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1.5D RSW

Dimension “1.5" : no dependence on y

Equations of the model :

∂tu + u∂xu − fv + g∂xh = 0 ,
∂tv + u∂xv + fu = 0 ,

∂th + u∂xh + h∂xu = 0 .

Frontal configurations : localized distributions of v(x), h(x)
with common compact support in x of v , ∂xh.
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Lagrangian invariants

I Potential Vorticity :

Q = (∂xv + f )/h, (1)

.
I Geostrophic Momentum :

M = v + fx (2)

(∂t + u∂x)M = 0, (∂t + u∂x)Q = 0. (3)

Inertia - gravity waves
Linearization with respect to the rest state H = const : zero
mode (slow motions) and inertia- gravity waves (fast
motions) with standard dispersion relation :

ω = ±(c2
0k

2 + f 2)
1
2 , c0 =

√
gH. (4)
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Geostrophic equilibrium
Exact solution of the equations of motion :

fv = g∂xh, u = 0 , (5)

(Infinitely) slow motions : vorticity is entirely determined by
the perturbation of h and vice verse :

Q(g) =

(
f + g

f ∂
2
xxh

h

)
. (6)

Geostrophic adjustment
Adjustment → Relaxation towards equilibrium state.
Equilibrium ↔ minimum of energy ⇒ necessity to evacuate
energy. The only energy sink in the absence of dissipation :
émission of inertia - gravity waves.
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Equations of motion in Lagrangian coordinates

Lagrangian coordinates
Trajectories of "fluide parcels" x → X (x , t), where x is a
position of the parcel at t = 0. Ẋ = u(X , t), X ′ := ∂X

∂x .

Momentum equations

Ẍ − fv + g∂Xh = 0 ,
v̇ + f Ẋ = 0 , (7)

where v is considered as a function of x and t.

Conservation of mass :

h(X , t) dX = hI (x) dx , ⇒ h(X , t) = hI (x)∂X x . (8)



Mathematics of
the atmosphere
and oceans 5

V. Zeitlin

Geostrophic
adjustment in
1.5D RSW, and
the first idea of
frontogenesis
1.5D RSW
Lagrangian 1.5D
RSW
Fully nonlinear
geostrophic
adjustment
The role of
baroclinicity :
2-layer RSW

Fronts and
frontogenesis in
the PE model
2.5D PE
Existence and
uniqueness of
adjusted state
Lagrangian 2.5D
EP
Frontogenesis at
zero PV
Frontogenesis at
constant PV

Cyclogenesis, a
catastrophic
cyclo-geostrophic
adjustment

Conclusions

Reduction to a single equation

Integration of the equation for v :

v(x , t) + fX (x , t) = M(x) . (9)

Determination of M from b.c. :

M(x) = fx + vI (x). (10)

Chaine differentiation :

∂Xh = ∂X (hI (x)∂xX ) = h′I
(
X ′
)−2−hI (x)X ′′

(
X ′
)−3

, (11)

Closed equation for X :

Ẍ + f 2X + gh′I
(
X ′
)−2

+
ghI
2

[(
X ′
)−2
]′

= fM . (12)
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Re-writing in terms of deviations of parcels from their initial
positions : X (x , t) = x + φ(x , t) :

φ̈+ f 2φ+gh′I

(
1

(1 + φ′)2

)
+

ghI
2

(
1

(1 + φ′)2

)′
= fvI . (13)

To be solved with b.c. :

φ(x , 0) = 0, φ̇(x , 0) = uI (x),

where uI is the initial velocity in x direction.
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Direct simulation with MATHEMATICA of the
1.5D adjustment
Initial configuration :

hI (x) = 1+e−x
2
, vI (x) = −2(x+0.2 sin(x)) e−x

2
, uI (x) = 0.1e−x

2
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Wave breaking leads to numerical oscillations on the left in
this non-shock-capturing simulation.
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Example : adjustement of a "wind blow" (Rossby,
1936)

Initial condition : jet out of equilibrium :
hI = H = const, vI 6= 0.
Notation J = ∂X/∂x = H/h(X , t).

g ∂Xh = ∂xP, P = gH/(2J2)− Lagrangian pressure

Lagrangian equations :

u̇ − fv + ∂xP = 0, (14)

v̇ + fu = 0, (15)

J̇ − ∂xu = 0. (16)



Mathematics of
the atmosphere
and oceans 5

V. Zeitlin

Geostrophic
adjustment in
1.5D RSW, and
the first idea of
frontogenesis
1.5D RSW
Lagrangian 1.5D
RSW
Fully nonlinear
geostrophic
adjustment
The role of
baroclinicity :
2-layer RSW

Fronts and
frontogenesis in
the PE model
2.5D PE
Existence and
uniqueness of
adjusted state
Lagrangian 2.5D
EP
Frontogenesis at
zero PV
Frontogenesis at
constant PV

Cyclogenesis, a
catastrophic
cyclo-geostrophic
adjustment

Conclusions

Reduction to a single equation for J

J̈ + f 2J + ∂2
xxP = fHQ . (17)

Here

Q(x) =
1
H

(∂xv(x , t) + fJ(x , t)) =
1
H

(∂xvI (x) + fJI (x)) .

Stationary adjusted solution :

f 2J + ∂2
xxP = fHQ (18)

- entirely determined by Q



Mathematics of
the atmosphere
and oceans 5

V. Zeitlin

Geostrophic
adjustment in
1.5D RSW, and
the first idea of
frontogenesis
1.5D RSW
Lagrangian 1.5D
RSW
Fully nonlinear
geostrophic
adjustment
The role of
baroclinicity :
2-layer RSW

Fronts and
frontogenesis in
the PE model
2.5D PE
Existence and
uniqueness of
adjusted state
Lagrangian 2.5D
EP
Frontogenesis at
zero PV
Frontogenesis at
constant PV

Cyclogenesis, a
catastrophic
cyclo-geostrophic
adjustment

Conclusions

High-resolution numerical simulations of Rossby
adjustment
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Initial jet profile (left) and initial and final distributions of PV
(right). Notice the region of negative PV.
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Process of adjustment as seen in the thickness
field
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Notice a discontinuity formation in the region of negative PV.
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Check of balance in the adjusted state

−20 −15 −10 −5 0 5 10 15 20

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 t / T
f
 = 22.0 

x/Rd

f v
g h

x

−20 −15 −10 −5 0 5 10 15 20

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t / T
f
 = 22.2

x/Rd

f v
g h

x

−20 −15 −10 −5 0 5 10 15 20

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t / T
f
 = 22.5

x/Rd

f v
g h

x



Mathematics of
the atmosphere
and oceans 5

V. Zeitlin

Geostrophic
adjustment in
1.5D RSW, and
the first idea of
frontogenesis
1.5D RSW
Lagrangian 1.5D
RSW
Fully nonlinear
geostrophic
adjustment
The role of
baroclinicity :
2-layer RSW

Fronts and
frontogenesis in
the PE model
2.5D PE
Existence and
uniqueness of
adjusted state
Lagrangian 2.5D
EP
Frontogenesis at
zero PV
Frontogenesis at
constant PV

Cyclogenesis, a
catastrophic
cyclo-geostrophic
adjustment

Conclusions

Existence of adjusted state : question

Does physically acceptable, i.e. smooth with everywhere
positive thickness, adjusted state exist for any initial PV, and
is it unique ?
In original variables X : dX = Jda,

− g

f

d2h(X )

dX 2 + h(X ) Q(X ) = f . (19)

where PV is a function of X , which is given by the inverse
mapping x = x(X , t) :

Q(X ) =
1

hI (x(X ))

(
f +

∂vI (x(X ))

∂x

)
.

Existence and uniqueness of positive solutions for ODE (20) ?
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Existence of adjusted state : answer

Theorem
For positive Q(X ) with compact support derivatives and
arbitrary constant asymptotics (front) equation (20) has
unique bounded and everywhere positive solution h(X ) at
−∞ ≤ X ≤ +∞.
Frontogenesis : "catastrophic" adjustment leading to a
non-smooth adjusted state.
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2-layer rigid-lid RSW

∂tu1 + u1∂xu1 − fv1 + ρ−1
1 ∂xπ =0 , (20a)

∂tv1 + u1(f + ∂xv1) =0 , (20b)

∂tu2 + u2∂xu2 − fv2 + ρ−1
2 ∂xπ + g ′∂xη =0 , (20c)

∂tv2 + u2(f + ∂xv2) =0 , (20d)
∂t(H1 − η) + ∂x((H1 − η)u1) =0 , (20e)
∂t(H2 + η) + ∂x((H2 + η)u2) =0 , (20f)

g ′ - reduced gravity, H1 + H2 = H. PV layer-wise :

Q1 =
f + ∂xv1

h1
, and Q2 =

f + ∂xv2

h2
. (21)

Geostrophic equilibria : exact solutions :

v1 =
1

f ρ1
∂xπ , (22a)

v2 =
1
f ρ2

∂xπ +
g ′

f
∂xη . (22b)
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Existence and uniqueness of adjusted states
Combining (22) and (23a) → ODEs for equilibrium heights :

g ′

f
h′′1 − (Q2 + r Q1) h1 = − (−f (1− r) + H Q2) , (23a)

g ′

f
h′′2 − (Q2 + r Q1) h2 = − (f (1− r) + rH Q1) , (23b)

where r = ρ1/ρ2 < 1. Both of the type

h′′ − R(x) h = −S(x)

Similar to 1-layer case : R > 0,S > 0⇒ existence,
uniqueness, and positiveness of solutions.
±∞. ⇒ adjusted state ∃ for initial states with localized PV
anomalies with

Q1 ≥ 0 , and Q2 ≥ (1− r) f /H , (24)

→ additional restrictions.
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Equations of 2.5D PE

"Dimension 2.5" : no dependence of y :

Du

Dt
− fv + φx = 0 , (25)

Dv

Dt
+ fu = 0 , (26)

φz = g
θ

θr
, (27)

ux + wz = 0 , (28)
Dθ

Dt
= 0 , (29)

D

Dt
= ∂t + u∂x + w∂z (30)
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Lagrangian invariants

I Potential temperature θ,
I Potential vorticity :

q = (∂xv + f )θz − vzθx , (31)

I Geostrophic momentum

M = v + fx (32)

D

Dt
(θ, M, q) = 0. (33)

Expression of q in terms of M :

q =
∂(M, θ)

∂(x , z)
. (34)
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Inertia - gravity waves
Linearization about state of rest with linear stratification

θ = θr
N2

g
z

with constant Brunt - Vaisala frequency N = const : zero
mode (slow motions) and inertia- gravity waves (fast
motions) with standard dispersion relation :

ω = ±(N2 k
2

m2 + f 2)
1
2 , (35)

where wavenumber in (x , z) space is :

k = k x̂ + mẑ. (36)
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Thermal wind and geostrophic potential
Stationary states

u = w = 0, fv = φx , g
θ

θr
= φz . (37)

Elimination of φ, use of M :

f
∂M

∂z
=

g

θr

∂θ

∂x
, (38)

⇒ "geostrophic potential" Φ may be introduced for
equilibrium states :

M = f −1∂Φ

∂x
, (39a)

θ =
θr
g

∂Φ

∂z
. (39b)
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Monge-Ampère equation for adjusted state

Lagrangian conservation of PV ⇒ same PV in initial and
adjusted states :

q =
∂(M, θ)

∂(x , z)
=
∂2Φ

∂x2
∂2Φ

∂z2 −
(
∂2Φ

∂x∂z

)2

=
gf

θr
q (40)

Monge-Ampère (MA) equation.
Localized fronts on the background of linear stratification
N = const in the whole (x , z)- plane :

Φ||x |,|z|→∞ =
1
2

(f 2x2 + N2z2)⇒

Φ = const at a distant ellipse ⇒ Dirichlet problem in a
convex domain.
Existence and uniqueness of solution : ⇔ q > 0.
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Complications with vertical boundaries
Flow in a strip z− ≤ z ≤ z+, z± = const. q > 0 ⇒
(x , z)→ (M, θ) well defined, strip 7→ non-convex domain.
Thermal wind relation :

f
∂x

∂θ
=

g

θr

∂z

∂M
→ (41)

“Potential” Ψ for (x , z) :

x =
θr
g

∂Ψ

∂M
z = f −1∂Ψ

∂θ
→ (42)

Monge-Ampère equation :

∂2Ψ

∂M2
∂2Ψ

∂θ2 −
(
∂2Ψ

∂M∂θ

)2

=
θr
gf

1
q
. (43)

Neumann boundary conditions at vertical boundaries :

f −1∂Ψ

∂θ

∣∣∣∣
M±,θ±

= z± (44)

No existence and uniqueness results for MA equation in
non-convex domain with Neumann b.c.
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Equations of motion in Lagrangian coordinates

Lagrangian coordinates
Trajectories of fluid "parcels"
(x , z)→ (X (x , z , t), Z (x , z , t)), where (x , z) is a position of
a parcel at t = 0. (Ẋ , Ż ) = (u(X ,Z , t),w(X ,Z , t)).

Incompressibility equation - conservation of volume :

∂(X ,Z )

∂(x , z)
= 1 . (45)

Hydrostatic equation

∂Zφ ≡
∂(X , φ)

∂(x , z)
= g

θI
θr
. (46)
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Horizontal momentum equations

Ẍ − fv + ∂Xφ = 0 ,
v̇ + f Ẋ = 0 , (47)

Elimination of v :
Conservation of M and b. c. :

M(x) = v + fX = fx + vI (x). (48)

Elimination of φ by cross-differentiation :

∂(X , Ẍ − fvI − f 2x)

∂(x , z)
+

g

θr

∂(θI ,Z )

∂(x , z)
= 0 (49)
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Stationary adjusted states :

∂(X ,−fvI − f 2x)

∂(x , z)
+

g

θr

∂(θI ,Z )

∂(x , z)
= 0 (50)

∂(X ,Z )

∂(x , z)
= 1 (51)

These equations can be solved analytically for configurations
with constant PV, for example for a layer of the fluid
between a flat bottom (at z = 0) and a rigid lid (at
z = H = 1), with b. c. :

Z (x , 0) = 0 ,Z (x , 1) = 1 . (52)

Localized fronts/jets correspond to X |x→±∞ = x .
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Initial configuration :
θI varying only horizontally, no vertical shear in vI :

θI = θI (x), vI = vI (x) ⇒ q ≡ 0. (53)

Horizontal momentum equation :

∂X

∂z
f (v ′I + f ) +

∂Z

∂z

gθ′I
θr

= 0 , (54)

where prime denotes differentiation with respect to x .

Integration in z :

X =
F(x)

fv ′I + f 2 −
gθ′I/θr
fv ′I + f 2Z , (55)

F(x) - integration "constant" .
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Using the incompressibility equation :

Z 2
(

gθ′I/θr
fv ′I + f 2

)′
− 2

(
F

fv ′I + f 2

)′
Z + 2(G(x) + z) = 0 ,

(56)

where G(x) - another integration "constant" after integration
in z .

Applying b. c.

G(x) = 0, (57)(
F

fv ′I + f 2

)′
= 1 +

1
2

(
gθ′I/θr
fv ′I + f 2

)′
≡ 1 +

1
2
A′(x).(58)
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Explicit form of stationary solutions :

Xs = x +A(x)

(
1
2
− Z

)
, A =

gθ′I/θr
fv ′I + f 2 (59)

Zs =
1
A′(x)

1 +
1
2
A′(x)−

√(
1 +

1
2
A′(x)

)2

− 2zA′(x)

 ,
(60)

This mapping (x , z)→ (Xs ,Zs) can be singular ≡ not
bijective, if ∃(x , z) : ∂Xs

∂x = 0.
Singularity appears at the boundaries ⇒ criterion :
1± A′2 = 0, or :

g

f θr

(
gθ′I/θr
f + v ′I

)′
= ±2 . (61)
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Illustrations : zero PV, localized anomaly of θ
without initial jet vI ≡ 0.

Initial configuration
Profiles of θI = tanh(x) (dashed), of A′ (continuous), and
discontinuity thresholds A′ = ±2 (dotted) :
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Adjusted state

Isotachs of the velocity field
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Conclusions

Illustrations : zero PV, localized anomaly of θ with
an initial jet vI = 0.55e−x

2
.

Initial configuration
Profiles of θI = tanh(x) (dashed) and of A′ (continuous),
and discontinuity thresholds A′ = ±2 (dotted) :
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Adjusted state

Isotachs of the velocity field
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Beyond the singularity :

Configuration with vI = 0, isentropes :
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Initial conditions and equation for adjusted state

Initial configuration :
Flow in a strip : −∞ ≤ x ≤ +∞, 0 ≤ z ≤ H.
Horizontal anomaly of linear profile potential temperature, no
vI :

θI =
θr
g

(
N2z + gψ(x)

)
, vI = 0 N = constant. (62)

Horizontal momentum equation :

− ∂(X , f 2x)

∂(x , z)
+ gψ′(x)

∂Z

∂z
− N2∂Z

∂x
= 0 , (63)
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New variables and equivalent Laplace equation

New variables : (x , z)→ (x ,Z ). Momentum equation →

− ∂(X , f 2x)

∂(x ,Z )
+ gψ′(x)− N2 ∂z

∂x
= 0 (64)

Incompressibility condition :

∂(X ,Z )

∂(x , z)
= 1 → ∂X

∂x
− ∂z

∂Z
= 0. (65)

Elimination of z → equation for X :

f 2∂
2X

∂2Z
+ N2∂

2X

∂2x
= 0,

∂X

∂Z

∣∣∣∣
Z=0,H

=
g

f 2ψ
′(x). (66)

After rescaling - standard Laplace equation with Neumann
boundary conditions in a unit strip.
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Use of the theory of complex variables

Neumann problem ↔ Dirichlet problem for conjugate
analytic function.
Schwarz integral : general solution
F (ζ) = a(ζ) + ib(ζ), ζ = x + iZ of Dirichlet problem in a
unit strip in the complex x ,Z plane with b.c. a = a0,1 at
Z = (0, 1)

F (ζ) =
i

2

∫ +∞

−∞
dt a1(t) tanh

π(t − ζ)

2

− i

2

∫ +∞

−∞
dt a0(t) coth

π(t − ζ)

2
.

Our case : a0 = a1 = ψ(x)⇒

F (ζ) = −i
∫ +∞

−∞
dt

ψ(t)

sinhπ(t − ζ)
. (67)
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Solution of the adjustment problem

X (x ,Z ) = x +

∫ +∞

x
dt

(
1 +

∂a

∂Z

)
, (68)

where

a(x ,Z ) = R [F (ζ)] =

∫ +∞

−∞
dt ψ(t)

coshπ(t − x) sinπZ
sinh2 π(t − x) + sin2 πZ

.

(69)
Singularity : ∃(x ,Z ) : ∂X∂x ≤ 0. Appears at strong enough
amplitudes of density perturbation |ψ(x)| at the boundaries.

Example : ψ(x) = a tanh(πx)

X (x , Z ) = x + a
cos(πZ )

cosh(πx) + sin(πZ )
→

Singularity at z = Z = 0 if a ≥ 2.
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Axisymmetric PE

du

dt
− v (f +

v

r
) = −∂rφ , (70a)

dv

dt
+ u (f +

v

r
) = 0 , (70b)

db

dt
= 0, ∂zφ = b , (70c)

1
r
∂r (r u) + ∂zw = 0, (70d)

where d
dt = ∂t + u ∂r + w ∂z .

Stationary solution : cyclo-geostrophic equilibrium :

v (f +
v

r
) = ∂rφ, b = ∂zφ. (71)
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Lagrangian picture
Lagrangian mapping : (r , z) 7→ (R(r , z),Z (r , z)), u = Ṙ .
Advection of buoyancy : ḃ(R,Z ) = 0⇒ b(R,Z ) = bI (r , z)
From (71b)

d

dt

(
rv + f

r2

2

)
= 0 ⇒ Rv + f

R2

2
= rvI + f

r2

2
≡ M,

where (...)I - initial values. M - angular momentum →

v =
1
R

(
M − f

R2

2

)
. (72)

Incompressibility ↔ R dR dZ = r dr dz ↔ ∂(R2,Z)
∂(r2,z)

= 1
Lagrangian equations :

R̈ +
f 2

4
R − M2

R3 + ∂Rφ, (73a)

∂Zφ = b,
∂
(
R2, Z

)
∂(r2, z)

= 1. (73b)



Mathematics of
the atmosphere
and oceans 5

V. Zeitlin

Geostrophic
adjustment in
1.5D RSW, and
the first idea of
frontogenesis
1.5D RSW
Lagrangian 1.5D
RSW
Fully nonlinear
geostrophic
adjustment
The role of
baroclinicity :
2-layer RSW

Fronts and
frontogenesis in
the PE model
2.5D PE
Existence and
uniqueness of
adjusted state
Lagrangian 2.5D
EP
Frontogenesis at
zero PV
Frontogenesis at
constant PV

Cyclogenesis, a
catastrophic
cyclo-geostrophic
adjustment

Conclusions

Equation for adjusted state

Elimination of φ by cross-differentiation :

∂
(
R, R̈ − M2

R3

)
∂ (R,Z )

− ∂(b,Z )

∂ (R,Z )
= 0, (74a)

R

r

∂ (R, Z )

∂(r , z)
= 1. (74b)

Stationary solution↔ adjusted state resulting from evolution
of initial state with MI , bI :

− 1
R3

∂(R,M2
I (r , z))

∂(r , z)
+
∂(bI (r , z),Z )

∂(r , z)
,

R

r

∂ (R, Z )

∂(r , z)
= 1.

(75)
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Barotropic initial state

z- independent initial configuration bI (r), MI (r) ⇒

R−3∂zR∂rM
2
I + ∂rbI∂zZ = 0⇒ (76)

Integrating in z allows to get an expression for R :

R2 = AI (Z −H(r))−1, (77)

where H is arbitrary function (“integration constant” divided
by b′I ), to be determined from b.c., prime denotes r
differentiation, and we introduced AI (r) :=

MIM
′
I

b′I
Injection into (75b) and integration once more in z →

1
2r
(
A′I log (Z −H)− AIH′(Z −H)−1) = z + G(r), (78)

where G(r) - another arbitrary function to be determined.
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Using boundary conditions
Vertical boundary conditions :
1) Z |z=0 = 0, 2) Z |z=H = H ⇒
1. Expression of G via H(r)

1
2r
(
A′I log (−H) + AIH′H−1) = G(r). (79)

2. Equation for H
1
2r

(
A′I log (H −H)− AI

H′

H −H

)
= H + G(r), (80)

where expression for F (81) to be injected
Using b.c. R(∞, z) = r

H = H

[
1− exp

(
H

AI
r2
)]−1

⇒ (81)

z as a function of (r ,Z ) from (79) :

z =
1
2r

(
A′I (r) log

(
1− Z

H(r)

)
+ AI (r)

H′(r)

H(r)

Z
H(r)

1− Z
H(r)

)
.

(82)
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Simple example of cyclogenesis
Scaling : z ∼ H, r ∼ Rd = gH

f 2
, b ∼ g . Initial motionless state

with Gaussian distribution of (non-dimensional) buoyancy :
vI = 0, bI = Be−r

2/4.
At the upper boundary (78) :

R2∣∣
Z=1 = (r2 exp(r2/B)

(
exp(B exp(−r2))− 1

)
(83)

becomes non-monotonous ↔ ∃r : ∂R/∂r = 0 at
B ≥ Bcr ≈ 4.3.

R2 (left) and v (right) as functions of r2 at z = Z = H.
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Conclusions

I Geostrophic adjustment in the absence of dissipation
can lead to singularity in Lagrangian mapping

I Singularity manifests itself as formation of sharp
gradients of buoyancy and velocity ⇔ fronto- or
cyclo-genesis

I Sufficient condition of the absence of singularity in the
unbounded domain : positiveness of potential vorticity
(PV)

I Absence of criteria in the presence of boundaries
I Zero-PV configurations allow for analytic solutions of

the adjustment problem and direct proof of singularity
formation.
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