Lagrangian theory of waves

V. Zeitlin

Reminder on nydrodynamics

1. Lagrangian approach in hydrodynamics

V. Zeitlin

Laboratory of Dynamical Meteorology, Sorbonne University & Ecole Normale Supérieure, Paris, France

International Center for Mathematics, SUSTec, Shenzhen, 2024

くしゃ 本面 そうせん ほう うめんろ

Lagrangian theory of waves

V. Zeitlin

Reminder on 1ydrodynamics

Reminder on hydrodynamics

Where the governing equations come from :

Lagrangian theory of waves

V. Zeitlin

Reminder on hydrodynamics

► Mechanical system ⇒ Newton's 2nd law ↔ momentum conservation.

くしゃ 本面 そうせん ほう うめんろ

- ► Continuous medium ⇒ local mass conservation
- ► Thermodynamical system ⇒ 1st and 2nd laws of thermodynamics, equation of state
- Dissipative effects \Rightarrow flux-gradient relations.

Description in terms of instantaneous positions in 3D space of fluid parcels X(x, t), along their trajectories, where x are initial positions (Lagrangian labels). Newton's 2nd law :

$$\rho(\boldsymbol{X},t)\frac{d^{2}\boldsymbol{X}}{dt^{2}} = -\boldsymbol{\nabla}P(\boldsymbol{X},t), \qquad (1)$$

where ρ and P are density and pressure in the fluid. Continuity equation :

$$\rho_i(x)d^3\boldsymbol{x} = \rho(\boldsymbol{X}, t)d^3\boldsymbol{X}, \leftrightarrow \rho_i(x) = \rho(\boldsymbol{X}, t)\mathcal{J} \qquad (2)$$

where ρ_i is initial distribution of density, $\mathcal{J} = \frac{\partial(X,Y,Z)}{\partial(x,y,z)}$ is the Jacobi determinant (Jacobian). Fluid velocity : $\boldsymbol{\nu}(\boldsymbol{X},t) = \frac{d\boldsymbol{X}}{dt} \equiv \dot{\boldsymbol{X}}$ Lagrangian theory of waves

V. Zeitlin

Fluid dynamics according to Euler :

Description in terms of instantaneous values of the velocity, density and pressure fields at the fixed point of space : $\mathbf{v}(\mathbf{x}, t)$, $\rho(\mathbf{x}, t)$, $P(\mathbf{x}, t)$. Euler-Lagrange duality : there is a fluid parcel at any point \mathbf{x} , and at any time : $\mathbf{X} \leftrightarrow \mathbf{x}$ Newton's 2nd law :

$$\rho\left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}\right) = -\boldsymbol{\nabla} \boldsymbol{P}.$$
(3)

Continuity equation :

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{\nu}) = 0. \tag{4}$$

Lagrangian derivative :

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla.$$
 (5)

Lagrangian theory of waves

V. Zeitlin

Reminder on hydrodynamics

Closure of the system : equation of state

General equation of state

$$P = P(\rho, s), \tag{6}$$

where s - entropy per unit mass;

Barotropic(isentropic) fluid :

$$P = P(\rho) \leftrightarrow s = \text{const},$$
 (7)

Baroclinic fluid :

$$P = P(\rho, s), \Rightarrow$$
 (8)

Equation for s neccessary. Perfect fluid :

$$\frac{ds}{dt} = \frac{\partial s}{\partial t} + \mathbf{v} \cdot \nabla s = 0.$$
(9)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Lagrangian theory of waves

V. Zeitlin

Particular case of the barotropic fluid - incompressible fluid :

Volume conservation :

$$\mathcal{J} = 1 \leftrightarrow \boldsymbol{\nabla} \cdot \boldsymbol{\nu} = 0 \Rightarrow . \tag{10}$$

pressure is not an independent variable.

1. If in addition, $\rho = const$:

$$\boldsymbol{\nabla} \cdot (\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}) = -\frac{1}{\rho} \boldsymbol{\nabla}^2 \boldsymbol{P}. \tag{11}$$

2. Otherwise
$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \mathbf{v} \cdot \nabla\rho = 0. \tag{12}$$

and

$$\boldsymbol{\nabla} \cdot (\boldsymbol{\nu} \cdot \boldsymbol{\nabla} \boldsymbol{\nu}) = -\boldsymbol{\nabla} \cdot \left(\frac{\boldsymbol{\nabla} P}{\rho}\right). \tag{13}$$

くりゃく 前・ 本田・ 本田・ オロ・

Lagrangian theory of waves

V. Zeitlin

Thermodynamics : reminder 1st principle, "dry" thermodynamics

$$\delta \epsilon = T \delta s - P \delta v, \tag{14}$$

where ϵ - internal energy per unit mass, $v = \frac{1}{\rho}$ - volume per unit mass, δ denote small variations. Enthalpy per unit mass : $h = \epsilon + Pv$:

$$\delta h = T \delta s + v \delta P. \tag{15}$$

Energy density of the fluid :

$$e = \frac{\rho \mathbf{v}^2}{2} + \rho \epsilon. \tag{16}$$

Local conservation of energy :

$$\frac{\partial e}{\partial t} + \boldsymbol{\nabla} \cdot \left[\rho \boldsymbol{v} \left(\frac{\boldsymbol{v}^2}{2} + h \right) \right] = 0. \quad (17)$$

Lagrangian theory of waves

V. Zeitlin