Mathematical Tools Refresher Course

V. Zeitlin

M2 MOCIS/WAPE

Vector algebra and vector analysis

Vector algebra

scalar and vector fields integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order systems

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Vectors: definitions and superposition principle

Vector \boldsymbol{A} is a coordinate-independent (invariant) object having a magnitude $|\boldsymbol{A}|$ and a direction. Alternative notation \vec{A} . Adding/subtracting vectors:

Superposition principle: Linear combination of vectors is a vector.

/ector algebra and /ector analysis

Vector algebra

Differential operations on scalar and vector fields Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Products of vectors

Scalar product of two vectors:

Projection of one vector onto another:

 $\boldsymbol{A} \cdot \boldsymbol{B} := |\boldsymbol{A}| |\boldsymbol{B}| \cos \phi_{\boldsymbol{A}\boldsymbol{B}} \equiv \boldsymbol{B} \cdot \boldsymbol{A},$

where ϕ_{AB} is an included angle between the two.

Vector product of two vectors:

$$oldsymbol{A}\wedgeoldsymbol{B}:=oldsymbol{\hat{i}}_{AB}\left|oldsymbol{A}
ight|\left|oldsymbol{B}
ight|\sin\phi_{AB}=-oldsymbol{B}\wedgeoldsymbol{A},$$

where \hat{i}_{AB} is a unit vector, $|\hat{i}_{AB}| = 1$, perpendicular to both A and B, with the orientation of a right-handed screw rotated from A toward B. \times is an alternative notation for \wedge .

Distributive properties:

$$(\mathbf{A} + \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}, (\mathbf{A} + \mathbf{B}) \wedge \mathbf{C} = \mathbf{A} \wedge \mathbf{C} + \mathbf{B} \wedge \mathbf{C}.$$

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Vectors in Cartesian coordinates

Cartesian coordinates: defined by a right-hand triad of mutually orthogonal unit vectors forming a basis:

$$(\hat{\boldsymbol{x}},\,\hat{\boldsymbol{y}},\,\hat{\boldsymbol{z}})\equiv(\hat{\boldsymbol{x}}_1,\,\hat{\boldsymbol{x}}_2,\,\hat{\boldsymbol{x}}_3),$$

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE Hyperbolic equations: wave

quation

Parabolic equations: heat equation

Elliptic equations

Tensor notation and Kronecker delta

 $(\hat{\pmb{x}}, \, \hat{\pmb{y}}, \, \hat{\pmb{z}})
ightarrow \hat{\pmb{x}}_i, \, i = 1, 2, 3.$ Ortho-normality of the basis:

$$\hat{\boldsymbol{x}}_i \cdot \hat{\boldsymbol{x}}_j = \delta_{ij}$$

where δ_{ij} is Kronecker delta-symbol, an invariant tensor of second rank (3 × 3 unit diagonal matrix):

$$\delta_{ij} = \begin{cases} 1, \text{ if } i = j, \\ 0, \text{ if } i \neq j. \end{cases}$$

The components V_i of a vector V are given by its *projections* on the axes $V_i = V \cdot \hat{x}$:

$$V = V_1 \hat{x}_1 + V_2 \hat{x}_2 + V_3 \hat{x}_3 \equiv \sum_{i=1}^3 V_i \hat{x}_i$$

Einstein's convention:

 $\sum_{i=1}^{3} A_i B_i \equiv A_i B_i$ (self-repeating index is "dumb").

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Vector products by Levi-Civita tensor

Formula for the vector product:

$$\boldsymbol{A} \wedge \boldsymbol{B} = \left| \begin{array}{ccc} \hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{array} \right|$$

Tensor notation (with Einstein's convention):

$$(\mathbf{A} \wedge \mathbf{B})_i = \epsilon_{ijk} A_j B_k$$

where

$$\epsilon_{ijk} = \begin{cases} 1, \text{ if } ijk = 123, 231, 312\\ -1, \text{ if } ijk = 132, 321, 213\\ 0, \text{ otherwise} \end{cases}$$

Magic identity:

$$\epsilon_{ijk}\epsilon_{klm}=\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}.$$

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

(1)

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Scalar, vector, and tensor fields

Any point in space is given by its radius-vector $\mathbf{x} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$. A field is an object defined at any point of space $(x, y, z) \equiv (x_1, x_2, x_3)$ at any moment of time *t*, i.e. a function of \mathbf{x} and *t*.

Different types of fields:

- scalar $f(\mathbf{x}, t)$,
- vector v(x, t),
- tensor $t_{ij}(\boldsymbol{x}, t)$

The fields are dependent variables, and x, y, z and t - independent variables.

Physical examples: scalar fields - temperature, density, pressure, geopotential, vector fields - velocity, electric and magnetic fields, tensor fields - stresses, gravitational field.

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Differential operations on scalar fields

Partial derivatives:

$$\frac{\partial f}{\partial x} := \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y, z) - f(x, y, z)}{\Delta x},$$

and similar for other independent variables. Differential operator nabla:

$$\boldsymbol{\nabla} := \hat{\boldsymbol{x}} \frac{\partial}{\partial x} + \hat{\boldsymbol{y}} \frac{\partial}{\partial y} + \hat{\boldsymbol{z}} \frac{\partial}{\partial z}$$

Gradient of a scalar field: the vector field

grad
$$f \equiv \nabla f = \hat{x} \frac{\partial f}{\partial x} + \hat{y} \frac{\partial f}{\partial y} + \hat{z} \frac{\partial f}{\partial z}$$

Heuristic meaning: a vector giving direction and rate of fastest increase of the function *f*.

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Visualizing gradient in 2D

From left to right: 2D relief, its contour map, and its gradient. Graphics by Mathematica®

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order systems

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Differential operations with vectors

Scalar product: divergence

$$\operatorname{div} \boldsymbol{v} \equiv \boldsymbol{\nabla} \cdot \boldsymbol{v}(\boldsymbol{x}) = \frac{\partial \boldsymbol{v}_i}{\partial \boldsymbol{x}_i}$$

Vector product: curl

$$\mathsf{curl} \, oldsymbol{v} \equiv oldsymbol{
abla} \wedge oldsymbol{v}(oldsymbol{x}); \quad (\mathsf{curl} \, oldsymbol{v})_i = \epsilon_{ijk} rac{\partial v_k}{\partial x_j}$$

Tensor product:

$$\boldsymbol{
abla}\otimes \boldsymbol{v}(\boldsymbol{x}); \quad (\boldsymbol{
abla}\otimes \boldsymbol{v})_{ij}=rac{\partial v_i}{\partial x_j}$$

For any \mathbf{v} , f: div curl $\mathbf{v} \equiv 0$, curl grad $f \equiv 0$, div grad $f = \nabla^2 f$, $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ - Laplacian.

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Visualizing divergence in 2D

From left to right: vector field $\boldsymbol{v}(x, y) = (v_1(x, y), v_2(x, y))$, and its divergence $\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y}$. The curl $\hat{\boldsymbol{z}} \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \right)$ of this field is identically zero. (The field is a gradient of the previous example.) Graphics by Mathematica®

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Visualizing curl in 2D

From left to right: vector field $\mathbf{v}(x, y) = (v_1(x, y), v_2(x, y))$, and its curl $\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}$. The divergence $\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y}$ of this field is identically zero, so the field is a curl of another vector field. Graphics by Mathematica[®]

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Strain field with non-zero curl and divergence

From left to right: vector field, and its curl and divergence. $_{\rm Graphics \ by \ Mathematica ^{\odot}}$

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields

Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

inear first-order PDE

Quasi-linear first-order systems

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Useful identities

$$\nabla \wedge (\nabla \wedge \mathbf{v}) = \nabla (\nabla \cdot \mathbf{v}) - \nabla^2 \mathbf{v},$$
 (2)

$$\mathbf{v} \wedge (\mathbf{\nabla} \wedge \mathbf{v}) = \mathbf{\nabla} \left(\frac{\mathbf{v}^2}{2} \right) - (\mathbf{v} \cdot \mathbf{\nabla}) \mathbf{v},$$
 (3)

$$\boldsymbol{\nabla} f \cdot (\boldsymbol{\nabla} \wedge \boldsymbol{\nu}) = -\boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} f \wedge \boldsymbol{\nu}). \tag{4}$$

<u>Proofs</u>: using tensor representation $(\nabla \wedge \mathbf{v})_i = \epsilon_{ijk}\partial_j v_k$, with shorthand notation $\frac{\partial}{\partial x_i} \equiv \partial_i$, exploiting the antisymmetry of ϵ_{ijk} , using that $\delta_{ij}v_j = v_i$, and applying the magic formula (1).

Example: proof of (2).

$$\epsilon_{ijk}\partial_j\epsilon_{klm}\partial_l\mathbf{v}_m = (\delta_{il}\delta_{jm} - \delta_{im}\delta_{jl})\partial_j\partial_l\mathbf{v}_m = \partial_i\partial_j\mathbf{v}_j - \partial_j\partial_j\mathbf{v}_i.$$

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

-ourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE Hyperbolic equations: wave

Parabolic equations: heat

Elliptic equations

Integration of a field along a (closed) 1D contour

Summation of the values of the field at the points of the contour times oriented line element $dI = \hat{t} dl$:

where \hat{t} is unit tangent vector, and *dl* is a length element along the contour. Positive orientation: anti-clockwise.

/ector algebra and /ector analysis

Vector algebra Differential operations on scalar and vector fields

Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd

lyperbolic equations: wave

Parabolic equations: heat equation

Elliptic equations

Integration of a field over a 2D surface

Summation of the values of the field at the points of the surface times oriented surface element $ds = \hat{n} ds$:

$$\int \int d\boldsymbol{s}(...) \equiv \int_{\mathcal{S}} d\boldsymbol{s}(...),$$

where \hat{n} is unit normal vector. Positive orientation for closed surfaces: outwards.

lector algebra and lector analysis

Vector algebra Differential operations on scalar and vector fields

Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Integration of a field over a 3D volume

Summation of the values of the field at the points in the volume times volume element dV.

$$\int \int \int dV(...) \equiv \int_V dV(...).$$

Vector algebra and vector analysis

Vector algebra Differential operations on scalar and vector fields

Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

guasi-linear first-order

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Linking contour and surface integrations: Stokes theorem

$$\oint_C d\boldsymbol{l} \cdot \boldsymbol{v}(\boldsymbol{x}) = \int_{\mathcal{S}_C} d\boldsymbol{s} \cdot (\boldsymbol{\nabla} \wedge \boldsymbol{v}(\boldsymbol{x})).$$

Left-hand side: circulation of the vector field over the contour *C*. Right-hand side: curl of \boldsymbol{v} integrated over any surface S_C having the contour *C* as a base.

/ector algebra and /ector analysis

Vector algebra Differential operations on scalar and vector fields

Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

(5)

Jinear first-order PDE Quasi-linear first-order systems Classification of linear 2nd irder PDE Hyperbolic equations: wave iquation

Parabolic equations: heat equation

Elliptic equations

Stokes theorem: the idea of proof

Circulation of the vector $\mathbf{v} = v_1 \hat{\mathbf{x}} + v_2 \hat{\mathbf{y}}$ over an elementary contour, with $dx \rightarrow 0$, $dy \rightarrow 0$, using first-order Taylor expansions:

$$v_1(x,y)dx + v_2(x+dx,y)dy - v_1(x,y+dy)dx - v_2(x,y)dy$$
$$= \frac{\partial v_2}{\partial x}dx \, dy - \frac{\partial v_1}{\partial y}dx \, dy,$$

with a *z*-component of curl \boldsymbol{v} multiplied by the *z*-oriented surface element arising in the right-hand side.

Vector algebra and vector analysis

Vector algebra Differential operations on scalar and vector fields

Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Linking surface and volume integrations: Gauss theorem

$$\oint_{S_V} d\boldsymbol{s} \cdot \boldsymbol{v}(\boldsymbol{x}) = \int_V dV \, \boldsymbol{\nabla} \cdot \boldsymbol{v}(\boldsymbol{x}). \tag{6}$$

Left-hand side: flux of the vector field through the surface S_V which is a boundary of the volume V. Right-hand side: volume integral of the divergence of the field.

Important. The theorem is also valid for the scalar field:

$$\oint_{S_V} d\boldsymbol{s} \cdot f(\boldsymbol{x}) = \int_V dV \, \boldsymbol{\nabla} f(\boldsymbol{x}).$$

lector algebra and ector analysis

Vector algebra Differential operations on scalar and vector fields

Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

(7)

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Gauss theorem: the idea of proof

Flux of the vector $\mathbf{v} = v_1 \hat{\mathbf{x}} + v_2 \hat{\mathbf{y}} + v_3 \hat{\mathbf{z}}$ over a surface of an elementary volume, taking into account the opposite orientation of the oriented surface elements:

$$\begin{bmatrix} v_1(x + dx, y, z) - v_1(x, y, z) \end{bmatrix} dy dz + \\ \begin{bmatrix} v_2(x, y + dy, z) - v_2(x, y, z) \end{bmatrix} dx dz + \\ \begin{bmatrix} v_3(x, y, z + dz) - v_3(x, y, z) \end{bmatrix} dx dy = \left(\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}\right) dx dy$$

/ector algebra and /ector analysis

Differential operations on scalar and vector fields

Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Elliptic equations

Curvilinear coordinates

A triple of functions $X^i(x, y, z)$, $i = 1, 2, 3 \Leftrightarrow$ change of variables $(x, y, z) \rightarrow (X^1, X^2, X^3) \equiv (X, Y, Z)$. Non zero Jacobian \mathcal{J} :

$$\mathcal{J} = \begin{vmatrix} \frac{\partial X}{\partial x} & \frac{\partial X}{\partial y} & \frac{\partial X}{\partial z} \\ \frac{\partial Y}{\partial x} & \frac{\partial Y}{\partial y} & \frac{\partial Y}{\partial z} \\ \frac{\partial Z}{\partial x} & \frac{\partial Z}{\partial y} & \frac{\partial Z}{\partial z} \end{vmatrix} \equiv \frac{\partial(X, Y, Z)}{\partial(x, y, z)} \neq 0.$$

Length element squared (Einstein convention applied):

$$ds^2 = d\boldsymbol{x} \cdot d\boldsymbol{x} \equiv dx^2 + dy^2 + dz^2 = g_{ij}(X_1, X_2, X_3) dX^i dX^i$$

where the metric tensor

$$g_{ij} = rac{\partial x}{\partial X^i} rac{\partial x}{\partial X^j} + rac{\partial y}{\partial X^i} rac{\partial y}{\partial X^j} + rac{\partial z}{\partial X^i} rac{\partial z}{\partial X^j} = g_{ji}.$$

 $g := \det g_{ij} = \left(rac{\partial (x, y, z)}{\partial (X, Y, Z)}
ight)^2 \equiv \mathcal{J}^{-2}.$

/ector algebra and rector analysis

Vector algebra

calar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians

Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Properties of Jacobians

Volume element:

$$dV = dxdydz = \frac{\partial(x, y, z)}{\partial(X, Y, Z)}dXdYdZ.$$

Consecutive changes of coordinates $(x, y, z) \rightarrow (X, Y, Z) \rightarrow (X', Y', Z') \Rightarrow$

$$\frac{\partial(x, y, z)}{\partial(X', Y', Z')} = \frac{\partial(x, y, z)}{\partial(X, Y, Z)} \cdot \frac{\partial(X, Y, Z)}{\partial(X', Y', Z')}.$$

Partial changes:

$$\frac{\partial(x,y,z)}{\partial(X,Y,z)} = \frac{\partial(x,y)}{\partial(X,Y)}, \quad \frac{\partial(x,y,z)}{\partial(X,y,z)} = \frac{\partial x}{\partial X}.$$

Vector algebra and vector analysis

Vector algebra

Differential operations on calar and vector fields integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians

Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

(8)

(9)

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Vectors in curvilinear coordinates

Coordinate line: two of X_i fixed, e.g. i = 2, 3, curve $(x = x(X^1), y = y(X^1), z = z(X^1))$. Unit coordinate vectors: unit vectors i_i tangent to

respective coordinate lines (*not orthogonal*, in general). Any vector $\mathbf{F} = \hat{F}_1 \mathbf{i}_1 + \hat{F}_2 \mathbf{i}_2 + \hat{F}_3 \mathbf{i}_3$.

/ector algebra and rector analysis

Vector algebra

Differential operations on acalar and vector fields integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians

Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order

Systems Classification of linear 2nd

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Orthogonal coordinates: scalar and vector products

Orthogonality of $i_i \Leftrightarrow g_{ij} = 0, i \neq j$ Scalar product of vectors:

$$\textbf{\textit{F}}\cdot\textbf{\textit{G}}=\hat{F}_1\hat{G}_1+\hat{F}_2\hat{G}_2+\hat{F}_3\hat{G}_3$$

Vector product of vectors:

$$oldsymbol{F}\wedgeoldsymbol{G}=egin{bmatrix}oldsymbol{i}_1&oldsymbol{i}_2&oldsymbol{i}_3\ \hat{F}_1&\hat{F}_2&\hat{F}_3\ \hat{G}_1&\hat{G}_2&\hat{G}_3\end{bmatrix}.$$

/ector algebra and

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians

Orthogonal coordinates

Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order systems

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Orthogonal coordinates: differential operations

$$\boldsymbol{\nabla}\Phi = \frac{1}{\sqrt{g_{11}}}\frac{\partial\Phi}{\partial X^1}\boldsymbol{i}_1 + \frac{1}{\sqrt{g_{22}}}\frac{\partial\Phi}{\partial X^2}\boldsymbol{i}_2 + \frac{1}{\sqrt{g_{33}}}\frac{\partial\Phi}{\partial X^3}\boldsymbol{i}_3$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{F} = \frac{1}{\sqrt{g}} \left[\frac{\partial}{\partial X^1} \left(\hat{F}_1 \sqrt{\frac{g}{g_{11}}} \right) + \frac{\partial}{\partial X^2} \left(\hat{F}_2 \sqrt{\frac{g}{g_{22}}} \right) + \frac{\partial}{\partial X^3} \left(\hat{F}_3 \sqrt{\frac{g}{g_{22}}} \right) \right]$$

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol{
abla} oldsymbol{F} = rac{1}{\sqrt{g}} egin{bmatrix} \sqrt{g_{11}} i_1 & \sqrt{g_{22}} i_2 & \sqrt{g_{33}} i_3 \ rac{\partial}{\partial X^1} & rac{\partial}{\partial X^2} & rac{\partial}{\partial X^3} \ \hat{oldsymbol{F}}_1 \sqrt{g_{11}} & \hat{oldsymbol{F}}_2 \sqrt{g_{22}} & \hat{oldsymbol{F}}_3 \sqrt{g_{33}} \ \end{pmatrix}.$$

$$\nabla^2 \Phi = \frac{1}{\sqrt{g}} \left[\frac{\partial}{\partial X^1} \left(\frac{\sqrt{g}}{g_{11}} \frac{\partial \Phi}{\partial X^1} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}{g_{22}} \frac{\partial \Phi}{\partial X^2} \right) + \frac{\partial}{\partial X^2} \left(\frac{\sqrt{g}}$$

Important: $\frac{\partial I_j}{\partial X^k} \neq 0$, unlike Cartesian coordinates.

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

equation

Parabolic equations: heat equation

Elliptic equations

Cylindrical coordinates

$$\mathbf{0} \leq
ho < \infty, \, \mathbf{0} \leq \phi < \mathbf{2}\pi, \, -\infty < \mathbf{z} < +\infty$$

Length element:

$$ds^2 = d\rho^2 + \rho^2 d\phi^2 + dz^2 \Rightarrow$$

$$g_{\rho\rho} = 1, \ g_{\phi\phi} = \rho^2, \ g_{zz} = 1 \rightarrow \sqrt{g} = \rho.$$

Vector algebra and vector analysis

Vector algebra Differential operations on scalar and vector fields Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates

Cylindrical coordinates

Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order systems

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Spherical coordinates

$$0 \le r < \infty, \ 0 \le \theta \le \pi, \ 0 \le \phi < 2\pi$$

Length element:

$$ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \Rightarrow$$

$$g_{rr}=1, \ g_{\theta\theta}=r^2, \ g_{\phi\phi}=r^2\sin^2\theta, \ \rightarrow \sqrt{g}=r^2\sin\theta.$$

Vector algebra and vector analysis

Vector algebra

calar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates

Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Fourier series for periodic functions Consider $f(x) = f(x + 2\pi)$, a periodic smooth function on the interval [0, 2π]. Fourier series:

$$f(x) = \sum_{n=0}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right].$$

The expansion is unique due to ortogonality of the basis functions:

$$\int_0^{2\pi} dx \, \cos(nx) \cos(mx) = \int_0^{2\pi} dx \, \sin(nx) \sin(mx) = \pi \delta_{nm},$$

$$\int_0^{2\pi} dx \, \sin(nx) \cos(mx) \equiv 0.$$

The coefficients of expansion, thus, are uniquely defined:

$$a_n = \frac{1}{\pi} \int_0^{2\pi} dx \, f(x) \, \cos(nx), \quad b_n = \frac{1}{\pi} \int_0^{2\pi} dx \, f(x) \, \sin(nx)$$

Fourier analysis

Complex exponential form

$$e^{inx} = \cos(nx) + i\sin(nx) \Rightarrow$$
$$\cos(nx) = \frac{e^{inx} + e^{-inx}}{2}, \ \sin(nx) = \frac{e^{inx} - e^{-inx}}{2i}$$

Hence

$$f(x) = \sum_{n=0}^{\infty} \frac{(a_n - ib_n)}{2} e^{inx} + c.c \equiv \sum_{-\infty}^{\infty} A_n e^{inx}, A_n^* = A_{-n}$$

Orthogonality:

$$\int_0^{2\pi} dx \, e^{inx} e^{-imx} = 2\pi \delta_{nm}$$

Expression for the complex coefficients

$$A_n = rac{1}{2\pi} \int_0^{2\pi} dx \, f(x) \, e^{-inx}$$

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order systems

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Fourier integral

Fourier series on arbitrary interval *L*: sin(nx), $cos(nx) \rightarrow sin(\frac{2\pi}{L}nx)$, $cos(\frac{2\pi}{L}nx)$, $\int_{0}^{2\pi} dx \rightarrow \int_{0}^{L} dx$, normalization $\frac{1}{2\pi} \rightarrow \frac{1}{L}$. In the limit $L \rightarrow \infty$: $\sum_{-\infty}^{\infty} \rightarrow \int_{-\infty}^{\infty}$. Fourier-transformation and its inverse:

$$f(x) = \int_{-\infty}^{\infty} dk F(k) e^{ikx}, \quad F(k) = \int_{-\infty}^{\infty} dx f(x) e^{-ikx}.$$

Based on orthogonality:

$$\int_{-\infty}^{\infty} dx \, e^{ikx} e^{-ilx} = \delta(k-l),$$

where $\delta(x)$ - Dirac's delta-function, continuous analog of Kronecker's δ_{nm} , with properties:

$$\int_{-\infty}^{\infty} dx \, \delta(x) = 1, \quad \int_{-\infty}^{\infty} dy \, \delta(x-y) \, F(y) = F(x).$$

/ector algebra and rector analysis

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Multiple variables and differentiation

$$f(x, y, z) = \int_{-\infty}^{\infty} dk \, dl \, dm \, F(k, l, m) \, e^{i(kx+ly+mz)},$$
$$F(k, l, m) = \int_{-\infty}^{\infty} dx \, dy \, dz \, f(x, y, z) \, e^{-i(kx+ly+mz)}$$

Physical space $(x, y, z) \rightarrow (k, l, m)$, Fourier space. Radius-vector $\mathbf{x} \rightarrow \mathbf{k}$, "wavevector",

$$f(\boldsymbol{x}) = \int_{-\infty}^{\infty} d\boldsymbol{k} \, F(\boldsymbol{k}) \, \boldsymbol{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}}$$

Main advantage: differentiation in physical space \rightarrow multiplication by the corresponding component of the wave-vector in Fourier space $\frac{\partial}{\partial x} \rightarrow ik$:

$$\frac{\partial}{\partial x}f(\boldsymbol{x}) = \int_{-\infty}^{\infty} d\boldsymbol{k} \, ik \, F(\boldsymbol{k}) \, e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

and similarly for other variables.

/ector algebra and /ector analysis

Vector algebra

Differential operations on scalar and vector fields integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Variational derivatives

Variation of a function of $\mathbf{x} \in \mathcal{D}$ and $t \in [t_1, t_2]$: $f(\mathbf{x}, t) \rightarrow f(\mathbf{x}, t) + \delta f(\mathbf{x}, t), ||\delta f(\mathbf{x}, t)|| = o(1), ||...|| - a$ norm (typically *L*₂). With proper boundary conditions:

$$\delta(\boldsymbol{\nabla} f) = \boldsymbol{\nabla} \delta f, \quad \delta(\partial_t f) = \partial_t \delta f. \tag{10}$$

Variational derivative of a function *F* of $f(\mathbf{x}, t)$: $\frac{\delta F[f(\mathbf{x}, t)]}{\delta f(\mathbf{x}', t')}$. Important:

$$\frac{\delta f(\boldsymbol{x},t)}{\delta f(\boldsymbol{x}',t')} = \delta(\boldsymbol{x} - \boldsymbol{x}')\,\delta(t - t') \tag{11}$$

Functionals of $f(\mathbf{x}, t)$ and their derivatives:

$$\mathcal{F} = \int_{t_1}^{t_2} dt \, \int_{\mathcal{D}} d^3 \boldsymbol{x} \boldsymbol{F} \left[f(\boldsymbol{x}, t), \boldsymbol{\nabla} f(\boldsymbol{x}, t), \partial_t f(\boldsymbol{x}, t) \right]$$

/ector algebra and /ector analysis

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variational calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Variations of functionals

Variation of a functional:

$$\delta \mathcal{F} = \int_{t_1}^{t_2} dt' \int_{\mathcal{D}} d^3 \mathbf{x}' \frac{\delta \mathcal{F}}{\delta f(\mathbf{x}', t')} \delta f(\mathbf{x}', t').$$

Using (11) and integrating by parts in space and time, using vanishing of the variations at the boundaries:

$$\delta \mathcal{F} = \int_{t_1}^{t_2} dt \, \int_{\mathcal{D}} d^3 \mathbf{x} \left[\frac{\delta \mathbf{F}}{\delta f} - \mathbf{\nabla} \cdot \frac{\delta \mathbf{F}}{\delta \mathbf{\nabla} f} - \partial_t \frac{\delta \mathbf{F}}{\delta \partial_t f} \right] \delta f, \quad (12)$$

Invariance of the functional with respect to variations of $f \delta \mathcal{F} = \mathbf{0} \Rightarrow$ Euler-Lagrange equations:

$$\frac{\delta F(f, \nabla f, \partial_t f)}{\delta f} - \nabla \cdot \frac{\delta F(f, \nabla f, \partial_t f)}{\delta \nabla f} - \partial_t \frac{\delta F(f, \nabla f, \partial_t f)}{\delta \partial_t f} = 0.$$
(13)

Vector algebra and vector analysis

/ector algebra Differential operations

calar and vector fields itegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Opherical coordinates

Fourier analysis

Variational calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

General first-order ODE

$$(...)' \equiv \frac{d(...)}{dx}, (...)'' \equiv \frac{d^2(...)}{dx^2}, ...$$

Typical equation for a function y(x)

$$y'(x)=F(x, y)$$

Geometric interpretation: field of directions in the x, yplane determined by their slopes F(x, y)

Integral curves: $\Phi(x, y, C)$, where *C* - integration constants determined by b.c. at point x_0 : $y(x_0) = y_0$.

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd

Hyperbolic equations: wave

Parabolic equations: heat equation

Elliptic equations

Linear first-order ODE

General linear inhomogeneous equation:

$$y'(x) + a(x)y(x) = b(x).$$

Homogeneous equation $\leftrightarrow b(x) \equiv 0$. General solution:

$$y(x) = \frac{1}{\mu(x)} \left(\int dx \, \mu(x) \, b(x) + C \right)$$

where

$$\mu(\mathbf{x}) = \mathbf{e}^{\int d\mathbf{x} \, \mathbf{a}(\mathbf{x})}$$

Vector algebra and vector analysis

Vector algebra Differential operations o

itegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order systems

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Linear second-order ODE

General inhomogeneous equation:

$$y''(x) + a(x)y'(x) + b(x)y(x) = c(x).$$
 (14)

General solution: sum of a particular solution of (14) and of a general solution of the corresponding homogeneous equation

$$y''(x) + a(x)y'(x) + b(x)y(x) = 0.$$
 (15)

Self-adjoint form of (15):

$$(p(x) y'(x))' + q(x)y(x) = 0,$$
 (16)

where

$$p(x) = e^{\int dx \, a(x)}, \ q(x) = b(x) \, p(x).$$

ector algebra and

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

(17

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

General solution of a homogeneous equation and boundary conditions

If one solution of (15) $y_1(x)$ is known, then general solution is:

$$y(x) = y_1(x) \left(C_1 + C_2 \int dx \, \frac{1}{y_1^2(x) \, p(x)} \right),$$
 (18)

where $C_{1,2}$ - integration constants. Can be determined from boundary conditions (b.c.). Two typical sets of b.c.

- At a given point (initial-value problem): $y(x_0) = A, y'(x_0) = B,$
- At the boundary of the interval (boundary-value problem): $y(x_1) = A$, $y(x_2) = B$

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

General solution of homogeneous equation

Fundamental system of solutions of (15): a pair of linearly independent particular solutions $y_{1,2}(x)$ with

$$W(x) = y_1(x)y'_2(x) - y_2(x)y'_1(x) \neq 0,$$
 (19)

where W is Wronskian. General solution of (14):

$$y(x) = C_1 y_1(x) + C_2 y_2(x) + y_2 \int dx \, \frac{y_1(x)c(x)}{W(x)} - y_1 \int dx \, \frac{y_2(x)c(x)}{W(x)} \frac{y_2(x$$

where $C_{1,2}$ - integration constants.

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

-ourier analysis

Parabolic equations: heat

Variationa calculus

Sturm-Liouville problem

Linear problem on eigenvalues λ and eigenfunctions ϕ_{λ} :

$$(p(x)\phi'(x))' + q(x)\phi(x) = \lambda B(x)\phi$$
 (21)

on the interval a < x < b, with general homogeneous

$$\alpha_1 \phi'(a) + \beta_1 \phi(a) = 0, \ \alpha_2 \phi'(b) + \beta_2 \phi(b) = 0,$$
 (22)

or periodic b.c.:

$$\phi(a) = \phi(b), \ \phi'(a) = \phi'(b).$$

Eigenvalues (spectrum) λ_n , $\lambda_1 \leq \lambda_2 \leq \ldots$:

Real

- n = number of zeros of ϕ_n in [a, b],
- Rank (number of different eigenfunctions per eigenvalue): 1 for (22), 2 for (23)

Eigenfunctions: orthogonal basis of functions in [*a*, *b*].

/ector algebra and rector analysis

Vector algebra

calar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

(23)

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Bessel equation and Bessel functions

$$y''(x) + \frac{1}{x}y'(x) + \left(1 - \frac{m^2}{x^2}\right)y(x) = 0.$$
 (24)

Fundamental system of solutions (eigenfunctions with integer eigenvalues m = 0, 1, 2, ... in the interval $0 \le x < \infty$): Bessel and Neumann functions J_m and N_m :

Hankel functions: $H_m^{1,2}(x) = J_m(x) \pm iN_m(x)$.

Vector algebra and vector analysis

Vector algebra

calar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE

Examples

PDE

Linear first-order PDE

Quasi-linear first-order

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Hypergeometric equations and functions Gauss's equation:

$$x(x-1)y''(x)+[c-(a+b+1)x]y'(x)-aby(x)=0$$
 (25)

Fundamental solution: hypergeometric function given by the hypergeometric series

$$y(x) = F(a, b, c; x) = 1 + \frac{ab}{c}x + \frac{1}{2!}\frac{a(a+1)b(b+1)}{c(c+1)}x^2 + \dots$$
(26)

Second solution - by the receipt given above. Kummer's equation:

$$x y''(x) + (b - x) y'(x) - a y(x) = 0$$
 (27)

Fundamental solution: confluent hypergeometric function

$$y(x) = M(a, b; x) = 1 + \sum_{1}^{\infty} \frac{a^{(n)}}{b^{(n)} n!} x, \ a^{(n)} = a(a+1) \dots (a+n-a)$$
(28)

Second solution U(a, b; x) - by the receipt above.

/ector algebra and rector analysis

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Dassification of linear 2nd order PDE Hyperbolic equations: wave equation Parabolic equations: heat equation

Example of linear PDE: wave equation

$$u_t + cu_x = 0.$$

u(x, t) in $-\infty < x < +\infty$, and $t: 0 \le t < \infty$, c = const.Notation: $(...)_x = \frac{\partial(...)}{\partial x}$, $(...)_t = \frac{\partial(...)}{\partial t}$ Method of solution 1: change of variables:

$$(x, t) \rightarrow (\xi_+, \xi_-) = (x + ct, x - ct).$$
 (30)

$$\frac{\partial \xi_{\pm}}{\partial x} = 1, \quad \frac{\partial \xi_{\pm}}{\partial t} = \pm c \Rightarrow$$
 (31)

$$\frac{\partial u}{\partial t} = c \left(\frac{\partial u}{\partial \xi_+} - \frac{\partial u}{\partial \xi_-} \right), \quad \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi_+} + \frac{\partial u}{\partial \xi_-}$$

$$u_t + cu_x = 0 \rightarrow 2c \frac{\partial u}{\partial \xi_+} = 0 \Rightarrow u = u(\xi_-).$$
 (33)

u determined by initial conditions:

c.l.:
$$u_{t=0} = u_0(x) \Rightarrow u = u_0(x - ct).$$
 (34)

ector algebra and ector analysis

Vector algebra Differential operations on scalar and vector fields

Curvilinear coordinates

(29)

(32)

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Spatio-temporal evolution of initially localized perturbation

Solution in the domain -5 < x < 5, 0 < t < 5. Initial Gaussian perturbation propagates along a characteristic line with a slope *c*. Graphics by Mathematica[®]

/ector algebra and /ector analysis

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Solution by Fourier method

Fourier transformation:

$$u(x,t) = \frac{1}{2\pi} \int dk \, d\omega \, e^{i(kx-\omega t)} \hat{u}(k,\omega) + c.c.. \tag{35}$$

Inverse:

$$\hat{u}(k,\omega) = \frac{1}{2\pi} \int dx \, dt \, e^{-i(kx-\omega t)} u(x,t) + c.c.$$
 (36)

Fourier-modes: $\hat{u}(k,\omega)e^{i(kx-\omega t)} \leftrightarrow$ - elementary waves.

$$u_t + cu_x = 0 \Rightarrow i(kc - \omega) \hat{u}(k, \omega), \ \hat{u}(k, \omega) \neq 0 \Rightarrow \quad (37)$$

General solution:

$$u(x,t)=rac{1}{2\pi}\int dk \; e^{ik(x-ct)}\hat{u}(k)+c.c.$$

 $\hat{u}(k)$ - Fourier-transform of u(x, 0).

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

(38)

Linear first-order PDE

Quasi-linear first-order systems Classification of linear 2nd order PDE Hyperbolic equations: wave

Parabolic equations: heat

Elliptic equations

Quasi-linear and hyperbolic systems Quasi-linear system of 1st-order PDE:

$$\partial_t V_i(x,t) + M_{ij}(\mathbf{V}) \partial_x V_j(x,t) = R_i(\mathbf{V}), \ i,j = 1,2,...,N$$
(39)

$I^{(\alpha)}$ - left eigenvectors, $\xi^{(\alpha)}$ - left eigenvalues of M, $\alpha = 1, 2, ...$

$$\boldsymbol{I}^{(\alpha)} \cdot \boldsymbol{M} = \boldsymbol{\xi}^{(\alpha)} \boldsymbol{I}^{(\alpha)} \Rightarrow \qquad (40)$$

$$\boldsymbol{I}^{(\alpha)} \cdot (\partial_t \boldsymbol{V} + \boldsymbol{M} \cdot \partial_x \boldsymbol{V}) = \boldsymbol{I}^{(\alpha)} \cdot \left(\partial_t \boldsymbol{V} + \xi^{(\alpha)} \partial_x \boldsymbol{V}\right). \quad (41)$$

Characteristic directions \rightarrow characteristic curves: $\frac{dx}{dt} = \xi^{(\alpha)}$. Advection along a characteristic:

$$\dot{\boldsymbol{V}} \equiv \frac{d\boldsymbol{V}}{dt} = \left(\partial_t + \xi^{(\alpha)}\partial_x\right)\boldsymbol{V}, \Rightarrow \boldsymbol{I}^{(\alpha)}\cdot\dot{\boldsymbol{V}} = \boldsymbol{I}^{(\alpha)}\cdot\boldsymbol{R}, \quad (42)$$

Les PDE became a system of ODE! Hyperbolic system: if *M* has *N* real and different eigenvalues $\xi^{(\alpha)}$. If $I^{(\alpha)} = \text{const} \rightarrow \text{Riemann variables}$ (which become invariants if $\mathbf{R} = 0$):

$$r^{(\alpha)} = I^{(\alpha)} \cdot V, \quad \dot{r}^{(\alpha)} = I^{(\alpha)} \cdot R.$$

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order systems

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

(Quasi-) linear second-order PDEs

General linear 2nd order equation:

$$a_{11}\frac{\partial^2 f(x,y)}{\partial x^2} + 2a_{12}\frac{\partial^2 f(x,y)}{\partial x \partial y} + a_{22}\frac{\partial^2 f(x,y)}{\partial y^2} = R(x,y)$$
(44)
$$a_{ij} = a_{ij}(x,y). \text{ Quasi-linear equation: } R \text{ and } a_{ij} \text{ are also functions of } f$$

- ► Hyperbolic: a₁₁a₂₂ a²₁₂ < 0, ∀(x, y)</p>
- Parabolic: $a_{11}a_{22} a_{12}^2 = 0, \forall (x, y)$
- Elliptic: $a_{11}a_{22} a_{12}^2 > 0, \forall (x, y)$

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order

systems

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Second-order 1D wave equation

$$u_{tt}-c^2u_{xx}=0$$

Same change of independent variables as in the 1st-order equation:

$$(x, t) \rightarrow (\xi_+, \xi_-) = (x + ct, x - ct)$$

$$u_{tt} - c^2 u_{xx} = 0 \rightarrow 4c^2 \frac{\partial^2 u}{\partial \xi_+ \partial \xi_-} = 0 \Rightarrow$$
 (46)

General solution:

$$u = u_{-}(\xi_{-}) + u_{+}(\xi_{+}), \qquad (47)$$

where $u_- + u_+$ - arbitrary functions, to be determined from initial conditions. (2nd order \Rightarrow 2 initial conditions required.)

(45)

/ector algebra and /ector analysis

Vector algebra

Differential operations on calar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Spatio-temporal evolution of initially localized perturbation

Solution in the domain -5 < x < 5, 0 < t < 5. Initial Gaussian perturbation propagates along a pair of characteristic lines with slopes $\pm c$. Graphics by Mathematica[®]

/ector algebra and /ector analysis

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

1D heat equation

$$u_t - \kappa^2 u_{xx} = 0, \ \kappa = \text{const.}$$

Solution by Fourier method:

$$u(x,t) = \frac{1}{2\pi} \int dk \, e^{ikx} \hat{u}(k,t). \quad \rightarrow \qquad (49)$$

$$\hat{u}_t(k,t) + \kappa^2 k^2 \hat{u}(k,t) = 0, \ \kappa = \text{const.} \to (50)$$

 $\hat{u}(k,t) = e^{-t\kappa^2 k^2} \hat{u}(k,0), (51)$

where

$$\hat{u}(k,0) = \int dx \, e^{-ikx} u_0(x), \ u_0(x) \equiv u(x,0)$$
 (52)

Hence

$$u(x,t) = \frac{1}{2\pi} \int dk \, dx' \, u_0(x') \, e^{ik(x-x')} e^{-t\kappa^2 k^2}$$
(53)

$$u(x,t) \propto rac{1}{\sqrt{t}} \int dx' \, u_0(x') \, e^{-rac{(x-x')^2}{4\kappa^2 t}}$$

ector algebra and ector analysis

Vector algebra Differential operations on scalar and vector fields Integration(s) in 3D space

Curvilinear coordinates

(48)

(54)

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Spatio-temporal evolution of the initial localised perturbation

Solution in the domain -5 < x < 5, 0 < t < 5. Dispersion of initial Gaussian perturbation . Graphics by Mathematica®

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

2D Laplace equation

$$\boldsymbol{\nabla}^2 f(x,y) = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2} = 0. \tag{55}$$

In polar coordinates (r, ϕ) :

$$\frac{\partial^2 f(r,\phi)}{\partial r^2} + \frac{1}{r} \frac{\partial f(r,\phi)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f(r,\phi)}{\partial \phi^2} = 0.$$
 (56)

Separation of variables: $f(r, \phi) = \sum_{m=0}^{\infty} \hat{f}(r) e^{im\phi} + \text{c.c.}, \rightarrow$

$$\hat{f}''(r) + r^{-1}\hat{f}'(r) - m^2 r^{-2}\hat{f}(r) = 0, \ (...)' = d(...)/dr.$$
 (57)

General solution of (57): $\hat{f}(r) = C_1 r^m + C_2 r^{-m}$. At $m \neq 0$ singular at 0 and/or ∞ . Solution in a disk $r = r_0$ with b.c. $f(r, \phi)|_{r=r_0} = f_0(\phi) = \sum_{m=0}^{\infty} f_m e^{im\phi} + \text{c.c.}$:

$$f(r,\phi) = \sum_{m=0}^{\infty} f_m \left(\frac{r}{r_0}\right)^m e^{im\phi} + \text{c.c.}.$$

/ector algebra and /ector analysis

Vector algebra

Differential operations on scalar and vector fields ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Method of Green's functions

General inhomogeneous linear problem:

$$\hat{\mathcal{L}} \circ \mathcal{F} = \mathcal{R}$$
 (58)

Here $\hat{\mathcal{L}}$ is a linear operator acting on (a set of) function(s) \mathcal{F} , the unknowns, \mathcal{R} is a known source/forcing term. Homogeneous problem: $\mathcal{R} \equiv 0$. Inverse operator $\hat{\mathcal{L}}^{-1}$ - solution of the problem:

$$\hat{\mathcal{L}}^{-1} \circ \hat{\mathcal{L}} = \mathcal{I}, \tag{59}$$

where \mathcal{I} is unity in functional space. General solution of (58):

$$\mathcal{F} = \hat{\mathcal{L}}^{-1} \circ \mathcal{R} + \mathcal{F}_0, \tag{60}$$

where \mathcal{F}_0 - solution of the homogeneous problem. PDEs context: Inverse operator = Green's function, \mathcal{I} = delta function.

Vector algebra and vector analysis

vector algebra Differential operations on scalar and vector fields Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

inear first-order PDE Quasi-linear first-order ystems Classification of linear 2nd

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Poisson equation

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) F(x, y) = R(x, y)$$
(61)

Solution in terms of Green's function $\mathcal{G}(x - x', y - y')$:

$$F(x,y) = \int \int dx' dy' \,\mathcal{G}(x-x',y-y') R(x',y'), \quad (62)$$

where

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \mathcal{G}(\mathbf{x} - \mathbf{x}', \mathbf{y} - \mathbf{y}') = \delta(\mathbf{x} - \mathbf{x}')\delta(\mathbf{y} - \mathbf{y}') \equiv \delta(\mathbf{x} - \mathbf{x}')$$
(63)

Calculation of \mathcal{G} in the whole x - y plane: put the origin at \mathbf{x}' , use translational and rotational invariance \Rightarrow $\mathcal{G} = \mathcal{G}(|\mathbf{x}|)$, and hence $\nabla \mathcal{G} \parallel \mathbf{x}$, use $\nabla^2 ... \equiv \nabla \cdot (\nabla ...)$, integrate both sides of (63) over a circle around the origin, apply Gauss theorem to the left-hand side, and get:

$$\mathcal{G}(\boldsymbol{x}) = \frac{1}{2\pi} \log |\boldsymbol{x}|. \tag{64}$$

ector algebra and ector analysis

Vector algebra

Differential operations on scalar and vector fields integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Green's function for 1D wave equation

$$\left(\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2}\right) \mathcal{G}(x - x', t - t') = \delta(x - x')\delta(t - t')$$
(65)

Fourier-transformation

$$\mathcal{G}(x-x',t-t') = \frac{1}{(2\pi)^2} \int \int_{-\infty}^{+\infty} dk d\omega \,\hat{\mathcal{G}}(k,\omega) e^{i(k(x-x')-\omega(t-t'))}$$

Transformed equation:

$$\left(c^{2}k^{2}-\omega^{2}\right)\hat{\mathcal{G}}(k,\omega)=1,\Rightarrow$$
 (66)

$$\mathcal{G}(x-x',t-t') = \frac{1}{(2\pi)^2} \int \int_{-\infty}^{+\infty} dk d\omega \, \frac{e^{i(k(x-x')-\omega(t-t'))}}{c^2k^2 - \omega^2}.$$
(67)

Integral is singular at $\omega_{\pm} = \pm c k$ - how to proceed?

/ector algebra and /ector analysis

Vector algebra

Differential operations on scalar and vector fields Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order systems Classification of linear 2nd order PDE

Ayperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Calculation in the complex ω -plane: general idea

Integral over the real ω - axis $\int_{\mathcal{R}} d\omega$ (...) is equal to integral over the contour C in complex ω plane.

$$\oint_{\mathcal{C}} d\omega (...) \equiv \int_{\mathcal{R}} d\omega (...) + \int_{\mathcal{A}} d\omega (...)$$

where $C = \mathcal{R} + \mathcal{A}$, \mathcal{A} : a semi-circle in the complex plane ending at $\pm \infty$ on \mathcal{R} , if $\int_{\mathcal{A}} d\omega (...) = 0$, and situated either in upper or in lower half-plane.

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE

Quasi-linear first-order

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Calculation in the complex ω -plane: residue theorem

f(z): function of complex variable *z*, with a simple pole $f \propto \frac{1}{z-c}$ inside the contour *C*.

$$\frac{1}{2\pi i} \oint_{\mathcal{C}} dz f(z) = \lim_{z \to c} (z - c) f(z)$$

Denominator in (67): $\frac{1}{ck} \left(\frac{1}{\omega - ck} - \frac{1}{\omega + ck} \right)$ - a pair of poles at $\omega = \omega_{\pm} = \pm ck$. In order to apply the theorem, they should be understood as $\omega_{\pm} = \lim_{\epsilon \to 0} (\omega_{\pm} + i\epsilon)$, where the sign of ϵ is to be determined.

Vector algebra and vector analysis

Vector algebra

Differential operations on scalar and vector fields Integration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

Fourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

PDE

Linear first-order PDE Quasi-linear first-order

Classification of linear 2nd order PDE

Hyperbolic equations: wave equation

Parabolic equations: heat equation

Elliptic equations

Causality principle

Causality: reaction <u>after</u> the action \Rightarrow Green's function \neq 0 only when t - t' > 0.

At the semicircle of radius $R \to \infty$: $\omega = Re^{i\Phi}$, $d\omega = iR d\Phi$, where Φ is the polar angle. The denominator of the ω - integral in (67) $\sim R^2$. If numerator is bounded, which depends on the sign of the exponent, and is true for the lower (upper) semicircle if t - t' > 0 (t - t' < 0), the integral over semicircle $\propto \frac{1}{R}|_{R\to\infty} \to 0$. Correspondingly, if $\epsilon < 0$ integral $\neq 0$ only for t - t' > 0, and is equal to

ector algebra and

Vector algebra Differential operations o scalar and vector fields

ntegration(s) in 3D space

Curvilinear coordinates

Metrics and Jacobians Orthogonal coordinates Cylindrical coordinates Spherical coordinates

-ourier analysis

Variationa calculus

ODE

First-order ODE Linear second-order ODE Examples

Green's functions

PDE

$$\mathcal{G}(x-x',t-t') = \frac{i}{2\pi} \int_{-\infty}^{+\infty} dk \, \frac{e^{i \, k((x-x')-c(t-t'))} - e^{i \, k((x-x')+c(t-t'))} e^{i \, k(x-x')} e^{i \, k(x-x')+c(t-t')} e^{i$$

Further calculation

.

By symmetry in $k \rightarrow -k$ (68) becomes:

$$\frac{1}{4\pi c} \int_{-\infty}^{+\infty} dk \frac{\sin\left(k\left[(x-x')-c(t-t')\right]\right)-\sin\left(k\left[(x-x')+c(t-t')\right]\right)}{k} = \frac{1}{2}$$

$$\frac{1}{4c}\left(\text{sign}\left(\left[(x-x')+c(t-t')\right]\right)-\text{sign}\left(\left[(x-x')-c(t-t')\right]\right)\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}$$

where sign(A) = 1, if A > 0; = -1, if A < 0; = 0, if A = 0. The last integral is calculated in the complex k-plane as the real part of $\int_{-\infty}^{\infty} dk \, \frac{e^{ikA}}{k}$. The Green's function is $\mathcal{G}(x - x', t - t') = \frac{1}{2c}$, if t > t', and -c(t-t') < (x-x') < c(t-t'), and zero otherwise. Nonzero response only in the part of the (t, x)- plane

between the characteristics $x \pm c t \leftrightarrow$ no response faster then the speed of waves c.