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Horizontal motion in Hydrostatic Primitive
Equations

∂vh

∂t
+ v ·∇vh + f ẑ ∧ vh = −∇hΦ. (1)

f = f0(1 + βy), Φ = Φ0 + φ = g(H0 + h) (2)

h - geopotential (perturbation) height.

Scaling for vortex-like motions

I Velocity vh = (u, v), u, v ∼ U, w ∼W << U

I Unique horizontal spatial scale L,
I Vertical scale H << L,
I Time-scale : turn-over time T ∼ L/U.
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Characteristic parameters

Intrinsic scale of the system : deformation (Rossby) radius :

Rd =

√
gH0

f0
(3)

I Rossby number : Ro = U
f0L

,

I Burger number : Bu =
R2
d

L2 ,
I Characteristic non-linearity : λ = ∆H/H0, where ∆H is

the typical value of h,
I Dimensionless gradient of f : β̃ ∼ βL
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Non-dimensional equations of horizontal motion

Ro (∂tvh + v · ∇vh) + (1 + β̃)ẑ ∧ vh = −λBu
Ro
∇hh , (4)

Geostrophic equilibrium
Equilibrium between the Coriolis force and the pressure force
→ geostrophic wind :

ẑ ∧ vg = −∇h (5)

Conditions of realization :
I Ro → 0,
I λ Bu ∼ Ro,
I β̃ → 0.
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Non-dimensional RSW equations

Ro (∂tv + v · ∇v) + (1 + β̃y)ẑ ∧ v = −λBu
Ro
∇η , (6)

λ∂tη +∇ · (v(1 + λη)) = 0 . (7)

Large-scale regimes close to geostrophy : Ro ≡ ε� 1

I Quasi-geostrophic(QG) : weak non-linearity :

λ ∼ Ro,⇒ Bu ∼ 1,⇒ L ∼ Rd , β̃ ∼ Ro (8)

I Frontal geostrophic (FG) : strong non-linearity :

λ ∼ 1,⇒ Bu ∼ Ro,⇒ L� Rd , β̃ ∼ Ro (9)
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Equations of motion of RSW in QG regime

ε (∂tv + v · ∇v) + (1 + εy)ẑ ∧ v = −∇η , (10)

ε∂tη +∇ · (v(1 + εη)) = 0 . (11)

Asymptotic expansions :

v = v(0) + εv(1) + ε2v(2) + ... (12)

Not necessary to expand η, the velocity is slaved to pressure.
Geostrophic wind :

u(0) = −∂yη, v (0) = ∂xη ⇒ ∂xu
(0) + ∂yv

(0) = 0, (13)

Geostrophic advection :

d (0)

dt
· · · = ∂t ...+ u(0)∂x ...+ v (0)∂y ... ≡ ∂t · · ·+ J (η, ...).

(14)
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Order ε1 : obtaining the QG equation

u(1) = −d (0)

dt
v (0) − yu(0), v (1) =

d (0)

dt
u(0) − yv (0),⇒ (15)

∂xu
(1) + ∂yv

(1) = −d (0)

dt
∇2η − v (0),⇒ (16)

QG equation :

d (0)

dt

(
η −∇2η

)
− ∂xη = 0⇔ d (0)

dt

(
η −∇2η − y

)
= 0.

(17)
QG equation with restored dimensions

d (0)

dt

(
1
R2
d

h −∇2h − 1
Rd

(1 + βy)

)
= 0. (18)

f - plane :

d (0)

dt

(
1
R2
d

h −∇2h

)
⇒ no waves (19)
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QG versus 2D Euler equations
From 2D Euler to vorticity equation
2D Euler equations for constant-density incompressible fluid :

dh
dt

vh = ∂tvh + vh ·∇vh = −∇hΦ, ∇ · v = 0, (20)

with Φ = ρ−1P . Introducing streamfunction : vh = ẑ ∧∇hψ
and cross-differentiating →

dh
dt

∇2
hψ = ∂t∇2

hψ + J
(
ψ,∇2

hψ
)

= 0. (21)

QG vs 2D Euler
2D Euler ⇔ QG with
modified vorticity-streamunction relation :

ζ = ∇2
hψ =⇒∇2

hψ −
1
R2
d

ψ
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Barotropic Rossby waves
Non-dimensional QG equation on the β- plane :

∂tη −∇2∂tη − J (η,∇η)− ∂xη = 0. (22)

Physical meaning : conservation of quasi-geostrophic PV.
Formal linearization :

∂tη −∇2∂tη − ∂xη = 0. (23)

Wave solutions η ∝ expi(kx+ly−ωt) - dispersion relation :

ω = − k

k2 + l2 + 1
. (24)

With restored dimensions :

ω = −β k

k2 + l2 + R−2
d

. (25)

Rossby waves : strongly dispersive, anisotropic dispersion.
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Dispersion diagram for barotropic Rossby waves

Phase velocity negative (westward propagation), group
velocity negative for long and positive for short waves
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Scaling and non-dimensional TRSW equations

Same scaling and hypotheses as in QG RSW + buoyancy :
(u, v) ∼ U, h ∼ H0 (1 + (Ro/Bu)η),
b ∼ B0 (1 + 2(Ro/Bu)B).
Bu = O(1) and Ro = ε =� 1.
Non-dimensional TRSW equations :

ε (∂tv + v ·∇v) + (1 + εy)ẑ ∧ v =
−(1 + 2εB)∇η − (1 + εη)∇B ,
ε∂tη + ∇ · (v(1 + εη)) = 0 ,
∂tB + v ·∇B = 0 .

(26)

Asymptotic expansion in ε, leading order :

ẑ ∧ v (0) = −∇(η + B), ⇒∇ · v (0) = 0, (27)

thermo-geostrophic equilibrium
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TQG model

First-order : as RSW, but with thermal corrections :
u(1) = −d (0)

dt
v (0) − yu(0) − 2B ∂yη − η ∂yB

v (1) =
d (0)

dt
u(0) − yv (0) + 2B ∂xη + η ∂xB,

(28)

where d (0)

dt · · · = ∂t · · ·+ J (ψ, ...), ψ = η + B →
TQG equations{

∂t
(
∇2ψ − ψ + B + y

)
+ J (ψ,∇2ψ) = 0,

∂tB + J (ψ,B) = 0.
(29)

Can be rewritten in terms of η instead of ψ.
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RSW model with 2 layers with a rigid lid.
Equations of horizontal motion layerwise

∂tvi + vi ·∇vi + f ẑ ∧ vi +
1
ρi
∇πi = 0 , i = 1, 2; (30)

Conservation of mass layer-wise

∂t(Hi − (−1)i+1η) + ∇ ·
(
vi (Hi − (−1)i+1η)

)
= 0 , i = 1, 2;

(31)
Hi , i = 1, 2 - non-perturbed thicknesses of the layers,
H1 + H2 = H, η - position of the interface, i + 1 - modulo 2.

Dynamical boundary condition at the interface

(ρ2 − ρ1)gη = π2 − π1 . (32)
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Conservation laws

Conservation of PV layer-wise

(∂t + vi · ∇) qi = 0, qi =
ζi + f

Hi − (−1)i+1η
, (33)

where ζi = ẑ · ∇ ∧ vi relative vorticity in the layer i .

Conservation of energy

E =

∫
dxdy

∑
i=1,2

ρi (Hi − (−1)i+1η)
v2
i

2
+ (ρ2 − ρ1)g

η2

2


(34)

First term - kinetic, second - available potential energy.
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Scales and parameters
Characteristic scales

I Typical horizontal velocity : U
I Typical horizontal scale : L
I Time-scale : T ∼ L/U - turn-over time
I Pressure scale layerwise : Pi ∼ ρiULf0
I Typical vertical scale : H ; Di = Hi

H

Parameters
I Rossby number : Ro = U

f0L

I Typical dimensionless deviation of the interface : λ
I Dimensionless gradient of the Coriolis parameter : β̃
I Aspect ratio : d = H1

H2

I Stratification parameter : N = ρ2−ρ1
ρ2

= 1− r

I Burger number : Bu =
R2
d

L2 , R2
d = NgH

f 2
0

Baroclinic deformation radius : R2
d = g ′H

f0
, g ′ = gN - reduced

gravity.
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Non-dimensional equations

ε
di
dt

vi + (1 + β̃y)ẑ ∧ vi = −∇πi , i = 1, 2. (35)

−λd1

dt
η + (D1 − λη)∇ · v1 = 0

λ
d2

dt
η + (D2 + λη)∇ · v2 = 0 (36)

π2 − rπ1 =
λBu

ε
η. (37)

di
dt

= ∂t + vi ·∇ (38)
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QG regime

λ ∼ β̃ ∼ ε� 1, ⇒ L ∼ Rd (39)

Asymptotic expansion in ε⇒

ui = u
(0)
i − ε

[
∂tv

(0)
i + J (πi , v

(0)
i ) + yu

(0)
i

]
+ ...

vi = v
(0)
i + ε

[
∂tu

(0)
i + J (πi , u

(0)
i )− yv

(0)
i

]
+ ... (40)

Geostrophic wind :

u
(0)
i = −∂yπi , v

(0)
i = ∂xπi ⇒ ∂xu

(0)
i + ∂yv

(0)
i ≡ 0. (41)

Divergence of first-order velocity

∂xu
(1)
i + ∂yv

(1)
i = −

[
∂t∇2πi + J (πi ,∇2πi ) + ∂xπ

]
(42)
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2-layer QG equations
Mass conservation layer-wise :

∂tη+J (πi , η)−(−1)iDi

[
∂t∇2πi + J (πi ,∇2πi ) + ∂xπ

]
= 0, →

Equations for the pressures in the layers from boundary
condition at the interface.

d
(0)
i

dt

[
∇2πi − (−1)iD−1

i η + y
]

= 0 , i = 1, 2. (43)

where

d
(0)
i

dt
(...) := ∂t (...) + J (πi , ...) , i = 1, 2 (44)

Frequent hypothesis : weak stratification ρ2 → ρ1 ⇒
η = π2 − π1
Baroclinic and barotropic components of pressure :
η = π2 − π1 - baroclinic ; Π = D1π1 + D2π2 - barotropic.

I η = 0 - motion (velocity) identical in both layers
I Π = 0 - motion (velocity) opposite in the layers
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Formal linearization of the 2-layer QG model :

∂t
[
∇2π1 + D−1

1 (π2 − π1)
]

+ ∂xπ1 = 0

∂t
[
∇2π2 − D−1

2 (π2 − π1)
]

+ ∂xπ2 = 0 (45)

Wave solutions : πi = Aie
i(k·x−ωt).

Condition of solvability :

det
(
ω(k2 + D−1

1 ) + kx −ωD−1
1

−ωD−1
2 ω(k2 + D−1

2 ) + kx

)
= 0. (46)

Dispersion relation :

ω = − kx

2k2(k2 + D−1
1 + D−1

2 )

[
(2k2 + D−1

1 + D−1
2 )

± (D−1
1 + D−1

2 )
]

(47)

I Barotropic mode : ωbt = − kx
k2 - faster.

I Baroclinic mode : ωbc = − kx
(k2+D−1

1 +D−1
2 )

- slower.
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Conclusions

Scaling and parameters
Characteristic scales

I Typical horizontal velocity : U
I Typical horizontal scale : L
I Time-scale : T ∼ L/U -turn-over time
I Typical vertical scale : H
I Typical vertical velocity :W W

H ∼ λ
U
L -to confirm

aposteriori
I Pressure scale : ρ0gH

Parameters
I Rossby number : Ro = U

f0L
I Typical dimensionless deviation of the isopycnal

surfaces : λ
I Dimensionless gradient of the Coriolis parametre : β̃
I Stratification parametre : N = variable part of density

constant part of density
I Burger number : Bu =

R2
d

L2 , where Rd baroclinic
deformation radius with reduced gravity g ′ = Ng .
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Pressure and density related via hydrostatics :

ρ = ρ0 [1 + N (ρs(z) + λσ(x , y , z ; t))] ,⇒
P = ρ0gH [(1− z) + N (ps(z) + λπ(x , y , z ; t))] (48)

Non-dimensional primitive equations :

ε
d

dt
vh + (1 + β̃y)ẑ ∧ vh = −∇hπ. (49)

d

dt
σ + ρ′sw = 0, ∂zπ + σ = 0. (50)

∇h · vh + λ∂zw = 0; (51)

d

dt
= ∂t + vh ·∇h + λw∂z (52)

Boundary conditions - rigid lid/flat bottom :

w |z=0,1 = 0. (53)
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QG regime. Asymptotic expansion order by order

λ ∼ β̃ ∼ ε� 1, ⇒ L ∼ Rd ,
W

H
= λ

U

L
. (54)

Order ε0

u(0) = −∂yπ, v (0) = ∂xπ,⇒ ∂xu
(0)+∂yv

(0) = 0,⇒ ∂zw = 0.
(55)

Consistent with the choice of the scale W .

Thermal wind
Geostrophic + hydrostatic equilibria :

u = −∂yπ, v = ∂xπ, σ = −∂zπ ⇒ ∂zv = −∂xσ, ∂zu = +∂yσ
(56)

Horizontal density gradient ↔ vertical shear of the horizontal
wind. Atmosphere : σ → −θ.
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Order ε1

u(1) = −d (0)

dt
v (0) − yu(0), v (1) =

d (0)

dt
u(0) − yv (0),⇒ (57)

∂xu
(1) + ∂yv

(1) = −d (0)

dt
∇2

hπ − ∂xπ ≡ −
d (0)

dt

(
∇2

hπ + y
)
,

(58)
where d (0)

dt · · · = ∂t · · ·+ J (π, . . . ) - horizontal geostrophic
advection.

Elimination of w

w (0) = − 1
ρ′s(z)

d (0)

dt
σ =

1
ρ′s(z)

d (0)

dt
∂zπ (59)



Mathematics of
the atmosphere
and oceans 4

V. Zeitlin

Classical QG
models for slow
motions
Scaling and
parameters.
Slow dynamic in
RSW. QG regime
QG TRSW
2-layer QG RSW
QG PE

Geostrophic
adjustment
Geostrophic
adjustment on the
f-plane : theory
Illustrations of
adjustment in
waveguides

Slow dynamics at
the Equator
Charney regime
Long-wave regime

Slow dynamics
near coasts

Slow motions
over topography.

Conclusions

Continuity equation :

−d (0)

dt

(
∇2

hπ + y
)

+ ∂z

(
1

ρ′s(z)

d (0)

dt
∂zπ

)
= 0⇒

d (0)

dt

(
−∇2

hπ − y + ∂z

(
1

ρ′s(z)
∂zπ

))
= 0, (60)

c.l. : w |z=0,1 = 0⇒ d (0)

dt
∂zπ

∣∣∣∣∣
z=0,1

= 0. (61)

Physical meaning
Lagrangian conservation of quasi-geostrophic PV

PVQG = −∇2
hπ − y + ∂z

(
1

ρ′s(z)
∂zπ

)
(62)

+ advection of density perturbation along the boundaries.
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Baroclinic Rossby waves : continuous stratification
Formal linearization

∂t

[
∇2

hπ − ∂z
(

1
ρ′s(z)

∂zπ

)]
+ ∂xπ = 0, ∂2

tzπ
∣∣
z=0,1 = 0.

(63)
Separation of variables

π(x , y , z ; t) = p(x , y ; t)S(z)⇒ (64)

∂t∇2
hp(x , y ; t)S(z)− ∂tp(x , y ; t)

[
1

ρ′s(z)
S ′(z)

]′
+

∂xp(x , y ; t)S(z) = 0⇒

1
S(z)

[
1

ρ′s(z)
S ′(z)

]′
= κ2 − separation constant (65)

∂t∇2
hp(x , y ; t)− κ2∂tp(x , y ; t) + ∂xp(x , y ; t) = 0, (66)
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Vertical modes
Sturm - Liouville problem :[

1
ρ′s(z)

S ′(z)

]′
− κ2S(z) = 0, S ′(z)

∣∣
z=0,1 = 0 (67)

Eigenfunctions Sn(z) and eigenvalues κn,n = 0, 1, 2, ....

Rossby waves : p(x , y ; t) ∝ e i(k·x−ωt) :

ω = − kx
k2 + κ2

n

. (68)

The larger is the vertical wavenumber n (stronger vertical
shear) → the slower is the propagation.
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Surface quasi-geostrophic model (SQG)
f - plane and constant stable stratification ρ′s(z) = const < 0
⇒ PVQG = ∇2π after rescaling of the vertical coordinate
⇒ any solution of the Laplace equation gives a solution of
the full problem if the b.c. are verified ⇒ dynamics is totally
defined by evolution of density on the boundary ⇔ surface
quasi geostrophy (SQG).
Example : Solution of the 3D Laplace equation in the upper
half-plane decaying at z →∞ :

π(x, z , t) =

∫
dk π̂(k, t)e ik·xe−|k|z ,

where x = (x , y), k = (k , l). Therefore

σ(x, z , t) =

∫
dk |k| π̂(k, t)e ik·xe−|k|z

Setting z = 0 and substituting to (61) produces the
integro-differential equation for π̂(k, t) on the boundary.
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Conclusions

RSW at small Ro, and with two time-scales

Hypotheses :
I f - plane, infinite domain,
I Unique spatial scale L,
I Small Rossby number ε, regime QG : λ ∼ ε,
I Fast t ∼ f −1

0 and slow t1 ∼ (εf0)−1 time-scales

Non-dimensional equations :

(∂t + ε∂t1)v + ε(v · ∇v) + ẑ ∧ v +∇h = 0 , (69)

(∂t + ε∂t1)h + (1 + εh)∇ · v + εv · ∇h = 0 , (70)

∂tQ + εv · ∇Q = 0 , Q = ε
ζ − h

1 + εh
− PV anomaly. (71)
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Geostrophic adjustment
Cauchy problem with localized initial conditions

u|t=0 = uI , v |t=0 = vI , h|t=0 = hI . (72)

Multi-scale asymptotic expansions

v = v0(x , y ; t, t1, ...) + εv1(x , y ; t, t1, ...) + ... (73)
h = h0(x , y ; t, t1, ...) + εh1(x , y ; t, t1, ...) + ...,

Slow - fast decomposition order by order in ε :

hi = h̄i (x , y ; t1, ...) + h̃i (x , y ; t, t1, ...), i = 0, 1, 2, ... (74)

h̄i (x , y ; t1, ...) = lim
T→∞

1
T

∫ T

0
hi (x , y , t, t1, ...) dt, (75)
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Lowest order in ε : velocity

∂tv0 + ẑ ∧ v0 = −∇h0 , (76)

∂t(ζ0 − h0) = 0 , (77)

where ζ0 = ẑ · ∇ ∧ v0 - relative vorticity, and equation for PV
is used. Initial conditions :

u0|t=0 = uI , v0|t=0 = vI , h0|t=0 = hI . (78)

Re-writing (76) in terms of relative vorticity ζ and divergence
D = ∇ · v0 :

∂tζ0 + D0 = 0 , (79)

∂tD0 − ζ0 = −∇2h0 . (80)

Immediate integration of (77) in fast time t :

ζ0 − h0 = Π0 , (81)

where Π0 is yet unknown function of x , y , t1 (integration
"constant" ).
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Lowest order in ε : height

Elimination of ζ0 and D0 → linear inhomogeneous equation
for h0 :

− ∂2h0

∂t2
− h0 +∇2h0 = Π0(x , y ; t1, t2, ...) . (82)

Solution : slow + fast :

h0 = h̃0(x , y ; t, ...) + h̄0(x , y ; t1, ...) (83)

− ∂2h̃0

∂t2
− h̃0 +∇2h̃0 = 0 ; (84)

− h̄0 +∇2h̄0 = Π0 (85)

Klein - Gordon (KG) and Helmholtz equations.
Π0 : geostrophic PV constructed from the slow component
h̄0.
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Initialization problem :
How to split the i.c.for h̄0 in slow and fast ?

Response (unique at ε→ 0)

I By definition :

Π0(x , y ; 0) = ∂xvI − ∂yuI − hI ≡ ΠI (x , y) (86)

I Determination of the initial value h̄0I of h̄0 by inversion :

− h̄0I +∇2h̄0I = ΠI , ⇒ h̄0I = −(∇2 − 1)−1ΠI . (87)

I Determination of the initial value h̃0I of h̃0 :

h̃0I = hI − h̄0I . (88)

I Second i.c. for h̃0 ( PV and ζ - D) :

∂t h̃0

∣∣∣
t=0

= −DI ≡ ∂xuI + ∂yvI . (89)
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Slow/fast decomposition for velocity :

v0 = ṽ0(x , y ; t, ...) + v̄0(x , y ; t1, ...) , (90)

slow components verify the geostrophic relation :

v̄0 = ẑ ∧∇h̄0 (91)

and the fast ones obey the equations

∂t ṽ0 + ẑ ∧ ṽ0 = −∇h̃0 (92)

with i.c. :

ũ
(0)
I = uI − ū0I ; ṽ

(0)
I = vI − v̄0I , (93)

where ū0I , v̄0I , h̄0I verify (91). Linearized PV ζ̃0 − h̃0 of the
fast component is identically zero.
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Fast component : solution for h :

Inertia-gravity waves propagating out of the initial
perturbation ; created by its non-balanced par ũ(0)

I , ṽ
(0)
I , h̃0I :

h̃0(x; t) =
∑
±

∫
dkH(±)

0 (k)e i(k·x±Ωkt) , (94)

where

H
(±)
0 (k) =

1
2

(
ˆ̃h0I (k)± i

D̂I (k)

Ωk

)
, (95)

and the notation .̂.. is used for the Fourier transformations of
the corresponding quantities.
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Fast component : solution for v :

KG equation for complex velocity U = u + iv :

− ∂2Ũ0

∂t2
− Ũ0 +∇2Ũ0 = 0 (96)

with i.c. :
Ũ0
∣∣
t=0 = ũ

(0)
I + i ṽ

(0)
I ≡ Ũ0I , (97)

∂t Ũ0
∣∣
t=0 ≡ WI = −i Ũ0I −

(
∂x h̃0I + i ∂y h̃0I

)
(98)

is solved by

Ũ0(x; t) =
∑
±

∫
dkU(±)

0 (k) e i(k·x±Ωkt) (99)

U
(±)
0 (k) =

1
2

(
ˆ̃U0I (k)± i

ŴI (k)

Ωk

)
(100)
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Conclusions

Resumé of the first approximation

I Slow and fast components are defined unambiguously
I Fast and slow motions are separated dynamically

(non-interacting)
I Fast part completely resolved : inertia-gravity waves

propagating out of the initial perturbation
I Evolution of the slow part is still to determine
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Next order in ε

Momentum equations :

∂tv1 + ẑ ∧ v1 = −∇h1 − (∂t1 + v0 · ∇) v0 . (101)

Equation for PV in first order :

∂t (ζ1−h1)−Π0 ∂t h̃0+ũ(0)∂xΠ0+ṽ (0)∂yΠ0 = −∂t1Π0−J(h̄0,Π0) .
(102)

Integrability condition ⇔ averaging over t :

∂t1Π0 + J(h̄0,Π0) ≡ ∂t1(∇2h̄0 − h̄0) + J(h̄0,∇2h̄0) = 0 .
(103)

⇒ QG equation.
Arises from elimination of resonances in the equation for fast
component at order 1.
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Adjustment near the wall

t=0.000
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Initial stage of adjustment, h.
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Advanced stage of adjustment, h.

t=12.000

−25 −20 −15 −10 −5 0 5

0

2

4

6

8

10

12

14

16

18

0.99

1

1.01

1.02

1.03

1.04

1.05



Mathematics of
the atmosphere
and oceans 4

V. Zeitlin

Classical QG
models for slow
motions
Scaling and
parameters.
Slow dynamic in
RSW. QG regime
QG TRSW
2-layer QG RSW
QG PE

Geostrophic
adjustment
Geostrophic
adjustment on the
f-plane : theory
Illustrations of
adjustment in
waveguides

Slow dynamics at
the Equator
Charney regime
Long-wave regime

Slow dynamics
near coasts

Slow motions
over topography.

Conclusions

Initial stage of adjustment, velocity.
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Advanced stage of adjustment, velocity.
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Adjustment of a pressure front over escarpment
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3D snapshot of the adjustment over escarpment
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Adjustment of a long-wave pressure anomaly at
the Equator
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Slow-motion scaling on the equatorial β- plane
RSW equations at the Equator :{

∂tv + v · ∇v + β y ẑ ∧ v + g∇h = 0 ,
∂th +∇ · (vh) = 0 ,

(104)

Thickness perturbation : h = H(1 + λ η),
QG-like scaling : (x , y) ∼ L, (u, v) ∼ U, t ∼ L/U.
λ→ 0, and gHλ/U2 = O(1) ⇒ U <<

√
gH = maximal

phase velocity of waves ⇒ slow motion.
Non-dimensional equations with β = βL2/U :

∂tv + v · ∇v + β y ẑ ∧ v +∇η = 0 , (105)
λ(∂tη + v · ∇η) + (1 + λη)∇ · v = 0, (106)

Leading order in λ ∇ · v0 = 0 ⇒ non-divergent motion ⇒
u0 = −∂yψ, v0 = ∂xψ. Cross-differentiation →

∇2ψt + J (ψ,∇2ψ) + βψx = 0, (107)

Standard QG with Rd →∞. Linearization ⇒ Rossby waves,
all other equatorial waves filtered out.
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Conclusions

Long-wave spectrum in RSW at the Equator

Long Kelvin and Rossby waves are well separated from the
others.
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Long-wave scaling

I Disparity of spatial scales :
x ∼ Lx , y ∼ Ly , Ly � Lx ⇒ δ =

Ly
Lx
� 1

I Disparity of velocity scales : u ∼ U, v ∼ δU
(motivation : v = 0 for Kelvin waves)

I Slow time scale : t = t1 ∼ δ (βRe)−1

I Rossby number ε ∼ δ2

Re =
√√

gH0
β - equatorial deformation radius.

Rescaled RSW equations on the equatorial β-plane
ut1 + δ3(uux + vuy )− y v = −hx ,
δ2vt1 + δ4(uvx + vvy ) + y u = −δhy ,
ht1 + ux + vy + δ2

[
(hv)y + (hu)x

]
= 0,

(108)

Boundary condition : (u, v , h)|y→±∞ → 0.
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Lowest order in δ


u

(0)
t1 − yv (0) + h

(0)
x = 0,

yu(0) + h
(0)
y = 0,

h
(0)
t1 + u

(0)
x + v

(0)
y = 0.

(109)

Two kinds of wave solutions, as in full linearised RSW on the
equatorial β- plane :

I solutions with v (0) 6= 0,
I solutions with v (0) ≡ 0.
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v 6= 0 : mean-flow and Rossby waves
Eliminating variables in favour of v :(

y2v (0) − v
(0)
yy

)
t1t1
− v

(0)
xt1 = 0, (110)

Two types of solutions : time-independent and propagative
ones.

I Time-independent mean flow (equatorial jet) in
geostrophic equilibrium :

u
(0)
M = u(0)(y), v

(0)
M = 0, h

(0)
M = h(0)(y), yu(0)+h(0) = 0.

(111)
(also solution of the full system)

I Propagating long Rossby waves (RW) :

v
(0)
R =

∞∑
n=1

v
(0)
nR =

∞∑
n=1

Vn(x+cnt1)φn(y), cn = − 1
2n + 1

.

(112)
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Zonal velocity and pressure in RW

Obtained from {
u

(0)
t1 + h

(0)
x = yv (0),

h
(0)
t1 + u

(0)
x = −v (0)

y ,
(113)

u
(0)
nR =

1
2

(√
2(n + 1)

1 + cn
Vn(x + cnt1)φn+1(y) +

√
2n

1− cn
Vn(x + cnt1)φn−1(y)

)
,

h
(0)
nR =

1
2

(√
2(n + 1)

1 + cn
Vn(x + cnt1)φn+1(y)−

√
2n

1− cn
Vn(x + cnt1)φn−1(y)

)
,

where Vn denotes the primitive of Vn : Vn =
∫ x

Vn(x ′) dx ′.



Mathematics of
the atmosphere
and oceans 4

V. Zeitlin

Classical QG
models for slow
motions
Scaling and
parameters.
Slow dynamic in
RSW. QG regime
QG TRSW
2-layer QG RSW
QG PE

Geostrophic
adjustment
Geostrophic
adjustment on the
f-plane : theory
Illustrations of
adjustment in
waveguides

Slow dynamics at
the Equator
Charney regime
Long-wave regime

Slow dynamics
near coasts

Slow motions
over topography.

Conclusions

v ≡ 0 : Kelvin waves

Solutions of 
u

(0)
t1 + h

(0)
x = 0,

yu(0) + h
(0)
y = 0,

h
(0)
t1 + u

(0)
x = 0.

(114)

Eastward-propagating equatorial Kelvin waves :

(u
(0)
K , v

(0)
K , h

(0)
K ) = (K (x − t), 0, K (x − t))φ0(y). (115)

General solution in the lowest order is a combination of a
mean flow (equatorial jet) and long Rossby and Kelvin
waves :

(u(0), v (0), h(0)) = (u
(0)
M , 0, h(0)

M )+(u
(0)
K , 0, h(0)

K )+
∞∑
n=1

(u
(0)
nR , v

(0)
nR , h

(0)
nR ).

(116)
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Nonlinear slow dynamics

Consistency (absence of secular growth) conditions in the
second order in δ give :

I Rossby-wave sector : Korteweg - de Vries (KdV)
equation (

Vnt3 + αnVnxxx + βnVnVnx
)
x

= 0, (117)

αn, βn are determined from the meridional structure of
the mode.

I Kelvin wave sector : simple wave equation

Kt3 + γKKx = 0, (118)

γ = 3
2

∫∞
−∞ dyφ3

0(y).

Here t3 ∼ δ3(βRe)−1.
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Equatorial Rossby solitons

Evolution of a long-wave Rossby-wave packet with formation
of a soliton tail. Levels of gray : thickness (pressure).
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Breaking of an equatorial Kelvin wave
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Breaking of an equatorial Kelvin wave. Snapshots at
t = 0, 3, 6(βRe)−1.
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Long-wave spectrum of RSW in a half-plane

Dispersion relation for internal-gravity (upper surface),
coastal Kelvin waves (inclined plane), and vortex motions,
ω = 0 (horizontal plane).
Frequencies of IGW and KW are well separated at small l .
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Long-wave scaling

I Disparity of spatial scales :
x ∼ Lx , y ∼ Ly , Lx � Ly ⇒ δ = Lx

Ly
� 1

I Disparity of velocity scales : v ∼ V , u ∼ δV
(motivation : u = 0 for Kelvin waves)

I Slow time scale : t = t1 ∼ δ f −1

I Rossby number ε = V
fLx
∼ δ

I Burger number Bu =
R2
d

L2
x
∼ 1.

Rescaled RSW equations on the half f -plane
δ2ut1 + δ3(uux + vuy )− v = −hx ,
δvt1 + δ(uvx + vvy ) + δu = −δhy ,
ht1 + ux + vy + δ

[
(hv)y + (hu)x

]
= 0,

(119)

Boundary condition : u|x=0 = 0.
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Conclusions

Lowest order in δ


− v (0) + h

(0)
x = 0,

v
(0)
t1 + u(0) + h

(0)
y = 0,

h
(0)
t1 + u

(0)
x + v

(0)
y = 0.

(120)

whence (
h

(0)
xx − h(0)

)
t1

= 0, (121)

Physical meaning : conservation of QG potential vorticity at
small δ.
Solutions :

I Stationary - geostrophic balance,
I t1- dependent, with h(0) ∝ e±x → Kelvin wave (KW) :

u = 0, h(0) = K (t1 + y)e−x , v (0) = −K (t1 + y)e−x .
(122)
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Next order in δ

Introducing slower time scale t2 ∼ δ2f −1 :
− v (1) + h

(1)
x = 0,

v
(1)
t1 + u(1) + h

(1)
y = Rv ,

h
(1)
t1 + u

(1)
x + v

(1)
y = Rh,

(123)

Here
Rv = −

(
v

(0)
t2 + u(0)v

(0)
x + v (0)v

(0)
y

)
, (124)

Rh = −
(
h

(0)
t2 + (u(0)h(0))x + (v (0)h(0))y

)
(125)

Two parts of the solution : QG (vortex motions), with u 6= 0,
and KW with u ≡ 0.
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QG solution

Combining equations in (123) :(
h

(1)
xx − h(1)

)
t1

= −Rh +Rvx . (126)

t1 - average of the r.h.s. should vanish, otherwise secular
growth ⇒(

h
(0)
xx − h(0)

)
t2

+ J
(
h(0), h

(0)
xx − h(0)

)
= 0. (127)

→ standard QG equation on the f - plane in the limit Lx
Ly
→ 0
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Conclusions

KW solution

Combining equations in (123) with u ≡ 0 :(
h

(1)
x − h(1)

)
t1
−
(
h

(1)
x − h(1)

)
y

= −Rh +Rv . (128)

For KW the l.h. side integrated with e−x over x vanishes ⇒∫ ∞
0

dx e−x (−Rh +Rv ) = 0. (129)

Injecting (122) →

h
(0)
t2 +

3
4
h(0)h

(0)
y

∣∣∣∣
x=0

= 0. (130)

simple wave equation → breaking in finite time
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Kelvin wave breaking as seen in the thickness field
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Breaking of a localised packet of coastal Kelvin waves
propagating along the straight boundary along the x- axis.
Time in units of f −1, distances in units of Rd .
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Potential vorticity in the presence of topography

PV conservation :

d

dt

(
ζ + f

h − b

)
= 0. (131)

Topography of weak amplitude |b| ∼ Ro the QG equation on
the β-plane :

∇2ηt − ηt + ηx + J (η,∇2η + b) = 0. (132)
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Stationary solutions
Stationarity :

J (η,∇2η + b + y) = 0. (133)

General solution :

∇2η + b + y = F(η), (134)

F - arbitrary function. Zonal flow U plus any perturbation :
η = −Uy + ψ,

∇2ψ + b + y = F(ψ − Uy). (135)

Looking for waves generated by localised topgraphy⇒ far
upstream, at x → +∞ for U < 0, and x → −∞ for U > 0,
the perturbation ψ vanishes and (135) becomes

y = F(−Uy), (136)

⇒ F(x) = − x
U ⇒ linear equation for ψ :

U∇2ψ + ψ = −Ub. (137)
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One-dimensional topography
Ridge : b = b(x) ⇒ ψ = ψ(x). Equation (137) becomes

ψ′′(x) +
1
U
ψ(x) = −b(x). (138)

Solution : inversion of the operator, Green’s function :

ψ(x) = −U
∫ +∞

−∞
dx ′G (x − x ′)b(x ′), (139)

G ′′(x − x ′) +
1
U
G (x − x ′) = δ(x − x ′). (140)

Fourier transformation :

G (x − x ′) =

∫ +∞

−∞
dk

e i(k(x−x ′)

k2 − 1
U

(141)

Dirac’s delta-function (unity in function space) :
δ(x) =

∫ +∞
−∞ dk e ikx .
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Calculation of Green’s function

I easterly flow U < 0, calculation straightforward

G (x − x ′) = π
√
Ue
− |x−x′|√

U , (142)

- decaying at both sides of the "ridge"
I westerly flow U > 0, integrand is singular, method of

residues. Upstream decay → singularity shifted to the
upper half-plane of complex l .

G (x − x ′) =

{
π
√
U sin (x−x ′)√

U
, x − x ′ > 0

0, x − x ′ < 0.
(143)

- oscillating (waves) behind the "ridge".
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Conclusions

Mountain Rossby waves in the westerly flow, as
seen in the data.
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2-dimensional topography
Green’s function G (x − x ′, y − y ′) :

U∇2G + G = δ(x − x ′)δ(y − y ′); (144)

Fourier-transform : G (x − x ′, y − y ′) →
G (k , l),

[
−U(k2 + l2) + 1

]
G (k, l) = 1

G (x − x ′, y − y ′) =

∫ +∞

−∞
dkdl

e i(k(x−x ′)+l(y−y ′))

−U(k2 + l2) + 1

Polar coordinates in Fourier-space →∫ +∞

0
|k|d |k|

∫ 2π

0
dθ

e i|k||x−x′| cos θ

−Uk2 + 1
= 2π

∫ +∞

0

|k|d |k|
−Uk2 + 1

J0 (|k||x− x′|) := I

(145)
J0 - Bessel function

U > 0 : I = − π

2U
Y0

(
|x− x′|

U

)
, U < 0 : I =

2π
|U|

K0

(
|x− x′|
|U|

)
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Bessel functions
I Bessel function Y0 : oscillating, and weakly decaying

Inconsistent with b.c. of strong decay upstream - ? ?.
I Modified Bessel function K0 : exponentially decaying

Exponentially decaying perturbation in the easterly flow.



Mathematics of
the atmosphere
and oceans 4

V. Zeitlin

Classical QG
models for slow
motions
Scaling and
parameters.
Slow dynamic in
RSW. QG regime
QG TRSW
2-layer QG RSW
QG PE

Geostrophic
adjustment
Geostrophic
adjustment on the
f-plane : theory
Illustrations of
adjustment in
waveguides

Slow dynamics at
the Equator
Charney regime
Long-wave regime

Slow dynamics
near coasts

Slow motions
over topography.

Conclusions

Recipe for correcting westerly flow result

Solution for westerly flow :
Green’s function to be corrected by a solution of the
homogeneous problem which "kills" the oscillations far
upstream. The correction can not be found in closed form, it
is expressed as a series of Bessel functions∑∞

n=1
1

2n−1J2n−1

(
|x−x′|√

U

)
cos(2n − 1)φ, where φ is the polar

angle on the x − y plane.
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Conclusions

Mountain Rossby waves in the westerly flux over a
circular mountain
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Conclusions

I “Vortex” scaling and Ro → 0 ↔ filtering of gravity
waves → simplified QG models ⇔ PV conservation in
the limit of small Ro

I QG RSW on the f -plane ↔ 2D Euler with modified
streamfunction-vorticity relation

I QG on the β- plane : barotropic and baroclinic Rossby
waves

I QG with topography → mountain waves
I QG in coastal and equatorial wave-guides to be

completed with Kelvin waves
I Nonlinearity of slow wave-guide motions : wave breaking

(in hydrostatic approximation) and soliton formation.
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