Mathematical Tools Refresher Course

V. Zeitlin

M2 MOCIS/WAPE

Vector algebra and
vector analysis
Vector algebra
Differential operations on scalar and vector fields
Integration(s) in 3D space

Curvilinear

coordinates
Metrics and Jacobians
Oithogonat coordinates
Cylindrical coordinates
Spherical coordinates
Fourier analysis
Variational
calculus

ODE

First-order ODE
Linear second-order ODE Examples

PDE
Linear first-order PDE
Quasi-linear first-order systems
Classification of linear 2nd order PDE
Hyperbolic equations: wave equation
Parabolic equations: heat equation
Elliptic equations

Vectors: definitions and superposition principle
 Vector \boldsymbol{A} is a coordinate-independent (invariant) object having a magnitude $|\boldsymbol{A}|$ and a direction. Alternative notation \vec{A}. Adding/subtracting vectors:

coordinates
Metrics and Jacobians
Orthogonal coordinates
Cylindrical coordinates
Spherical coordinates
Fourier analysis
Variational
calculus
ODE
First-order ODE
Linear second-order ODE

Superposition principle: Linear combination of vectors is a vector.

Products of vectors

Scalar product of two vectors:
Projection of one vector onto another:

$$
\boldsymbol{A} \cdot \boldsymbol{B}:=|\boldsymbol{A}||\boldsymbol{B}| \cos \phi_{A B} \equiv \boldsymbol{B} \cdot \boldsymbol{A},
$$

where $\phi_{A B}$ is an included angle between the two.
Vector product of two vectors:

$$
\boldsymbol{A} \wedge \boldsymbol{B}:=\hat{\boldsymbol{i}}_{A B}|\boldsymbol{A}||\boldsymbol{B}| \sin \phi_{A B}=-\boldsymbol{B} \wedge \boldsymbol{A},
$$

where $\hat{\boldsymbol{I}}_{A B}$ is a unit vector, $\left|\hat{\boldsymbol{i}}_{A B}\right|=1$, perpendicular to both \boldsymbol{A} and \boldsymbol{B}, with the orientation of a right-handed screw rotated from \boldsymbol{A} toward \boldsymbol{B}.
x is an alternative notation for \wedge.
Distributive properties:
$(A+B) \cdot C=A \cdot C+B \cdot C,(A+B) \wedge C=A \wedge C+B \wedge C$.

Vectors in Cartesian coordinates

Vector algebra
Differential operations on scalar and vector fields

Curvilinear

coordinates
Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Tensor notation and Kronecker delta

$(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}) \rightarrow \hat{\boldsymbol{x}}_{i}, i=1,2,3$. Ortho-normality of the basis:

$$
\hat{\boldsymbol{x}}_{i} \cdot \hat{\boldsymbol{x}}_{j}=\delta_{i j}
$$

where $\delta_{i j}$ is Kronecker delta-symbol, an invariant tensor of second rank (3×3 unit diagonal matrix):

$$
\delta_{i j}= \begin{cases}1, & \text { if } i=j, \\ 0, & \text { if } i \neq j\end{cases}
$$

The components V_{i} of a vector \boldsymbol{V} are given by its projections on the axes $V_{i}=\boldsymbol{V} \cdot \hat{\boldsymbol{x}}$:

$$
\boldsymbol{V}=V_{1} \hat{\boldsymbol{x}}_{1}+V_{2} \hat{\boldsymbol{x}}_{2}+V_{3} \hat{\boldsymbol{x}}_{3} \equiv \sum_{i=1}^{3} V_{i} \hat{\boldsymbol{x}}_{i}
$$

Einstein's convention:
$\sum_{i=1}^{3} A_{i} B_{i} \equiv A_{i} B_{i}$ (self-repeating index is "dumb").

Vector products by Levi-Civita tensor

Formula for the vector product:

$$
\boldsymbol{A} \wedge \boldsymbol{B}=\left\|\begin{array}{lll}
\hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3}
\end{array}\right\|
$$

Tensor notation (with Einstein's convention):

$$
(\boldsymbol{A} \wedge \boldsymbol{B})_{i}=\epsilon_{i j k} A_{j} B_{k},
$$

where

$$
\epsilon_{i j k}=\left\{\begin{array}{l}
1, \text { if } i j k=123,231,312 \\
-1, \text { if } i j k=132,321,213 \\
0, \text { otherwise }
\end{array}\right.
$$

Magic identity:

$$
\begin{equation*}
\epsilon_{i j k} \epsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l} \tag{1}
\end{equation*}
$$

Scalar, vector, and tensor fields

Any point in space is given by its radius-vector
$\boldsymbol{x}=x \hat{\boldsymbol{x}}+y \hat{\boldsymbol{y}}+z \hat{\mathbf{z}}$.
A field is an object defined at any point of space
$(x, y, z) \equiv\left(x_{1}, x_{2}, x_{3}\right)$ at any moment of time t, i.e. a
function of \boldsymbol{x} and t.
Different types of fields:

- scalar $f(\boldsymbol{x}, t)$,
- vector $\boldsymbol{v}(\boldsymbol{x}, t)$,
- tensor $t_{i j}(\boldsymbol{x}, t)$

The fields are dependent variables, and x, y, z and t independent variables.
Physical examples: scalar fields - temperature, density, pressure, geopotential, vector fields - velocity, electric and magnetic fields, tensor fields - stresses, gravitational field.

Differential operations on scalar fields

Partial derivatives:

$$
\frac{\partial f}{\partial x}:=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y, z)-f(x, y, z)}{\Delta x}
$$

and similar for other independent variables. Differential operator nabla:

$$
\boldsymbol{\nabla}:=\hat{\boldsymbol{x}} \frac{\partial}{\partial x}+\hat{\boldsymbol{y}} \frac{\partial}{\partial y}+\hat{\boldsymbol{z}} \frac{\partial}{\partial z}
$$

Gradient of a scalar field: the vector field

$$
\operatorname{grad} f \equiv \nabla f=\hat{\boldsymbol{x}} \frac{\partial f}{\partial x}+\hat{\boldsymbol{y}} \frac{\partial f}{\partial y}+\hat{\boldsymbol{z}} \frac{\partial f}{\partial z}
$$

Heuristic meaning: a vector giving direction and rate of fastest increase of the function f.

Visualizing gradient in 2D

From left to right: 2D relief, its contour map, and its gradient. Graphics by Mathematica ${ }^{\circ}$

Vector algebra and
vector analysis
Vector algebra
Differential operations on scalar and vector fields
Integration(s) in 3D space

Curvilinear

coordinates

Metrics and Jacobians
Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Varlational
calculus
ODE
First-order ODE
Linear second-order ODE Examples

PDE

Linear first-order PDE
Quasi-linear first-order systems
Classification of linear 2nd order PDE
Hyperbolic equations: wave equation
Parabolic equations: heat equation
Elliptic equations

Differential operations with vectors

- Scalar product: divergence

$$
\operatorname{div} \boldsymbol{v} \equiv \boldsymbol{\nabla} \cdot \boldsymbol{v}(\boldsymbol{x})=\frac{\partial v_{i}}{\partial x_{i}}
$$

- Vector product: curl

$$
\operatorname{curl} \boldsymbol{v} \equiv \nabla \wedge \boldsymbol{v}(\boldsymbol{x}) ; \quad(\operatorname{curl} \boldsymbol{v})_{i}=\epsilon_{i j k} \frac{\partial v_{k}}{\partial x_{j}}
$$

- Tensor product:

$$
\boldsymbol{\nabla} \otimes \boldsymbol{v}(\boldsymbol{x}) ; \quad(\boldsymbol{\nabla} \otimes \boldsymbol{v})_{i j}=\frac{\partial v_{i}}{\partial x_{j}}
$$

For any \boldsymbol{v}, f : div curl $\boldsymbol{v} \equiv 0$, curl grad $f \equiv 0$, $\operatorname{div} \operatorname{grad} f=\nabla^{2} f, \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ - Laplacian.

Metrics and Jacobians

Visualizing divergence in 2D

From left to right: vector field $\boldsymbol{v}(x, y)=\left(v_{1}(x, y), v_{2}(x, y)\right.$, and its divergence $\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}$. The curl $\hat{\boldsymbol{z}}\left(\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}\right)$ of this field is identically zero. (The field is a gradient of the previous example.) Graphics by Mathematica®

Differential operations on scalar and vector fields

Visualizing curl in 2D

From left to right: vector field $\boldsymbol{v}(x, y)=\left(v_{1}(x, y), v_{2}(x, y)\right.$, and its curl $\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}$. The divergence $\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}$ of this field is identically zero, so the field is a curl of another vector field. Graphics by Mathematica ${ }^{\odot}$

Differential operations on scalar and vector fields

Strain field with non-zero curl and divergence

From left to right: vector field, and its curl and divergence. Graphics by Mathematica ${ }^{\text {© }}$

Vector algebra and
vector analysis
Vector algebra
Differential operations on scalar and vector fields
Integration(s) in 3D space

Curvilinear

coordinates

Metrics and Jacobians
Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis
Variational
calculus

ODE

First-order ODE
Linear second-order ODE Examples

PDE

Linear first-order PDE
Quasi-linear first-order systems
Classification of linear 2nd order PDE
Hyperbolic equations: wave equation
Parabolic equations: heat equation
Elliptic equations

Useful identities

$$
\begin{gather*}
\nabla \wedge(\nabla \wedge v)=\nabla(\nabla \cdot v)-\nabla^{2} v \tag{2}\\
v \wedge(\nabla \wedge v)=\nabla\left(\frac{v^{2}}{2}\right)-(v \cdot \nabla) v \tag{3}\\
\nabla f \cdot(\nabla \wedge v)=-\nabla \cdot(\nabla f \wedge v) \tag{4}
\end{gather*}
$$

Proofs: using tensor representation $(\boldsymbol{\nabla} \wedge \boldsymbol{v})_{i}=\epsilon_{i j k} \partial_{j} v_{k}$, with shorthand notation $\frac{\partial}{\partial x_{i}} \equiv \partial_{i}$, exploiting the antisymmetry of $\epsilon_{i j k}$, using that $\delta_{i j} v_{j}=v_{i}$, and applying the magic formula (1).

Example: proof of (2).

$$
\epsilon_{i j k} \partial_{j} \epsilon_{k l m} \partial_{l} v_{m}=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) \partial_{j} \partial_{l} v_{m}=\partial_{i} \partial_{j} v_{j}-\partial_{j} \partial_{j} v_{i} .
$$

Integration of a field along a (closed) 1D contour

Summation of the values of the field at the points of the contour times oriented line element $d \boldsymbol{l}=\hat{\boldsymbol{t}} d$ l:

$$
\oint d I(\ldots),
$$

where $\hat{\boldsymbol{t}}$ is unit tangent vector, and $d l$ is a length element along the contour. Positive orientation: anti-clockwise.

Integration of a field over a 2D surface

 scalar and vector fields Integration(s) in 3D space

Curvilinear

coordinates
Metrics and Jacobians
Orthogonial coordinates
Cylindrical coordinates
Spherical coordinates
Fourier analysis
Variational
calculus
ODE
First-order ODE
Linear second-order ODE
Summation of the values of the field at the points of the surface times oriented surface element $d \boldsymbol{s}=\hat{\boldsymbol{n}} d s$:

$$
\iint d \boldsymbol{s}(\ldots) \equiv \int_{S} d \boldsymbol{s}(\ldots),
$$

where $\hat{\boldsymbol{n}}$ is unit normal vector. Positive orientation for closed surfaces: outwards.

Integration of a field over a 3D volume

Summation of the values of the field at the points in the volume times volume element $d V$.

$$
\iiint d V(\ldots) \equiv \int_{V} d V(\ldots)
$$

Vector algebra and
vector analysis
Vector algebra
Differential operations on scalar and vector fields
Integration(s) in 3D space

Curvilinear

coordinates
Metrics and Jacobians
Orthogonal coordinates
Cylindrical coordinates
Spherical coordinates
Fourier analysis
Variational
calculus
ODE
First-order ODE
Linear second-order ODE Examples

PDE

Linear first-order PDE
Quasi-linear first-order systems
Classification of linear 2nd order PDE
Hyperbolic equations: wave equation
Parabolic equations: heat equation
Elliptic equations

Linking contour and surface integrations: Stokes theorem

$$
\begin{equation*}
\oint_{C} d \boldsymbol{l} \cdot \boldsymbol{v}(\boldsymbol{x})=\int_{S_{C}} d \boldsymbol{s} \cdot(\nabla \wedge \boldsymbol{v}(\boldsymbol{x})) . \tag{5}
\end{equation*}
$$

Left-hand side: circulation of the vector field over the contour C. Right-hand side: curl of v integrated over any surface S_{C} having the contour C as a base.

Integration(s) in 3D space

Metrics and Jacobians
Orthogonal coordinates

Stokes theorem: the idea of proof

$v_{1}(x, y) d x+v_{2}(x+d x, y) d y-v_{1}(x, y+d y) d x-v_{2}(x, y) d y$

$$
=\frac{\partial v_{2}}{\partial x} d x d y-\frac{\partial v_{1}}{\partial y} d x d y
$$

with a z-component of curlv multiplied by the z-oriented surface element arising in the right-hand side.

Linking surface and volume integrations: Gauss theorem

$$
\begin{equation*}
\oint_{S_{V}} d \boldsymbol{s} \cdot \boldsymbol{v}(\boldsymbol{x})=\int_{V} d V \boldsymbol{\nabla} \cdot \boldsymbol{v}(\boldsymbol{x}) . \tag{6}
\end{equation*}
$$

Left-hand side: flux of the vector field through the surface S_{V} which is a boundary of the volume V. Right-hand side: volume integral of the divergence of the field.

Important. The theorem is also valid for the scalar field:

$$
\begin{equation*}
\oint_{S_{V}} d \boldsymbol{s} \cdot f(\boldsymbol{x})=\int_{V} d V \nabla f(\boldsymbol{x}) \tag{7}
\end{equation*}
$$

Gauss theorem: the idea of proof

Flux of the vector $\boldsymbol{v}=v_{1} \hat{\boldsymbol{x}}+v_{2} \hat{\boldsymbol{y}}+v_{3} \hat{\boldsymbol{z}}$ over a surface of an elementary volume, taking into account the opposite orientation of the oriented surface elements:

$$
\begin{aligned}
& {\left[v_{1}(x+d x, y, z)-v_{1}(x, y, z)\right] d y d z+} \\
& {\left[v_{2}(x, y+d y, z)-v_{2}(x, y, z)\right] d x d z+} \\
& {\left[v_{3}(x, y, z+d z)-v_{3}(x, y, z)\right] d x d y=\left(\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z}\right) d x d y d z}
\end{aligned}
$$

Linear first-order PDE
Quasi-linear first-order

Classification of linear 2nd
Hyperbolic equations: wave

Curvilinear coordinates

A triple of functions $X^{i}(x, y, z), i=1,2,3 \Leftrightarrow$ change of variables $(x, y, z) \rightarrow\left(X^{1}, X^{2}, X^{3}\right) \equiv(X, Y, Z)$. Non zero Jacobian \mathcal{J} :

$$
\mathcal{J}=\left|\begin{array}{lll}
\frac{\partial X}{\partial x} & \frac{\partial X}{\partial y} & \frac{\partial X}{\partial Z} \\
\frac{\partial Y}{\partial x} & \frac{\partial Y}{\partial y} & \frac{\partial Y}{\partial Z} \\
\frac{\partial Z}{\partial x} & \frac{\partial Z}{\partial y} & \frac{\partial Z}{\partial z}
\end{array}\right| \equiv \frac{\partial(X, Y, Z)}{\partial(x, y, z)} \neq 0 .
$$

Length element squared (Einstein convention applied):

$$
d s^{2}=d \boldsymbol{x} \cdot d \boldsymbol{x} \equiv d x^{2}+d y^{2}+d z^{2}=g_{i j}\left(X_{1}, X_{2}, X_{3}\right) d X^{i} d X^{j}
$$

where the metric tensor

$$
\begin{gathered}
g_{i j}=\frac{\partial x}{\partial X^{i}} \frac{\partial x}{\partial X^{j}}+\frac{\partial y}{\partial X^{i}} \frac{\partial y}{\partial X^{j}}+\frac{\partial z}{\partial X^{i}} \frac{\partial z}{\partial X^{j}}=g_{j i} . \\
g:=\operatorname{det} g_{i j}=\left(\frac{\partial(x, y, z)}{\partial(X, Y, Z)}\right)^{2} \equiv \mathcal{J}^{-2} .
\end{gathered}
$$

Properties of Jacobians

Volume element:

$$
d V=d x d y d z=\frac{\partial(x, y, z)}{\partial(X, Y, Z)} d X d Y d Z
$$

Consecutive changes of coordinates
$(x, y, z) \rightarrow(X, Y, Z) \rightarrow\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right) \Rightarrow$

$$
\begin{equation*}
\frac{\partial(x, y, z)}{\partial\left(X^{\prime}, Y,,^{\prime} Z^{\prime}\right)}=\frac{\partial(x, y, z)}{\partial(X, Y, Z)} \cdot \frac{\partial(X, Y, Z)}{\partial\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)} . \tag{8}
\end{equation*}
$$

Partial changes:

$$
\begin{equation*}
\frac{\partial(x, y, z)}{\partial(X, Y, z)}=\frac{\partial(x, y)}{\partial(X, Y)}, \quad \frac{\partial(x, y, z)}{\partial(X, y, z)}=\frac{\partial x}{\partial X} \tag{9}
\end{equation*}
$$

Vectors in curvilinear coordinates

Coordinate line: two of X_{i} fixed, e.g. $i=2,3$, curve $\left(x=x\left(X^{1}\right), y=y\left(X^{1}\right), z=z\left(X^{1}\right)\right)$.
Unit coordinate vectors: unit vectors \boldsymbol{i}_{j} tangent to respective coordinate lines (not orthogonal, in general). Any vector $\boldsymbol{F}=\hat{F}_{1} \boldsymbol{i}_{1}+\hat{F}_{2} \boldsymbol{i}_{2}+\hat{F}_{3} \boldsymbol{i}_{3}$.

Orthogonal coordinates: scalar and vector products

Orthogonality of $\boldsymbol{i}_{i} \Leftrightarrow g_{i j}=0, i \neq j$
Scalar product of vectors:

$$
\boldsymbol{F} \cdot \boldsymbol{G}=\hat{F}_{1} \hat{G}_{1}+\hat{F}_{2} \hat{G}_{2}+\hat{F}_{3} \hat{G}_{3}
$$

Vector product of vectors:

$$
\boldsymbol{F} \wedge \boldsymbol{G}=\left|\begin{array}{lll}
\boldsymbol{i}_{1} & \boldsymbol{i}_{2} & \boldsymbol{i}_{3} \\
\hat{F}_{1} & \hat{F}_{2} & \hat{F}_{3} \\
\hat{G}_{1} & \hat{G}_{2} & \hat{G}_{3}
\end{array}\right| .
$$

Vector algebra
Differential operations on scalar and vector fields

Orthogonal coordinates: differential operations

$$
\begin{aligned}
& \nabla \Phi=\frac{1}{\sqrt{g_{11}}} \frac{\partial \Phi}{\partial X^{1}} \boldsymbol{i}_{1}+\frac{1}{\sqrt{g_{22}}} \frac{\partial \Phi}{\partial X^{2}} \boldsymbol{i}_{2}+\frac{1}{\sqrt{g_{33}}} \frac{\partial \Phi}{\partial X^{3}} \boldsymbol{i}_{3} \\
& \boldsymbol{\nabla} \cdot \boldsymbol{F}=\frac{1}{\sqrt{g}}\left[\frac{\partial}{\partial X^{1}}\left(\hat{F}_{1} \sqrt{\frac{g}{g_{11}}}\right)+\frac{\partial}{\partial X^{2}}\left(\hat{F}_{2} \sqrt{\frac{g}{g_{22}}}\right)+\frac{\partial}{\partial X^{3}}\left(\hat{F}_{3} \sqrt{\frac{g}{g_{33}}}\right)\right] \\
& \boldsymbol{\nabla} \wedge \boldsymbol{F}=\frac{1}{\sqrt{g}}\left|\begin{array}{ccc}
\sqrt{g_{11}} i_{1} & \sqrt{g_{22}} i_{2} & \sqrt{g_{33}} i_{3} \\
\frac{\partial}{\partial X^{1}} & \frac{\partial}{\partial X^{2}} & \frac{\partial}{\partial x^{3}} \\
\hat{F}_{1} \sqrt{g_{11}} & \hat{F}_{2} \sqrt{g_{22}} & \hat{F}_{3} \sqrt{g_{33}}
\end{array}\right| . \\
& \nabla^{2} \Phi=\frac{1}{\sqrt{g}}\left[\frac{\partial}{\partial X^{1}}\left(\frac{\sqrt{g}}{g_{11}} \frac{\partial \Phi}{\partial X^{1}}\right)+\frac{\partial}{\partial X^{2}}\left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^{2}}\right)+\frac{\partial}{\partial X^{3}}\left(\frac{\sqrt{g}}{g_{33}} \frac{\partial \Phi}{\partial X^{3}}\right)\right]
\end{aligned}
$$

Important: $\frac{\partial i_{j}}{\partial X^{k}} \neq 0$, unlike Cartesian coordinates.

Cylindrical coordinates

$$
0 \leq \rho<\infty, 0 \leq \phi<2 \pi,-\infty<z<+\infty
$$

Cylindrical Coordinates: Point and Unit Vectors

$$
\begin{aligned}
\rho^{2} & =x^{2}+y^{2} \\
\rho & =\sqrt{x^{2}+y^{2}} \\
x & =\rho \cos \phi \\
y & =\rho \sin \phi \\
\phi & =\tan ^{-1} \frac{y}{x}
\end{aligned}
$$

Length element:

$$
\begin{gathered}
d s^{2}=d \rho^{2}+\rho^{2} d \phi^{2}+d z^{2} \Rightarrow \\
g_{\rho \rho}=1, g_{\phi \phi}=\rho^{2}, g_{z z}=1 \rightarrow \sqrt{g}=\rho .
\end{gathered}
$$

Vector algebra
Differential operations of scalar and vector fields

Integration(s) in 3D space

Curvilinear
sonrdinates
Metrics and Jacobians
Orthogonal coordinates
Cylindrical coordinates
Spherical coordinates
Fourier analysis
Variational
calculus
ODE
First-order ODE
Linear second-order ODE
Examples

PDE

Linear first-order PDE
Quasi-linear first-order systems
Classification of linear 2nd order PDE
Hyperbolic equations: wave equation
Parabolic equations: heat equation

Elliptic equations

Spherical coordinates

$$
0 \leq r<\infty, 0 \leq \theta \leq \pi, 0 \leq \phi<2 \pi
$$

Length element:

$$
d s^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2} \Rightarrow
$$

$$
g_{r r}=1, g_{\theta \theta}=r^{2}, g_{\phi \phi}=r^{2} \sin ^{2} \theta, \rightarrow \sqrt{g}=r^{2} \sin \theta
$$

Vector algebra
Differential operations or scalar and vector fields Integration(s) in 3D space

Curvilinear
coordinates
Metrics and Jacobians
Orthogonal coordinates Cylindrical coordinates

Linear first-order PDE
Quasi-linear first-order systems
Classification of linear 2nd order PDE
Hyperbolic equations: wave equation

Fourier series for periodic functions

Consider $f(x)=f(x+2 \pi)$, a periodic smooth function on the interval $[0,2 \pi]$. Fourier series:

$$
f(x)=\sum_{n=0}^{\infty}\left[a_{n} \cos (n x)+b_{n} \sin (n x)\right] .
$$

The expansion is unique due to ortogonality of the basis functions:
$\int_{0}^{2 \pi} d x \cos (n x) \cos (m x)=\int_{0}^{2 \pi} d x \sin (n x) \sin (m x)=\pi \delta_{n m}$

$$
\int_{0}^{2 \pi} d x \sin (n x) \cos (m x) \equiv 0
$$

The coefficients of expansion, thus, are uniquely defined:
$a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} d x f(x) \cos (n x), \quad b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} d x f(x) \sin (n x)$
O
First-order ODE
Linear second-order ODE

Complex exponential form

$$
\begin{gathered}
e^{i n x}=\cos (n x)+i \sin (n x) \Rightarrow \\
\cos (n x)=\frac{e^{i n x}+e^{-i n x}}{2}, \sin (n x)=\frac{e^{i n x}-e^{-i n x}}{2 i}
\end{gathered}
$$

Hence

$$
f(x)=\sum_{n=0}^{\infty} \frac{\left(a_{n}-i b_{n}\right)}{2} e^{i n x}+c . c \equiv \sum_{-\infty}^{\infty} A_{n} e^{i n x}, A_{n}^{*}=A_{-n}
$$

Orthogonality:

$$
\int_{0}^{2 \pi} d x e^{i n x} e^{-i m x}=2 \pi \delta_{n m}
$$

Expression for the complex coefficients

$$
A_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d x f(x) e^{-i n x}
$$

Fourier integral

Fourier series on arbitrary interval $L: \sin (n x), \cos (n x) \rightarrow$ $\sin \left(\frac{2 \pi}{L} n x\right), \cos \left(\frac{2 \pi}{L} n x\right), \int_{0}^{2 \pi} d x \rightarrow \int_{0}^{L} d x$, normalization $\frac{1}{2 \pi} \rightarrow \frac{1}{L}$. In the limit $L \rightarrow \infty: \sum_{-\infty}^{\infty} \rightarrow \int_{-\infty}^{\infty}$. Fourier-transformation and its inverse:

$$
f(x)=\int_{-\infty}^{\infty} d k F(k) e^{i k x}, \quad F(k)=\int_{-\infty}^{\infty} d x f(x) e^{-i k x} .
$$

Based on orthogonality:

$$
\int_{-\infty}^{\infty} d x e^{i k x} e^{-i l x}=\delta(k-l)
$$

where $\delta(x)$ - Dirac's delta-function, continuous analog of Kronecker's $\delta_{n m}$, with properties:

$$
\int_{-\infty}^{\infty} d x \delta(x)=1, \quad \int_{-\infty}^{\infty} d y \delta(x-y) F(y)=F(x) .
$$

Multiple variables and differentiation

$$
\begin{aligned}
f(x, y, z) & =\int_{-\infty}^{\infty} d k d l d m F(k, l, m) e^{i(k x+l y+m z)} \\
F(k, l, m) & =\int_{-\infty}^{\infty} d x d y d z f(x, y, z) e^{-i(k x+l y+m z)}
\end{aligned}
$$

Physical space $(x, y, z) \longrightarrow(k, I, m)$, Fourier space. Radius-vector $\boldsymbol{x} \rightarrow \boldsymbol{k}$, "wavevector",

$$
f(\boldsymbol{x})=\int_{-\infty}^{\infty} d \boldsymbol{k} F(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

Main advantage: differentiation in physical space \rightarrow multiplication by the corresponding component of the wave-vector in Fourier space $\frac{\partial}{\partial x} \rightarrow i k$:

$$
\frac{\partial}{\partial x} f(\boldsymbol{x})=\int_{-\infty}^{\infty} d \boldsymbol{k} \text { ik } F(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

and similarly for other variables.

Variational derivatives

Variation of a function of $\boldsymbol{x} \in \mathcal{D}$ and $t \in\left[t_{1}, t_{2}\right]$: $f(\boldsymbol{x}, t) \rightarrow f(\boldsymbol{x}, t)+\delta f(\boldsymbol{x}, t),\|\delta f(\boldsymbol{x}, t)\|=o(1),\|\ldots\|-\mathrm{a}$ norm (typically L_{2}). With proper boundary conditions:

$$
\begin{equation*}
\delta(\nabla f)=\nabla \delta f, \quad \delta\left(\partial_{t} f\right)=\partial_{t} \delta f . \tag{10}
\end{equation*}
$$

Variational derivative of a function F of $f(\boldsymbol{x}, t): \frac{\delta F[f(\boldsymbol{x}, t)]}{\delta f\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)}$. Important:

$$
\begin{equation*}
\frac{\delta f(\boldsymbol{x}, t)}{\delta f\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)}=\delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{11}
\end{equation*}
$$

Functionals of $f(\boldsymbol{x}, t)$ and their derivatives:

$$
\mathcal{F}=\int_{t_{1}}^{t_{2}} d t \int_{\mathcal{D}} d^{3} \boldsymbol{x} F\left[f(\boldsymbol{x}, t), \nabla f(\boldsymbol{x}, t), \partial_{t} f(\boldsymbol{x}, t)\right]
$$

Variations of functionals

Variation of a functional:

$$
\delta \mathcal{F}=\int_{t_{1}}^{t_{2}} d t^{\prime} \int_{\mathcal{D}} d^{3} \boldsymbol{x}^{\prime} \frac{\delta \mathcal{F}}{\delta f\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)} \delta f\left(\boldsymbol{x}^{\prime}, t^{\prime}\right) .
$$

Using (11) and integrating by parts in space and time, using vanishing of the variations at the boundaries:

$$
\begin{equation*}
\delta \mathcal{F}=\int_{t_{1}}^{t_{2}} d t \int_{\mathcal{D}} d^{3} \boldsymbol{x}\left[\frac{\delta F}{\delta f}-\nabla \cdot \frac{\delta F}{\delta \nabla f}-\partial_{t} \frac{\delta F}{\partial \partial_{t} f}\right] \delta f, \tag{12}
\end{equation*}
$$

Invariance of the functional with respect to variations of f $\delta \mathcal{F}=0 \Rightarrow$ Euler-Lagrange equations:

$$
\begin{equation*}
\frac{\delta F\left(f, \nabla f, \partial_{t} f\right)}{\delta f}-\nabla \cdot \frac{\delta F\left(f, \nabla f, \partial_{t} f\right)}{\delta \nabla f}-\partial_{t} \frac{\delta F\left(f, \nabla f, \partial_{t} f\right)}{\delta \partial_{t} f}=0 \tag{13}
\end{equation*}
$$

General first-order ODE

Notation:

$$
(\ldots)^{\prime} \equiv \frac{d(\ldots)}{d x},(\ldots)^{\prime \prime} \equiv \frac{d^{2}(\ldots)}{d x^{2}}, \ldots
$$

Typical equation for a function $y(x)$

$$
y^{\prime}(x)=F(x, y)
$$

Geometric interpretation: field of directions in the x, y plane determined by their slopes $F(x, y)$

Linear first-order ODE

General linear inhomogeneous equation:

$$
y^{\prime}(x)+a(x) y(x)=b(x) .
$$

Homogeneous equation $\leftrightarrow b(x) \equiv 0$.
General solution:

$$
y(x)=\frac{1}{\mu(x)}\left(\int d x \mu(x) b(x)+C\right)
$$

where

$$
\mu(x)=e^{\int d x a(x)}
$$

Vector algebra

Differential operations on scalar and vecior fields Integration(s) in 3D space

Curvilinear

Meordinates and Jacobians
Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Linear second-order ODE

General inhomogeneous equation:

$$
\begin{equation*}
y^{\prime \prime}(x)+a(x) y^{\prime}(x)+b(x) y(x)=c(x) . \tag{14}
\end{equation*}
$$

General solution: sum of a particular solution of (14) and of a general solution of the corresponding homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}(x)+a(x) y^{\prime}(x)+b(x) y(x)=0 . \tag{15}
\end{equation*}
$$

Self-adjoint form of (15):

$$
\begin{equation*}
\left(p(x) y^{\prime}(x)\right)^{\prime}+q(x) y(x)=0, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
p(x)=e^{\int d x a(x)}, q(x)=b(x) p(x) . \tag{17}
\end{equation*}
$$

Metrics and Jacobians Orthogonal coordinates

General solution of a homogeneous equation and boundary conditions

If one solution of (15) $y_{1}(x)$ is known, then general solution is:

$$
\begin{equation*}
y(x)=y_{1}(x)\left(C_{1}+C_{2} \int d x \frac{1}{y_{1}^{2}(x) p(x)}\right) \tag{18}
\end{equation*}
$$

where $C_{1,2}$ - integration constants.
Can be determined from boundary conditions (b.c.). Two typical sets of b.c.

- At a given point (initial-value problem):

$$
y\left(x_{0}\right)=A, y^{\prime}\left(x_{0}\right)=B,
$$

- At the boundary of the interval (boundary-value problem): $y\left(x_{1}\right)=A, y\left(x_{2}\right)=B$

General solution of homogeneous equation

Fundamental system of solutions of (15): a pair of linearly independent particular solutions $y_{1,2}(x)$ with

$$
\begin{equation*}
W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x) \neq 0 \tag{19}
\end{equation*}
$$

where W is Wronskian.
General solution of (14):
 (20)
where $C_{1,2}$ - integration constants.

Linear first-order PDE
Quasi-linear first-order systems
Classification of linear 2nd order PDE

Sturm-Liouville problem

Linear problem on eigenvalues λ and eigenfunctions ϕ_{λ} :

$$
\begin{equation*}
\left(p(x) \phi^{\prime}(x)\right)^{\prime}+q(x) \phi(x)=\lambda B(x) \phi \tag{21}
\end{equation*}
$$

on the interval $a<x<b$, with general homogeneous

$$
\begin{equation*}
\alpha_{1} \phi^{\prime}(a)+\beta_{1} \phi(a)=0, \alpha_{2} \phi^{\prime}(b)+\beta_{2} \phi(b)=0 \tag{22}
\end{equation*}
$$

or periodic b.c.:

$$
\begin{equation*}
\phi(a)=\phi(b), \phi^{\prime}(a)=\phi^{\prime}(b) \tag{23}
\end{equation*}
$$

Eigenvalues (spectrum) $\lambda_{n}, \lambda_{1} \leq \lambda_{2} \leq \ldots$:

- Real
- $n=$ number of zeros of ϕ_{n} in $[a, b]$,
- Rank (number of different eigenfunctions per eigenvalue): 1 for (22), 2 for (23)
Eigenfunctions: orthogonal basis of functions in $[a, b]$.

Linear first-order PDE
Quasi-linear first-order systems
Classification of linear 2nd order PDE

Bessel equation and Bessel functions

$$
\begin{equation*}
y^{\prime \prime}(x)+\frac{1}{x} y^{\prime}(x)+\left(1-\frac{m^{2}}{x^{2}}\right) y(x)=0 . \tag{24}
\end{equation*}
$$

Fundamental system of solutions (eigenfunctions with integer eigenvalues $m=0,1,2, \ldots$ in the interval $0 \leq x<\infty)$: Bessel and Neumann functions J_{m} and N_{m} :

Hankel functions: $H_{m}^{1,2}(x)=J_{m}(x) \pm i N_{m}(x)$.

Hypergeometric equations and functions

Gauss's equation:

$$
\begin{equation*}
x(x-1) y^{\prime \prime}(x)+[c-(a+b+1) x] y^{\prime}(x)-a b y(x)=0 \tag{25}
\end{equation*}
$$

Fundamental solution: hypergeometric function given by the hypergeometric series
$y(x)=F(a, b, c ; x)=1+\frac{a b}{c} x+\frac{1}{2!} \frac{a(a+1) b(b+1)}{c(c+1)} x^{2}+\ldots$
Second solution - by the receipt given above. Kummer's equation:

$$
\begin{equation*}
x y^{\prime \prime}(x)+(b-x) y^{\prime}(x)-a y(x)=0 \tag{27}
\end{equation*}
$$

Fundamental solution: confluent hypergeometric function
$y(x)=M(a, b ; x)=1+\sum_{1}^{\infty} \frac{a^{(n)}}{b^{(n)} n!} x, a^{(n)}=a(a+1) \ldots(a+n-1)$.
Second solution $U(a, b ; x)$ - by the receipt above.

Example of linear PDE: wave equation

$$
\begin{equation*}
u_{t}+c u_{x}=0 \tag{29}
\end{equation*}
$$

$u(x, t)$ in $-\infty<x<+\infty$, and $t: 0 \leq t<\infty, c=$ const.
Notation: $(\ldots)_{x}=\frac{\partial(\ldots)}{\partial x},(\ldots)_{t}=\frac{\partial(\ldots)}{\partial t}$
Method of solution 1 : change of variables:

$$
\begin{gather*}
(x, t) \rightarrow\left(\xi_{+}, \xi_{-}\right)=(x+c t, x-c t) \tag{30}\\
\frac{\partial \xi_{ \pm}}{\partial x}=1, \quad \frac{\partial \xi_{ \pm}}{\partial t}= \pm c \Rightarrow \tag{31}\\
\frac{\partial u}{\partial t}=c\left(\frac{\partial u}{\partial \xi_{+}}-\frac{\partial u}{\partial \xi_{-}}\right), \quad \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \xi_{+}}+\frac{\partial u}{\partial \xi_{-}} \tag{32}\\
u_{t}+c u_{x}=0 \rightarrow 2 c \frac{\partial u}{\partial \xi_{+}}=0 \Rightarrow u=u\left(\xi_{-}\right) \tag{33}
\end{gather*}
$$

u determined by initial conditions:

$$
\begin{equation*}
\text { c.I. : } u_{t=0}=u_{0}(x) \Rightarrow u=u_{0}(x-c t) . \tag{34}
\end{equation*}
$$

Metrics and Jacobians

Spatio-temporal evolution of initially localized perturbation

Solution in the domain $-5<x<5,0<t<5$. Initial Gaussian perturbation propagates along a characteristic line with a slope c. Graphics by Mathematica ${ }^{\circ}$
ector algebra and
vector analysis
Vector algebra
Differential operations on scalar and vector fields
Integration(s) in 3D space
Curvilinear
coordinates
Metrics and Jacobians
Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis
Variational
calculus
ODE
First-order ODE
Linear second-order ODE Examples

PDE

Linear first-order PDE
Quasi-linear first-order systems
Classification of linear 2nd order PDE
Hyperbolic equations: wave equation
Parabolic equations: heat equation

Solution by Fourier method

Fourier transformation:

$$
\begin{equation*}
u(x, t)=\frac{1}{2 \pi} \int d k d \omega e^{i(k x-\omega t)} \hat{u}(k, \omega)+\text { c.c.. } \tag{35}
\end{equation*}
$$

Inverse:

$$
\begin{equation*}
\hat{u}(k, \omega)=\frac{1}{2 \pi} \int d x d t e^{-i(k x-\omega t)} u(x, t)+c . c . \tag{36}
\end{equation*}
$$

Fourier-modes: $\hat{u}(k, \omega) e^{i(k x-\omega t)} \leftrightarrow$ - elementary waves.

$$
\begin{equation*}
u_{t}+c u_{x}=0 \Rightarrow i(k c-\omega) \hat{u}(k, \omega), \hat{u}(k, \omega) \neq 0 \Rightarrow \tag{37}
\end{equation*}
$$

General solution:

$$
\begin{equation*}
u(x, t)=\frac{1}{2 \pi} \int d k e^{i k(x-c t)} \hat{u}(k)+c . c . \tag{38}
\end{equation*}
$$

$\hat{u}(k)$ - Fourier-transform of $u(x, 0)$.

Quasi-linear and hyperbolic systems

Quasi-linear system of 1st-order PDE:

$$
\begin{equation*}
\partial_{t} V_{i}(x, t)+M_{i j}(\boldsymbol{V}) \partial_{x} V_{j}(x, t)=R_{i}(\boldsymbol{V}), i, j=1,2, \ldots, N \tag{39}
\end{equation*}
$$

$\boldsymbol{I}^{(\alpha)}$ - left eigenvectors, $\xi^{(\alpha)}$ - left eigenvalues of M, $\alpha=1,2, \ldots$:

$$
\begin{gather*}
\boldsymbol{I}^{(\alpha)} \cdot \boldsymbol{M}=\xi^{(\alpha)} \boldsymbol{I}^{(\alpha)} \Rightarrow \tag{40}\\
\boldsymbol{I}^{(\alpha)} \cdot\left(\partial_{t} \boldsymbol{V}+\boldsymbol{M} \cdot \partial_{x} \boldsymbol{V}\right)=\boldsymbol{I}^{(\alpha)} \cdot\left(\partial_{t} \boldsymbol{V}+\xi^{(\alpha)} \partial_{x} \boldsymbol{V}\right) . \tag{41}
\end{gather*}
$$

Characteristic directions \rightarrow characteristic curves: $\frac{d x}{d t}=\xi^{(\alpha)}$. Advection along a characteristic:

$$
\begin{equation*}
\dot{\boldsymbol{V}} \equiv \frac{d \boldsymbol{V}}{d t}=\left(\partial_{t}+\xi^{(\alpha)} \partial_{x}\right) \boldsymbol{V}, \Rightarrow \boldsymbol{I}^{(\alpha)} \cdot \dot{\boldsymbol{V}}=\boldsymbol{I}^{(\alpha)} \cdot \boldsymbol{R} \tag{42}
\end{equation*}
$$

Les PDE became a system of ODE!
Hyperbolic system: if M has N real and different eigenvalues $\xi^{(\alpha)}$. If $\boldsymbol{I}^{(\alpha)}=\mathrm{const} \rightarrow$ Riemann variables (which become invariants if $\boldsymbol{R}=0$):

$$
\begin{equation*}
r^{(\alpha)}=\boldsymbol{I}^{(\alpha)} \cdot \boldsymbol{V}, \quad \dot{r}^{(\alpha)}=\boldsymbol{I}^{(\alpha)} \cdot \boldsymbol{R} . \tag{43}
\end{equation*}
$$

(Quasi-) linear second-order PDEs

General linear 2nd order equation:

$$
\begin{equation*}
a_{11} \frac{\partial^{2} f(x, y)}{\partial x^{2}}+2 a_{12} \frac{\partial^{2} f(x, y)}{\partial x \partial y}+a_{22} \frac{\partial^{2} f(x, y)}{\partial y^{2}}=R(x, y) \tag{44}
\end{equation*}
$$

$a_{i j}=a_{i j}(x, y)$. Quasi-linear equation: R and $a_{i j}$ are also functions of f.

- Hyperbolic: $a_{11} a_{22}-a_{12}^{2}<0, \forall(x, y)$
- Parabolic: $a_{11} a_{22}-a_{12}^{2}=0, \forall(x, y)$
- Elliptic: $a_{11} a_{22}-a_{12}^{2}>0, \forall(x, y)$

Second-order 1D wave equation

$$
\begin{equation*}
u_{t t}-c^{2} u_{x x}=0 \tag{45}
\end{equation*}
$$

Same change of independent variables as in the 1st-order equation:

$$
\begin{gather*}
(x, t) \rightarrow\left(\xi_{+}, \xi_{-}\right)=(x+c t, x-c t) \\
u_{t t}-c^{2} u_{x x}=0 \rightarrow 4 c^{2} \frac{\partial^{2} u}{\partial \xi_{+} \partial \xi_{-}}=0 \Rightarrow \tag{46}
\end{gather*}
$$

General solution:

$$
\begin{equation*}
u=u_{-}\left(\xi_{-}\right)+u_{+}\left(\xi_{+}\right) \tag{47}
\end{equation*}
$$

where $u_{-}+u_{+}$- arbitrary functions, to be determined from initial conditions. (2nd order $\Rightarrow 2$ initial conditions required.)

Spatio-temporal evolution of initially localized perturbation

Solution in the domain $-5<x<5,0<t<5$. Initial Gaussian perturbation propagates along a pair of characteristic lines with slopes $\pm c$. Graphics by Mathematica

Vector algebra
Differential operations on scalar and vecior fields Integration(s) in 3D space

Curvilinear

coordinates
Metrics and Jacobians
Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis
Variational
calculus
ODE
First-order ODE
Linear second-order ODE Examples

PDE
Linear first-order PDE
Quasi-linear first-order systems
Classification of linear 2nd order PDE
Hyperbolic equations: wave equation

1D heat equation

$$
\begin{equation*}
u_{t}-\kappa^{2} u_{x x}=0, \kappa=\text { const. } \tag{48}
\end{equation*}
$$

Solution by Fourier method:

$$
\begin{gather*}
u(x, t)=\frac{1}{2 \pi} \int d k e^{i k x} \hat{u}(k, t) . \rightarrow \tag{49}\\
\hat{u}_{t}(k, t)+\kappa^{2} k^{2} \hat{u}(k, t)=0, \kappa=\text { const. } \rightarrow \tag{50}\\
\hat{u}(k, t)=e^{-t \kappa^{2} k^{2}} \hat{u}(k, 0), \tag{51}
\end{gather*}
$$

where

$$
\begin{equation*}
\hat{u}(k, 0)=\int d x e^{-i k x} u_{0}(x), u_{0}(x) \equiv u(x, 0) \tag{52}
\end{equation*}
$$

Hence

$$
\begin{gather*}
u(x, t)=\frac{1}{2 \pi} \int d k d x^{\prime} u_{0}\left(x^{\prime}\right) e^{i k\left(x-x^{\prime}\right)} e^{-t \kappa^{2} k^{2}} \tag{53}\\
u(x, t) \propto \frac{1}{\sqrt{t}} \int d x^{\prime} u_{0}\left(x^{\prime}\right) e^{-\frac{\left(x-x^{\prime}\right)^{2}}{4 \kappa^{2} t}} \tag{54}
\end{gather*}
$$

Spatio-temporal evolution of the initial localised perturbation

Solution in the domain $-5<x<5,0<t<5$. Dispersion of initial Gaussian perturbation. Graphics by Mathematica \odot

vector analysis
Vector algebra
Differential operations on scalar and vector fields
Integration(s) in 3D space
Curvilinear
coordinates
Metrics and Jacobians
Orthogonal coordinates
Cylindrical coordinates
Spherical coordinates
Fourier analysis
Variational
calculus
ODE
First-order ODE
Linear second-order ODE
Examples
PDE
Linear first-order PDE
Quasi-linear first-order systems
Classification of linear 2nd order PDE
Hyperbolic equations: wave equation
Parabolic equations: heat equation

2D Laplace equation

$$
\begin{equation*}
\nabla^{2} f(x, y)=\frac{\partial^{2} f(x, y)}{\partial x^{2}}+\frac{\partial^{2} f(x, y)}{\partial y^{2}}=0 . \tag{55}
\end{equation*}
$$

In polar coordinates (r, ϕ) :

$$
\begin{equation*}
\frac{\partial^{2} f(r, \phi)}{\partial r^{2}}+\frac{1}{r} \frac{\partial f(r, \phi)}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f(r, \phi)}{\partial \phi^{2}}=0 \tag{56}
\end{equation*}
$$

Separation of variables: $f(r, \phi)=\sum_{m=0}^{\infty} \hat{f}(r) e^{i m \phi}+$ c.c.,\rightarrow

$$
\hat{f}^{\prime \prime}(r)+r^{-1} \hat{f}^{\prime}(r)-m^{2} r^{-2} \hat{f}(r)=0,(\ldots)^{\prime}=d(\ldots) / d r
$$

General solution of (57): $\hat{f}(r)=C_{1} r^{m}+C_{2} r^{-m}$. At $m \neq 0$ singular at 0 and/or ∞. Solution in a disk $r=r_{0}$ with b.c.

$$
\begin{aligned}
\left.f(r, \phi)\right|_{r=r_{0}}=f_{0}(\phi) & =\sum_{m=0}^{\infty} f_{m} e^{i m \phi}+\text { c.c.: } \\
f(r, \phi) & =\sum_{m=0}^{\infty} f_{m}\left(\frac{r}{r_{0}}\right)^{m} e^{i m \phi}+\text { c.c.. }
\end{aligned}
$$

Method of Green's functions

General inhomogeneous linear problem:

$$
\begin{equation*}
\hat{\mathcal{L}} \circ \mathcal{F}=\mathcal{R} \tag{58}
\end{equation*}
$$

Here $\hat{\mathcal{L}}$ is a linear operator acting on (a set of) function(s) \mathcal{F}, the unknowns, \mathcal{R} is a known source/forcing term. Homogeneous problem: $\mathcal{R} \equiv 0$. Inverse operator $\hat{\mathcal{L}}^{-1}$ - solution of the problem:

$$
\begin{equation*}
\hat{\mathcal{L}}^{-1} \circ \hat{\mathcal{L}}=\mathcal{I}, \tag{59}
\end{equation*}
$$

where \mathcal{I} is unity in functional space. General solution of (58):

$$
\begin{equation*}
\mathcal{F}=\hat{\mathcal{L}}^{-1} \circ \mathcal{R}+\mathcal{F}_{0}, \tag{60}
\end{equation*}
$$

where \mathcal{F}_{0} - solution of the homogeneous problem. PDEs context: Inverse operator $=$ Green's function, $\mathcal{I}=$ delta function.

Poisson equation

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) F(x, y)=R(x, y) \tag{61}
\end{equation*}
$$

Solution in terms of Green's function $\mathcal{G}\left(x-x^{\prime}, y-y^{\prime}\right)$:

$$
\begin{equation*}
F(x, y)=\iint d x^{\prime} d y^{\prime} \mathcal{G}\left(x-x^{\prime}, y-y^{\prime}\right) R\left(x^{\prime}, y^{\prime}\right) \tag{62}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \mathcal{G}\left(x-x^{\prime}, y-y^{\prime}\right)=\delta\left(x-x^{\prime}\right) \delta\left(y-y^{\prime}\right) \equiv \delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \tag{63}
\end{equation*}
$$

Calculation of \mathcal{G} in the whole $x-y$ plane: put the origin at \boldsymbol{x}^{\prime}, use translational and rotational invariance \Rightarrow $\mathcal{G}=\mathcal{G}(|\boldsymbol{x}|)$, and hence $\nabla \mathcal{G} \| \boldsymbol{x}$, use $\nabla^{2} \ldots \equiv \nabla \cdot(\nabla \ldots)$, integrate both sides of (63) over a circle around the origin, apply Gauss theorem to the left-hand side, and get:

$$
\begin{equation*}
\mathcal{G}(\boldsymbol{x})=\frac{1}{2 \pi} \log |\boldsymbol{x}| \tag{64}
\end{equation*}
$$

Green's function for 1D wave equation

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) \mathcal{G}\left(x-x^{\prime}, t-t^{\prime}\right)=\delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{65}
\end{equation*}
$$

Fourier-transformation
$\mathcal{G}\left(x-x^{\prime}, t-t^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \iint_{-\infty}^{+\infty} d k d \omega \hat{\mathcal{G}}(k, \omega) e^{i\left(k\left(x-x^{\prime}\right)-\omega\left(t-t^{\prime}\right)\right)}$
Metrics and Jacobians
Orthogonal coordinates
Cylindrical coordinates

Transformed equation:

$$
\begin{gather*}
\left(c^{2} k^{2}-\omega^{2}\right) \hat{\mathcal{G}}(k, \omega)=1, \Rightarrow \tag{66}\\
\mathcal{G}\left(x-x^{\prime}, t-t^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \iint_{-\infty}^{+\infty} d k d \omega \frac{e^{i\left(k\left(x-x^{\prime}\right)-\omega\left(t-t^{\prime}\right)\right)}}{c^{2} k^{2}-\omega^{2}} . \tag{67}
\end{gather*}
$$

Integral is singular at $\omega_{ \pm}= \pm c k$ - how to proceed?

Calculation in the complex ω-plane: general idea

Integral over the real ω - axis $\int_{\mathcal{R}} d \omega(\ldots)$ is equal to integral over the contour \mathcal{C} in complex ω plane.

$$
\oint_{\mathcal{C}} d \omega(\ldots) \equiv \int_{\mathcal{R}} d \omega(\ldots)+\int_{\mathcal{A}} d \omega(\ldots)
$$

where $\mathcal{C}=\mathcal{R}+\mathcal{A}, \mathcal{A}$: a semi-circle in the complex plane ending at $\pm \infty$ on \mathcal{R}, if $\int_{\mathcal{A}} d \omega(\ldots)=0$, and situated either in upper or in lower half-plane.

Calculation in the complex ω-plane: residue theorem

$f(z)$: function of complex variable z, with a simple pole $f \propto \frac{1}{z-c}$ inside the contour \mathcal{C}.

$$
\frac{1}{2 \pi i} \oint_{\mathcal{C}} d z f(z)=\left.\lim \right|_{z \rightarrow c}(z-c) f(z)
$$

Denominator in (67): $\frac{1}{c k}\left(\frac{1}{\omega-c k}-\frac{1}{\omega+c k}\right)$ - a pair of poles at $\omega=\omega_{ \pm}= \pm c k$. In order to apply the theorem, they should be understood as $\omega_{ \pm}=\left.\lim \right|_{\epsilon \rightarrow 0}\left(\omega_{ \pm}+i \epsilon\right)$, where the sign of ϵ is to be determined.

Causality principle

Causality: reaction after the action \Rightarrow Green's function $\neq 0$ only when $t-t^{\prime}>0$.

At the semicircle of radius $R \rightarrow \infty$:
$\omega=R e^{i \phi}, d \omega=i R d \Phi$, where Φ is the polar angle. The denominator of the ω-integral in (67) $\sim R^{2}$. If numerator is bounded, which depends on the sign of the exponent, and is true for the lower (upper) semicircle if $t-t^{\prime}>0$ $\left(t-t^{\prime}<0\right)$, the integral over semicircle $\left.\propto \frac{1}{R}\right|_{R \rightarrow \infty} \rightarrow 0$. Correspondingly, if $\epsilon<0$ integral $\neq 0$ only for $t-t^{\prime}>0$, and is equal to

Further calculation

By symmetry in $k \rightarrow-k$ (68) becomes:
$\frac{1}{4 \pi c} \int_{-\infty}^{+\infty} d k \frac{\sin \left(k\left[\left(x-x^{\prime}\right)-c\left(t-t^{\prime}\right)\right]\right)-\sin \left(k\left[\left(x-x^{\prime}\right)+c\left(t^{\text {Cund }} t^{\prime}\right)\right]\right)}{k}=$
$\frac{1}{4 c}\left(\operatorname{sign}\left(\left[\left(x-x^{\prime}\right)+c\left(t-t^{\prime}\right)\right]\right)-\operatorname{sign}\left(\left[\left(x-x^{\prime}\right)-c\left(t-t^{\prime}\right)\right]\right)\right)$
where $\operatorname{sign}(A)=1$, if $A>0 ;=-1$, if $A<0 ;=0$, if $A=0$.
The last integral is calculated in the complex k-plane as the real part of $\int_{-\infty}^{\infty} d k \frac{e^{i k A}}{k}$.
The Green's function is $\mathcal{G}\left(x-x^{\prime}, t-t^{\prime}\right)=\frac{1}{2 c}$, if $t>t^{\prime}$, and $-c\left(t-t^{\prime}\right)<\left(x-x^{\prime}\right)<c\left(t-t^{\prime}\right)$, and zero otherwise. Nonzero response only in the part of the (t, x) - plane between the characteristics $x \pm c t \leftrightarrow$ no response faster then the speed of waves c.

