n=0	 k=1

Pressure (contours) and velocity (arrows) distribution in the
equatorial eastward- (left panel) and westward- (right panel)
propagating Yanai waves with zonal wavenumber k = 1.
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General solution : inertia-gravity and Rossby waves
Elimination of u and h (or f and g) in favour of v :

∂t
(
∇2v − y2v − ∂ttv

)
+ ∂xv = 0. (52)

Expansion of v in φn : v =
∑

n vn(x , t)φn(y) gives :

∂t
[
∂2
xxvn − (2n + 1)vn − ∂2

ttvn
]

+ ∂xvn = 0. (53)

After Fourier-transformation
ṽn(k , t) =

∫
dxe−ikxvn(x , t) + c.c. we get

∂3
ttt ṽn + (k2 + 2n + 1)∂t ṽn − ikṽn = 0. (54)

General solution

ṽn = vn1(k)e−iωn1 t + vn2(k)e−iωn2 t + vn3(k)e−iωn3 t , (55)

where ωnα , α = 1, 2, 3 are roots of the dispersion relation :

ω3
nα − (k2 + 2n + 1)ωnα − k = 0. (56)
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Dispersion diagram

Dispersion diagram for equatorial waves in the 1-layer RSW.
Only two lowest meridional modes for Rossby and
inertia-gravity waves are shown.
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Phase portrait of a Rossby wave
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	Rossby wave	n=1	 k=1

Pressure (contours) and velocity (arrows) distribution in the
equatorial Rossby wave with zonal wavenumber k = 1.
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Phase portraits of inertia-gravity waves
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	EIGW		n=1	 k=1
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	WIGW		n=1	 k=1

Pressure (contours) and velocity (arrows) distribution in the
equatorial eastward- (left panel) and westward- (right panel)
propagating inertia-gravity waves with zonal wavenumber
k = 1.
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Generation of Kelvin and Rossy waves by pressure
anomaly : numerical simuations

Relaxation of a pressure anomaly of large zonal scale at the
equator, with formation of Rossby and Kelvin waves
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Equatorial Kelvin wave in satellite observations

Kelvin front at the equator.
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Equatorial Rossby wave in satellite observations

Symmetric with respect to equator twin depression visible in
the cloud cover in a satellite image and associated with an
equatorial Rossby wave.
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2-layer RSW with a rigid lid on the equatorial β- plane

∂tvi + vi · ∇vi + βy ẑ ∧ vi +
1
ρi
∇πi = 0 , i = 1, 2; (57)

∂thi +∇ · (hivi ) = 0 (58)

(ρ2 − ρ1)gη = π2 − π1, h1 + h2 = H. (59)

Simplifying hypotheses :

I ρ1 → ρ2, π2 = π1 + ρ1g ′h1, g ′ = g ρ2−ρ1
ρ1

I H1 = H2



Mathematics of
the atmosphere
and oceans 3

V. Zeitlin

Coastal
waveguide
Kelvin waves in
RSW with an
idealized coast
Waves in RSW
with an idealized
coast and a shelf
Waves on the
coastal current

Topographic
waveguides
Topographic
waves

Equatorial
waveguide
Equatorial waves
in RSW model
Barotropic vs
baroclinic
equatorial waves

Conclusions

Barotropic/baroclinic decomposition :

vbt =
h1v1 + h2v2

H
, vbc = v1 − v2 (60)

Barotropic streamfunction :

h1 + h2 = const⇒
∇ · (h1v1 + h2v2) = H∇ · vbt = 0⇒ vbt = ẑ ∧∇ψ

Equatorial scaling with g → g ′ ⇒
Non-dimensional linearized equations for
ψ, vbc = (u, v), η

∇2ψt + ψx = 0,
vt +∇h + y ẑ× v = 0,

ht +∇ · v = 0. (61)
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Wave solutions
I "Free" barotropic Rossby waves

ψ0 = Aψe i(θ+ly) + c .c .; θ = kx − ωt, (62)

with dispersion relation

ω = −k/(k2 + l2), (63)

I "Trapped" baroclinic waves :

(u, v , η) = (iUn,Vn, iHn) Ae iθn + c.c .; θn = kx − ωnt
(64)

with dispersion relation

ω3
n− (k2 +2n +1)ωn− k = 0; n = −1, 0, 1, 2, ... , (65)

- Kelvin, Yanai, Rossby, Inertia-Gravity

Waveguide transparent for barotropic waves
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Equatorial waveguide and planetary waves

Interaction free planetary waves ­trapped equatorial waves

           

Incoming free 
planetary 
wave 

Secondary 
(radiated) 
planetary wave

Trapped 
equatorial wave 
(Rossby and/or 
Yanai)

Equatorial 
waveguide

Ω

Ω

equator
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Conclusions

First conclusions

I Variety of large-scale waveguides : coastal/topographic,
mean current, equatorial with corresponding waveguide
modes

I Waveguide modes include : weakly dispersive
(non-dispersive in hydrostatic approximation) Kelvin
waves, strongly dispersive Rossby modes

I Wavegude modes in coastal and equatorial waveguides
partially fill in spectral gap ⇒ care needed in identifying
slow motions as vortex ones.

I Linear waveguide modes coexist with free-waves -
possibility of interactions at nonlinear level
(semi-transparent wavegudes).

I Breaking and front formation expected for
non-dispersive Kelvin waves at nonlinear level.
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